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Abstract. Recovering tissue deformation during robotic assisted minimally in-
vasive surgery is an important step towards motion compensation and stabiliza-
tion. This paper presents a practical strategy for dense 3D depth recovery and
temporal motion tracking for deformable surfaces. The method combines image
rectification with constrained disparity registration for reliable depth estimation.
The accuracy and practical value of the technique is validated with a tissue
phantom with known 3D geometry and motion characteristics. It has been
shown that the performance of the proposed approach compares favorably
against existing methods. Example results of the technique applied to in vivo
robotic assisted minimally invasive surgery data are also provided.

1   Introduction

With recent advances in robotic assisted Minimally Invasive Surgery (MIS), it is now
possible to perform closed-chest cardiothoracic surgery on a beating heart to mini-
mize patient trauma and certain side effects of cardiopulmonary bypass. For robotic
assisted MIS, dexterity is enhanced by microprocessor controlled mechanical wrists,
which allow motion scaling for reducing gross hand movements and the performance
of micro-scale tasks that are otherwise not possible. So far, two commercially avail-
able master-slave manipulator devices are specifically designed for MIS cardiac sur-
gery [1]. Both systems improve the ergonomics of laparoscopic surgery and provide
high dexterity, precision and 3D visualization of the operating field. One of the sig-
nificant challenges of beating heart surgery is the destabilization introduced by car-
diac and respiratory motion, thus severely affecting precise instrument-tissue interac-
tions and the execution of complex grafts. Mechanical stabilizers [2] permit off-pump
procedures by locally stabilizing the target area while the rest of the heart supports
blood circulation. Despite this, residual motion remains, which complicates delicate
tasks such as small vessel anastomosis.

Thus far, a number of techniques have been proposed for resolving intraoperative
tissue deformation. Intraoperative 3D tomographic techniques offer precise informa-
tion about soft tissue morphology and structure, but they introduce significant chal-
lenges to instrument design, integration and computational cost. A more practical al-
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ternative is to use optical based techniques to infer surface deformation in real-time.
In animal experiments, Nakamura et al [3] used a high-speed camera to track a fidu-
cial marker on the epicardial surface. The trajectory changes of the markers were used
to identify the frequencies due to cardiac and respiration motion by using an autore-
gressive model. A region based, reduced affine tracking model was used by Gröger et
al [4] in robotic assisted MIS heart surgery for computing the local motion of the epi-
cardial surface. Thakral et al [2] used a fiber optic displacement sensor to measure the
motion of a rat’s chest for motion modeling with weighted time series. While these
techniques demonstrate the feasibility of providing motion compensation, they gener-
ally do not consider detailed 3D deformation. With the use of a stereoscopic laparo-
scope for robotic assisted MIS, the feasibility of recovering the 3D structure of the
operating field based on computer vision techniques has also been investigated [5].
Previously, monocular shading was used to infer surface shape in less interactive en-
doscope diagnostic procedures [6]. Although the recovery of the depth of a 3D scene
based on different visual cues is one of the classic problems of computer vision, dense
disparity measurement for deformable structure with high specularity is a difficult
task. The purpose of this paper is to present a robust dense 3D depth recovery method
with a stereoscopic laparoscope for motion stabilization. The method combines image
rectification with constrained disparity registration for reliable depth recovery. The
accuracy and practical value of the technique is validated with a tissue phantom with
known 3D geometry and motion characteristics. Example results of the technique ap-
plied to in vivo robotic assisted MIS data are also provided.

2   Methods

2.1   Stereo Camera Model and Calibration

One of the first steps towards depth recovery is to compute both the intrinsic and ex-
trinsic camera parameters of the stereoscopic laparoscope. In this study, the standard
pinhole model is assumed and an upper triangular matrix K is used to describe the
internal optics of the camera. Denoting the camera’s position and orientation with re-
spect to a world coordinate system by a rotation matrix R  and translation vector t ,
the camera matrix can thus be defined as:

|k k k k k = −  P K R R t (1)

Without loss of generality, the camera matrices for the stereoscopic laparoscope
can be represented by the following equation by taking the left camera as the refer-
ence:

[ ]|L L=P K I 0  and [ ]|R R= −P K R Rt (2)

In practice, laparoscope cameras deviate from ideal perspective projection and in-
duce a high level of distortion. We consider henceforth the first three terms of the ra-
dial distortion, 1

kk , 2
kk , 3

kk  and two tangential distortion terms, 1
kp  and 1

kp [7].
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For MIS, the stereo cameras are usually pre-calibrated before the surgical proce-
dure and then remain unchanged during the operation. Off-line calibration by using
objects with known geometry is therefore sufficient [8]. In this study, the intrinsic and
extrinsic parameters of the cameras were derived by using a closed form solution as
proposed in [9]. Following the initial estimate, the parameters were refined subject to
the mean squared error between the measured image points m  and the re-projected
world points M. By parameterizing the rotation matrix R  as a vector of three pa-
rameters r, the minimization criteria for a set of n  images with m  grid points can be
written as:

( ) 2

1 2 3 1 2
1 1

, , , , , , , ,
n m

ij i i j
i j

k k k k p
= =

−∑∑ m m K r t M (3)

The optimization problem formulated above is non-linear and the Levenberg-
Marquardt algorithm was used to derive the above parameters iteratively. After each
camera has been calibrated, the relative pose of the two cameras is then introduced
such that the following equation is minimized. This allows the use of the solution de-
rived for each individual camera as the initial solution for the Levenberg-Marquardt
algorithm.
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2.2   Image Rectification

For reliable dense depth recovery, image rectification based on epipolar geometry is
an important step for enhancing the robustness of the algorithm as this effectively re-
stricts the search space for disparity to 1D. For common robotic MIS settings, the
cameras are slightly verged to permit both positive and negative disparities so as to
enhance the overall 3D depth perception. To ease the fusion of the stereo images for
the observer, the stereo cameras are generally in near vertical alignment. However,
this arrangement may not be perfect in practice and therefore a planar rectification
process is applied to the stereo image pairs before dense correspondence is sought
[10]. By definition, the intrinsic matrices of the two rectified images must be the
same. Without changing the centers of the cameras, the new projection matrices can
be defined through the same rotation matrix such that

[ ]|L
r r r=P K R 0  and [ ]|R

r r r r= −P K R R t (5)

In the above equation, rR may be computed by assuming that the new image
planes are parallel to the baseline. As the camera centers remain unchanged so does
the optical ray through each image point, the original and rectified camera matrices
can therefore be written as:
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|k k k =   P Q q  and |k k k
r r r

 =   P Q q (6)

Subsequently, the rectifying transformations can be computed from the original
and rectified camera matrices through the following pair of equations:

1( )L L L L
rλ −=T Q Q  and 1( )R R R R

rλ −=T Q Q (7)

Although this method does not directly minimize the distortion or resampling ef-
fects caused by the transformations [11], in the context of the current work the warp-
ing introduced above is inherently small due to the general settings of the stereoscopic
laparoscope cameras.

2.3   Stereo Correspondence with Constrained Disparity Registration

Traditional computer vision techniques for dense stereo correspondence are mainly
concerned with rigid objects and much emphasis is placed on issues related to occlu-
sion and discontinuity [12]. Occlusion and object boundaries make stereo matching a
difficult optimization problem, as disparity is not globally continuous and smooth.
Existing techniques include winner-takes-all, graph-cuts, and dynamic programming
approaches [13]. For soft tissue as observed in MIS, the surface is generally smooth
and continuous and the difficulty of dense depth recovery is usually due to the paucity
of identifiable landmarks. Explicit geometrical constraints of the deformation model
is therefore required for ensuring the overall reliability of the algorithm. For this
study, the free-form registration framework proposed by Veseer et al [14] was used as
it provides a robust, fully encapsulated multi-resolution approach based on piece wise
bilinear maps (PBM). The lattice of PBM permits non-linear transitions, which is
suitable for temporally deforming surfaces and it easily lends itself to a hierarchical
implementation. With image rectification, the search space for each iteration is con-
strained on scan lines and the number of PBM forming the image transformation is
increased, refining the registration of finer structures. Within this framework, the dis-
parity obtained at low-resolution levels are propagated to higher levels and used as
starting points for the optimization process. To cater for surfaces in laparoscope im-
ages that have reflectance properties dependent on the viewing position, normalized
cross correlation (NCC) was used as a similarity measure. The NCC of two image re-
gions LI  and RI  of dimensions ( ),u v  is defined as:
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For deriving disparity values of the soft tissue, the gradient of the given metric can
be computed directly which permits the use of fast optimization algorithms. For this
study, the Broyden-Fletcher-Goldberg-Shano (BFGS) method can be used. This is a
quasi-Newton technique, which uses an estimate of the Hessian to speed up the itera-
tive process [15].
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2.4   Experimental Design and Validation

To model the real stereoscopic laparoscope, a stereo camera rig was built by using a
pair of miniature NTSC cameras. Each camera has a physical diameter of just over
5mm and therefore it is possible to setup a configuration with a small baseline of just
over 5mm. The described calibration procedure was employed by using a 5×7 square
grid with a checked black and white pattern. Corners were detected through a semi-
automated procedure, where the user indicates guidance positions and sub-pixel re-
finement is performed automatically. The pixel re-projection error after calibration
was measured at less than half a pixel. We also measured the reconstruction error af-
ter triangulation at an average magnitude of 1mm. This can be improved by taking
into account errors in the measured coordinates and refining the measurements [16].

Fig. 1. A stereo image pair of the tissue phantom captured by the stereo rig. (b, e) CT cross
sections of the phantom corresponding to two different phases of the deformation and their re-
spective 3D surface representation (c, f).

In order to assess the accuracy of the proposed algorithm, a tissue phantom made
of silicone rubber and painted with acrylics was constructed. The surface was coated
with silicone rubber mixed with acrylic to give it a specular finish that looks similar to
wet tissue. The tomographic model of the phantom was scanned with a Siemens So-
maton Volume Zoom four-channel multi-detector CT scanner with a slice thickness of
0.5 mm and in-plane resolution of 1mm. To allow the evaluation of temporal surface
deformation, the model was scanned at four discrete and reproducible deformation
levels.  Fig. 1 illustrates a pair of images captured by the stereo cameras and cross
sectional images of two different time frames of the tissue phantom captured by CT
scanning. The corresponding 3D surface plots are shown in Figs. 1 (c) and (f), re-
spectively.
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3   Results

Fig. 2 represents the reconstructed surfaces at four different levels of deformation as
captured by CT and the proposed algorithm for dense 3D depth recovery. Figs. 2(c)-
(e) demonstrate the regression of relative depth change over time as extracted by the
two techniques. It is evident that the overall quality of the stereo reconstruction is
good, but the scatter plots also show a certain level of deviation. This was largely due
to the specular highlights, which were not explicitly modeled in the proposed method.

Fig. 2. The reconstructed 3D surface for four different levels of deformation as captured by 3D
CT (a) and the proposed depth recovery method based on combined image rectification and
constrained disparity registration (b).  Scatter plots (c)-(e) illustrate the correlation of the recov-
ered depth change between different levels of deformation by the two techniques.

To demonstrate the potential clinical value of the proposed technique, Fig. 3 illus-
trates three of the reconstructed depth maps from an in vivo stereoscopic laparoscope
sequence. Both the depth maps and their associated 3D renditions illustrate the quality
of the reconstruction technique. However, it is also evident that specular highlight
represent a major problem to the proposed algorithm, as evident from the reconstruc-
tion errors indicated by the arrows.

In this study, we also compared the relative performance of the proposed method
against existing depth recovery techniques. Fig. 4 shows a comparison of the results
obtained from several popular stereo algorithms on an image pair of the phantom
model. It is clear that due to the lack of texture these techniques perform poorly in
comparison to the proposed technique.
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Fig. 3. A pair of stereo images (a, e) from an in vivo stereoscopic laparoscope sequence, and
three temporal frames of the reconstructed depth map (b-d) and their corresponding 3D ren-
dering results (f-h).

Fig. 4. Comparison of disparity results with popular stereo algorithms (a) rectified left image of
a stereo pair of the phantom model (b) the proposed algorithm (c) dynamic programming [17]
(d) SSD [13]

4   Discussion and Conclusions

In conclusion, we have developed a practical strategy for dense 3D structure recovery
and temporal motion tracking for deformable surfaces. The purpose of the study is to
capture real-time surface deformation during robotic assisted MIS procedures such
that effective motion stabilization can be deployed. The method uses image rectifica-
tion to simplify the subsequent free-form disparity registration procedure. Both
phantom validation and in vivo results demonstrate the potential clinical value of the
technique. It has been shown that the performance of the proposed method compares
favorably against existing techniques, but the result also indicates the importance of
handing specular highlights before depth reconstruction. For robotic assisted MIS
procedures, it is possible to exploit the restricted lighting configuration imposed by
the laparoscope to filter out these artifacts.
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