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Abstract. We describe the design of a statistical atlas-based 3D/4D
cardiac segmentation system using a combination of active appearance
models (AAM) and statistical deformation models with the Insight
Toolkit as an underlying implementation framework. Since the original
AAM approach was developed for 2D applications and makes use of man-
ually set landmarks its extension to higher dimensional data sets cannot
be easily achieved. We therefore apply the idea of statistical deformation
models to AAMs and use a deformable registration step for establishing
point-to-point correspondences. An evaluation of the implemented sys-
tem was performed by segmenting the left ventricle cavity, myocardium
and right ventricle of ten cardiac MRI and ten CT datasets. The compar-
ison of automatic and manual segmentations showed encouraging results
with a mean segmentation error of 2.2±1.1 mm. We conclude that the
combination of a non-rigid registration step with the statistical analy-
sis concepts of the AAM is both feasible and useful and allows for its
application to 3D and 4D data.

1 Introduction

A number of different segmentation approaches have been proposed that make
use of statistical evaluations of the variations observed in one subject over time
or across subjects. This allows to derive a probabilistic atlas of the possible
variations which provides the means to produce plausible approximations of the
objects stored. Recent applications of such statistical techniques to the domain
of cardiac segmentation have been published [1,2,3,4] and also other new cardiac
segmentation algorithms have been proposed [5].

1.1 Active Appearance Models

One promising statistical modeling approach are active appearance models
(AAM), which were first proposed by Cootes et al. [6] in 1999 and have since
received a lot of attention. In contrast to other techniques they utilize both
shape and texture information of the object and lead to a unified description of
possible appearances of the object.

C. Barillot, D.R. Haynor, and P. Hellier (Eds.): MICCAI 2004, LNCS 3216, pp. 419–426, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



420 R.M. Lapp, M. Lorenzo-Valdés, and D. Rueckert

Fig. 1. CT and MRI input data
and segmentations.
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Fig. 2. Statistical atlas-building procedure.

Numerous applications have been published recently which apply the original
concept with its manually identified landmarks to 2D segmentation problems and
extensions to incorporate time have been proposed, as for example [7,8]. Also,
a hybrid AAM and active shape model approach [9] was published recently for
2D, which demonstrates a fully automated segmentation of the left and right
ventricle. However, these approaches are mainly applied to 2D data since they
require a manual or semi-automatic localization of landmarks. Due to the lack
of a sufficient number of uniquely identifiable points, establishing a dense map
of point to point correspondences becomes significantly more difficult in higher
dimensions.

Very few approaches for such higher dimensional data have been published
and often depend on special geometrical models, which were customized for the
specific application domain. For example, Mitchell et al. [1] show the applica-
tion of AAM to 3D cardiac data. Their algorithm adapts a cylindrical model
of the heart to the actual patient data thereby facilitating the identification of
corresponding landmarks.

1.2 Statistical Deformation Models

Statistical deformation models (SDM) [10] aim to overcome this limitation and
generalize the method of identifying corresponding points over various patients.
They extend the concept of statistical shape models to allow their application in
3D and higher dimensions without manual landmarking. Instead, a deformable
registration algorithm is used to register the reference object onto the training
datasets. The resulting description of the dense mapping is then either used
directly for the statistical analysis or is applied to transfer landmarks from one
dataset onto the other. However, SDMs only consider the shape information of
the object while the texture information is not utilized.

1.3 Contribution

We combined the concepts of active appearance motion models and statisti-
cal deformation models. To validate our ideas, we implemented a segmentation
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Fig. 3. Variation of the first mode of appearance parameters between ±1.5σ

system based on the Insight Segmentation and Registration Toolkit (ITK) [11]
and applied it in 3D and 4D for the segmentation of the left ventricular (LV)
myocardium, LV cavity and right ventricle (RV) of ten cardiac computed tomog-
raphy (CT) and ten magnetic resonance imaging (MRI) datasets (cp. Fig. 1). For
evaluation purposes we compared the volume overlap of the segmented voxels
and calculated the mean distances between the automatic segmentation results
and the manual segmentations which served as the gold standard.

2 Methods

2.1 Global Registration

Prior to the alignment of the data, the four dimensional training datasets and
the corresponding manual segmentations are resampled to achieve the same 4D
voxel and image size over all datasets. The training datasets are globally regis-
tered onto one arbitrary reference dataset using affine registration with an initial
starting estimate generated by aligning the centers of mass. The registration is
implemented within ITK’s multi-resolution registration framework using a mu-
tual information similarity measure and a linear interpolation scheme. In case of
4D datasets, these are split into their 3D time frames and registered separately.
The mean transform over all time frames is subsequently calculated and applied
to the 4D training datasets.

2.2 Local Registration

First, an average reference dataset for the local registration is created using an
iterative procedure of deformable registering the datasets onto one (first arbi-
trary) dataset and subsequently calculating the mean appearance parameters.
This new mean dataset is used as the new reference for the next iteration.

All training datasets are warped onto the reference subject using deformable
registration. In particular, ITK’s implementation of Thirion’s demons algo-
rithm [12] is applied which uses deformation fields as underlying representation,
i.e. n-dimensional images with n-dimensional vectors as voxels which describe
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the correspondence mapping of voxels between the training and reference images.
These serve as the basis for the statistical analysis.

Two different approaches are available for deformable registration. In the first
method, the datasets are split into their 3D time frames which are then registered
separately. The resulting 3D deformation fields are assembled to a pseudo 4D
deformation field with an additional zero element in the fourth dimension. This
4D field then actually describes a deformation where no influence between time
frames exists. Alternatively, the non-rigid registration is directly performed on
the 4D training datasets resulting in a genuine 4D deformation field.

The memory footprint of the resulting deformation fields is four times larger
than the original image since the offset in every dimension has to be stored
for every voxel. Therefore, a size reduction of the deformation field becomes
necessary which is achieved by reducing the sample density by an arbitrary
factor. Further memory saving measures include the introduction of automatic
bounding boxes for deformation and texture regions.

2.3 Atlas Building Stage

As a first step, all training datasets and their segmentations are warped onto
the standard shape using the result of the local registration, i.e. the deformation
field. The texture information of every voxel from within the manually segmented
standard shape is then concatenated to one texture vector t. As shape informa-
tion, the voxels of the deformation field within a bounding box around the LV
and RV of the heart are concatenated to a deformation vector d.

The subsequent statistical analysis follows the procedure as presented in the
original AAM publication [6]. The principal component analysis (PCA) performs
a dimensionality-reducing decomposition of the vectors into t = t̄ + P tbt and
d = d̄ + P dbd with t̄ and d̄ being the mean texture and deformation vectors, P
being the orthogonal modes of variation and b being the texture and deformation
parameter vectors respectively. As a result, a mean model of shape and texture
is created together with modes of variation, which capture the entire information
about texture and shape of the training data. To incorporate both shape and
greylevel information into one model both parameters bd and bt are concatenated
and a further PCA is applied, i.e.(

W d bd

bt

)
=

(
Qd

Qt

)
c = Q c (1)

where W d is a diagonal matrix with weights allowing for different units in de-
formation and texture parameters, c is the appearance parameters vector which
controls both shape and greyscale of the model and Q represents the resulting
eigenvectors of the PCA. Because of the linear nature of the problem, Q can be
split into Qd and Qt as indicated above. This statistical atlas of the heart allows
the creation of arbitrary plausible images of the heart within the variations of
the training datasets. Fig. 2 gives an overview of the performed steps and Fig. 3
shows the variation of the first mode of variation of the appearance parameters
between ±1.5σ of one example cardiac MRI atlas.
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Fig. 4. Current hypothesis image within the enclosing target image while optimizing
the appearance parameters: initial approximation, after few iterations, final approxi-
mation, target image (from left to right).

2.4 Image Segmentation

The statistical atlas is subsequently used for the actual image segmentation
procedure. Given the results from before, any plausible image can be described
by one appearance vector c using the following equations

d = d̄ + P dW
−1
d Qdc (2)

t = t̄ + P tQtc . (3)

To synthesize new images a shape-free texture image is created from the result-
ing vector t and warped by the deformation field d. An iterative optimization
process is now applied to adapt the appearance parameters to the actual image.
A root-mean-square measure is calculated to determine the correspondence be-
tween the target image and the approximated image. The gradient information,
required by the gradient descent optimization method, is calculated by forward
differencing. Fig. 4 shows exemplary an iterative approximation of the shape
and texture during the appearance optimization process. Finally, to obtain the
segmentation result, the deformation field which is defined by the optimized ap-
pearance parameter set is used to deform the standard segmentation. The result
is the approximated segmentation for the given target dataset.

3 Results

The performance of the system was evaluated using 10 MRI and 10 CT datasets.
The cardiac MRI short-axis datasets had an original pixel size of between
1.37 × 1.37 × 10 mm3 and 1.48× 1.48 × 10 mm3 and between 10 and 19 time
frames each. The MRI cardiac short-axis datasets were acquired at the Royal
Brompton Hospital, London, UK in a study with 10 healthy volunteers. A 1.5T
Magnetom Sonata scanner (Siemens Medical Solutions, Erlangen, Germany)
with a TrueFisp sequence was used with a total acquisition time of 15 minutes.
For eight datasets manual segmentations and for two datasets semi-automatic
segmentations were available.

The CT datasets were acquired during normal clinical practice using a Sen-
sation 16 scanner (Siemens Medical Solutions, Forchheim, Germany) with a ro-
tation time of 0.42 seconds and 12 slices acquired simultaneously. They were
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kindly provided by the Institute of Diagnostic Radiology and the Department of
Internal Medicine II, University of Erlangen-Nürnberg, Germany. The rawdata
was reconstructed using a dedicated cardiac CT image reconstruction software
(VAMP GmbH, Möhrendorf, Germany) using retrospective gating with 5 recon-
structed cardiac phases and an initial isotropic voxel size of (2 mm)3. One CT
dataset was segmented manually in 3D to provide an initial reference segmenta-
tion. To be able to calculate quantitative measures, also single slices of all other
CT datasets were segmented manually.

3.1 Quantitative and Qualitative Performance

The performance of the system was evaluated qualitatively by visual inspection
and quantitatively using two different measures. The distance between the man-
ual reference segmentation and the automatic segmentation was measured in 3D
and used to calculate maximum, mean and standard deviation of the absolute
distance of surface points of the segmented volume to the closest point of the
reference segmentation.

Also voxel volume percentages of correctly assigned voxels were calculated
and used for evaluation. The measure volume overlap ∆ was defined as

∆ = min
(

VM∩A

VM
,

VM∩A

VA

)
(4)

with VM being the volumes of the true (manual) segmentation, VA the volume
of the automatic segmentation and VM∩A the volume of the correctly labeled
regions, i.e. where the automatically computed segmentation values match the
manual reference segmentation. While this volume measure is easily calculated
and gives an indication of the quality of volumetric accuracy, the distance mea-
sure gives a more intuitively understandable result of the quality of the segmen-
tation.

Figs. 5 and 6 show the results of the quantitative evaluation after global
registration and segmentation using leave one out and leave none out schemes
using all eigenmodes. The correlation for the segmented volumes for LV cavity,
myocardium and RV in the MRI datasets is r = 0.95, r = 0.83 and r = 0.94,
respectively. The mean absolute distance measure shows a segmentation error of
2.2±1.1 mm for the leave-none-out scheme, which increases to 4.0±1.6 mm for the
leave-one-out test. For the CT segmentation, the volume overlap was calculated
for one slice per volume only since no 3D segmentations were available. The
evaluations show only a slight increase in segmentation accuracy when compared
to the initial segmentation estimate which in our case originated mainly from
poor deformable registration results.

The automatic segmentation of a typical 256×256×128 volume with 8 time
frames took approximately 20 minutes on a standard PC with 3 GHz and 2 GB
main memory.
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MAD MRI [mm] Mean Std Dev Max
Initialization 4.6 2.3 56.1
AAM (one out) 4.0 1.6 29.4
AAM (none out) 2.2 1.1 25.4

Overlap MRI LV cav LV myo RV
Initialization 0.66 0.42 0.71
AAM (one out) 0.72 0.49 0.73
AAM (none out) 0.86 0.68 0.86

Overlap CT LV cav LV myo RV
Initialization 0.82 0.57 0.72
AAM (one out) 0.77 0.59 0.72
AAM (none out) 0.85 0.65 0.73

Fig. 5. Achieved segmentation accuracy
in terms of mean absolute distance
(MAD) and volume overlap.
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Fig. 6. Correlation of segmented vol-
umes of MRI datasets using AAM seg-
mentation and manual segmentation.

4 Discussion and Conclusion

We developed and implemented a statistical atlas-based 3D/4D cardiac seg-
mentation system based on the ITK and incorporating both texture and shape
information. The problem of landmarking was solved by using the idea of sta-
tistical deformation models, i.e. using deformable registration to obtain point-
correspondence information and taking the deformation information as shape
description.

The implemented system proved to achieve satisfactory segmentation results
with mean errors of about 2.2±1.1 mm for the cardiac MRI images. The accuracy
is comparable to [2] and slightly worse than the results presented by Kaus et al.
[3]. Nevertheless, the full utilization of the time dimension did not show the
expected improvement of the segmentation results, which was probably due to
the limited temporal resolution of the datasets. Also, when working with high-
resolution data, memory problems originated from the large texture vectors. This
matter leaves room for improvement and will be investigated further.

The extensive use of the ITK leaves a positive impression and can especially
be recommended for new researchers working in the field of image analysis. A
migration to ITK may also be worthwhile because of its good architecture, multi-
platform capabilities and the prospect of a broad developer basis. However, at
many points a good command of C++ is required, especially for optimizing the
relatively large memory footprint and the execution speed of the algorithms.
One aspect that could be criticized is the software documentation. Nevertheless,
there has been much improvement over the last months and a lot of effort has
been put into the excellent software guide [11].

Interesting aspects of future work include the evaluation of other machine
learning algorithms as e.g. the recent locally linear embedding approach [13] or
support vector machines [14]. Desired properties include a better preservation
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of neighborhood information and improved results for small numbers of training
datasets. Also, CT and MRI datasets could be combined to a multi-modality at-
las offering an increased number of available training datasets and cross-training,
i.e. the refinement of the atlas for one modality by another imaging modality.
Thereby, specific advantages of each modality, e.g. the high isotropic resolution
of CT images, could be incorporated into a common atlas.
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