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Abstract. Robustness is of paramount importance in cardiac wall mo-
tion estimation and myocardial tissue elasticity characterization, espe-
cially for clinical applications. Given partial, noisy, image-derived mea-
surements on the cardiac kinematics, we present an integrated robust
estimation framework for the joint recovery of dense field cardiac mo-
tion and material parameters using iterative sequential H o, criteria. This
strategy is particulary powerful for real-world problems where the types
and levels of model uncertainties and data disturbances are not available
a priori. Constructing the myocardial dynamics equations from biome-
chanics principles, at each time step, we rely on techniques from Hoo
filtering theory to first generate estimates of heart kinematics with sub-
optimal material parameter estimates, and then recover the elasticity
property given these kinematic state estimates. These coupled iterative
steps are repeated as necessary until convergence. We demonstrate the
accuracy and robustness of the strategy through experiments with both
synthetic data of varying noises and magnetic resonance image sequences.

1 Introduction

Regional wall function and myocardial tissue properties reveal critical informa-
tion about the states of cardiac physiology and pathology. With increasingly
available real-time and ECG-gated tomographic cardiac imaging data, there
have been plenty image-based efforts aimed at measuring the motion and/or
the material properties of the heart [3J9].

Given a set of image-derived, sparse, noisy measurements on cardiac kinemat-
ics, typical motion analysis methods need to make use of additional constraining
models of mathematical or mechanical nature to obtain the dense field motion
fields in some optimal senses. The underlying hypothesis is, of course, that these
prior models are completely known, including their parameters, and are appro-
priate for the particular image data. For practical situations, especially those
pathological cases, however, this assumption is rarely true. Some of the related
frame-to-frame strategies can be found in a comprehensive recent review [3]. As-
suming Gaussian conditions on system and data uncertainties, there are several
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Fig. 1. Generation of the synthetic kinematic data: original configuration (left), color
scale of material elasticity (middle), and displacement data at selected locations (right).

multi-frame efforts which impose the all important spatio-temporal constraints
to perform motion analysis throughout the cardiac cycle [5I8[14].

The dual problem to cardiac motion recovery is the estimation of myocardial
tissue elasticity based on known, image-derived kinematics observations. There
have been a number of efforts on the parameter identification of the myocardium,
where the basic idea is to minimize some criteria that measure the goodness
of fit between the model-predicted and the data-derived mechanical responses
[19]. More recently, an expectation-maximization (EM) strategy is proposed
to estimate the composite tissue mechanical properties by using displacements
reconstructed from MR tagging data [4].

We have shown that it is desirable to tackle the motion and elasticity es-
timation problems simultaneously, especially for disease conditions where the
myocardial tissue structure and parameters undergo substantial alterations [6]
[[T]. By making use of the stochastic finite element and the extended Kalman
filter [11], followed by a Bayesian scheme based on the maximum a posteri-
ori formulation [6], these efforts were built upon a biomechanical model of the
myocardium and were embedded within H, filtering frameworks under known
Gaussian statistics assumptions, unrealistic for real world problems. In order
to relax these restrictions, we have recently proposed several H..-based robust
strategies for the image-based motion recovery with fixed material model [7] and
tissue elasticity estimation from known kinematics measurements [12)].

In this paper, we present a robust H., framework for the joint estimation of
cardiac kinematics and material parameters from imaging data. It differs from
the Ho-based simultaneous estimation in: 1). no a priori knowledge of noise
statistics is required; and 2). the min-max estimation criterion is to minimize
the worst possible effects of the disturbances (model and data noises) on the
signal estimation errors, which will ensure that if the disturbances are small (in
energy), the estimation errors will be as small as possible (in energy), regard-
less the noise types. These two aspects make the H,, to be more appropriate
for certain practical problems where the disturbances are unknown and non-
Gaussian. In addition, our strategy is posed as an iterative sequential estimation
framework which uses two separated Ho filters: one for kinematics estimation
(the H oo state-filter) and one for tissue elasticity estimation (the H., parameter-
filter). At every time step, the current estimates of material parameters are used
in the state-filter, and the current estimates of the kinematics are used in the
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Fig. 2. Estimated elasticity distributions using the EKF [I1] (the four figures on the
left) and Hoo (the four figures on the right) methods for noisy input data (left to
right): SNR = 20dB (Gaussian), SNR = 30dB (Gaussian), SNR = 20dB (Poisson),
and SNR = 30dB (Poisson).

parameter-filter. It can be thought as a generalization of the expectation maxi-
mization (EM) scheme, without the needs to know the underlying distributions.

2 Methodology

2.1 System Dynamics from Continuum Mechanics Model

For computational feasibility, our current implementation uses linear elastic ma-
terial model for the myocardium. The myocardial dynamics equation, in terms
of displacement field U, with a finite element representation is in the form of:

MU+ CU+KU=R (1)

where M is the mass matrix and R the external load. The stiffness matrix K
is related to the material-specific Young’s modulus F and Poisson’s ratio v. In
this paper, v is fixed to 0.49 for almost incompressible material and E needs
to be estimated along with the kinematics functiond]. We also assume Rayleigh
damping with C' = aM + K with fixed weighting factors o and /.

2.2 Motion Estimation: H., State Filter

Kinematics State Space Representation. In state-space representation,
Equation () can be rearranged by making z(t) = (U(t),U(t))T (T denotes
transpose):

(t) = Ac(0)x(t) + Bew(t) (2)

where the material parameter vector 6, the system matrices A, and B., and the
input term w are:

0 1 0 0 0
H—E, Ac— _MflK _M10:|7 Bc_|:0 M1:|7 w(t)_|:R:|

For discrete system, assuming that the input is piecewise constant over the
sampling interval T' between image frames, and adding the process noise v(t),
we arrive at the following system equation [T1]:

z(t+1) = A(0)x(t) + B(O)w(t) + v(t) (3)
with A = e4T and B = A7 (e — I)B..

! Here, we assume that F is spatially varying but temporally constant.
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Table 1. EKF [11] and Heo estimated Young’s moduli using the noise-corrupted syn-
thetic data: each data cell represents the mean + standard derivation for the normal
(75), hard (105), and soft (45) tissues.

Method|Tissue Type|20dB(Gaussian)|30dB(Gaussian)|20dB(Poisson) |[30dB(Poisson)
Normal 61.2 £ 33.0 71.5 £ 23.9 78.0 £ 319 | 79.5 £ 23.6
EKF Hard 95.8 £ 9.5 103.2+ 4.5 919 £ 9.1 99.1 £6.1
Soft 42.3 £ 18.0 473 £5.9 62.4 £ 27.8 | 57.3 £ 22.8
Normal 78.8 £ 21.6 78.0 £17.3 771 +£176 | 775 £ 14.1
Hoo Hard 104.5+ 6.7 104.3£ 4.7 104.5+ 4.7 104.8+ 4.6
Soft 55.0 £ 7.8 55.2 £ 7.8 55.2 £ 7.7 53.2 £ 6.3

Similarly, the system measurement equation can be expressed as:

y(t) = Da(t) + e(t) (4)
where y(t) is the measurement vector, D is the measurement matrix that defines
the specific input variables, and e(t) is the measurement noise.

Hoo State-Filter. Considering a system given by Equations @) and (@), the
Ho state-filtering problem is to search the optimal estimates of x(¢) which satisfy
the following performance measure:

l=() — (@)1, < +* {HU(??)H%V—1 + el -+ ll2(0) — i(O)llfD(o)—l} (5)
where the notation [|z||% is defined as the square of the weighted Ly norm of z,
ie. ||z]|2 = 2TGz. P(0), @, W, and V are positive definite weighting matrices
which are related to confidence measures and chosen by the designers to obtain
desired trade-offs. £(0) is a priori estimate of x(0), and v is a positive constant
that represents a prescribed level of noise attenuation.

The Hoo estimation for the system described by Equations (@]) and (@) with
performance criterion (3) consists of the following iterative procedures [10]:

-1

L(t)= (I -y 2QP(t) + D'V'DP(t)) (6)
K(t)= AP(t)L(t)DTV ! (7)
Z(t+1) = Az(t) + Bw(t) + K(t)(y(t) — Dz(t)) (8)
P(t+1)=AP@t)L(t)AT + W (9)

It is obvious that the above H, process has a Kalman-like structure. The only
difference is that, in H., problem, an additional condition (the Riccati matrix P
is positive definite) is required for the solution to exist. It should be mentioned
that directly solving Riccati equation (9) for the solution P(t) is not trivial due
to its nonlinearity. Instead, iterative procedure is adopted to update R(¢) and
then P(t), with R(t) defined through P(t)~! = R(t)~! +~v72Q, and the details
are omitted here.
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Table 2. Difference between the EKF/H .. estimated displacements (from the noise-
corrupted synthetic data) and the ground truth (the average displacement is 0.6).

Method| Input Data |Maximum Error|Standard Deviation
20dB(Gaussian) 0.0246 0.0068
EKF |30dB(Gaussian) 0.0229 0.0051
20dB(Poisson) 0.0412 0.0083
30dB(Poisson) 0.0311 0.0057
20dB(Gaussian) 0.0245 0.0061
Hoo |30dB(Gaussian) 0.0234 0.0054
20dB(Poisson) 0.0244 0.0054
30dB(Poisson) 0.0234 0.0054

The H o, filtering can have many solutions corresponding to different « values.
It is observed that the smaller the v value, the smaller the estimation error. On
the other hand, the Riccati equation has to have a positive definite solution,
which implies that

[AR(t)™ + DTV ID) AT 1 W - 420 > 0
— v = &max {eig[A(R(t) ™" + DTV-1D)=1AT + VV]}O'5

where max{eig(A)} denotes the maximum eigenvalue of the matrix A, and &
is a constant larger than 1 to ensure that ~ is always greater than the optimal
performance level. v value too close to the optimal performance level, i.e. £ ~ 1,
might actually lead to numerical instability because of matrix singularity.

2.3 Elasticity Estimation: H., Parameter Filter

Parameter State Space Representation. In order to apply the elasticity
parameter identification algorithm, the system equation (2)) needs be reformu-
lated in the form of &(t) = A.(z(t))0 + B, to facilitate the process. Please note
here z(t) is the estimation result from the motion estimation step.

According to the finite element method, the global stiffness matrix K is
assembled from the element stiffness K.:

KE:EZ}Q;:E:/QEBZDeBedQC (10)

where {2, is the domain of an arbitrary element e, B, is the local element strain-
displacement matrix, and D, is the element material matrix. The element stiff-
ness matrix K. can be stated in terms of its unknown Young’s modulus F.:

&:@/Afmﬁwm:am’ (11)
2.

With U and U the estimation results from the H ., state-filter, we can iteratively
recast KU to G1E (and KU to G2 F) B.

2 The detailed converting procedures can be found in [T2]
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Fig. 3. From left to right: Canine MR magnitude image, x-direction, y-direction phase
contrast velocity image, TTC stained postmortem myocardium with the infracted
tissue highlighted, displacement constraints on the endo- and epi-cardial boundaries
throughout the cardiac cycle, and blowup view of one point’s trajectory.

Submitting C = aM + K, KU = G E, and KU = G»E into Equation B]
we now have the following identification form of the system equation:

#(t) = Fa + A(z(t))0 + Bew(t) (12)

where
<o wo=[f], wo=[2).

0 0 0 0 0 1
Ac = {—Mlc;1 —5M1GJ’ Be= [o Ml}’ F= [o —OJ]

Assuming that the elasticity parameter vector 6 is temporally constant, we
have the following augmented system:

[xge)] _ [m . [Ac@)achw(t)} N {vp(t)} (13)

and the measurement equation is:

T

y(t) = [D O] M +e(t)=Hm +e(t) (14)

Hoo Parameter-Filter. To solve the elasticity estimation problem, we in-
troduce another cost function which seeks to achieve a guaranteed disturbance
attenuation level -, between the unknown quantities and the parameter estimate
error of the form:

16 =81, <3 { ol + el + 16 = B0}, +17(0) = (Ol } - (15)

Here, #,(0) is the initial estimate, and Q,, Qpo, @p1 are the weighting factors.
Under this criterion, the H, algorithm for the system (I3]) and ([[4)) is described
for v, > ~*, with 7* is the best-achievable disturbance attenuation level:

(-G wron oo
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Fig. 4. From left to right: estimated radial (R) strain, circumferential (C) strain, R-
C shear strain maps between end-diastole (ED) and end-systole(ES), and estimated
Young’s modulus distribution (the color scale is on the bottom).

where X satisfies the Riccati equation with initial condition X(0) =

diag(Qpl s QpO) :

s--al 4] [8] 20 [_2g) -2[i2]= o

Some of the related theoretical and practical discussions can be found in [2[12].

3 Results and Discussions

3.1 Validation with Synthetic Data

The iterative sequential H, estimator is validated with computer-synthesized
data of an object undergoing deformation in the vertical direction with fixing
the bottom side. As shown in Fig. [l, the object has unit thickness, and the
material properties and other parameters are taken as Ej,.q = 105 for the hard
(red) part, Epnorma = 75 for the normal (white) part, and Es.5; = 45 for the
soft (blue) part, D=16, L=28, Poisson’s ratio v = 0.49. Under this exact model
and boundary conditions, we get displacements for all nodal points, which are
labelled as the ground truth data set. Then only a subset of the displacements
are selected as the partial measurements on the kinematics, as shown in Fig. [l
where only displacements of the yellow points are known. Finally, different types
(Gaussian and Poisson) and levels (20dB and 30dB) of noises are added to these
displacements to generate the noisy data. For comparison purpose, the extended
Kalman filter (EKF) framework of [IT] is used to recover the displacement and
elasticity modulus distribution as well.

Quantitative assessments and comparisons of the H., and EKF results are
presented in Table 1, and the recovered elasticity distributions are shown in Fig.
In order to validate the motion estimate results, point-by-point positional
errors between the algorithm and the ground truth data are computed as shown
in Table 2. Overall, the EKF results for Poisson-corrupted input data are not
very satisfactory, which indicate that if the assumptions on the noise statistics
are violated, it is possible that small noise errors may lead to large estimation
errors for EKF. On the other hand, all the tables and figures illustrate that
very similar results are obtained using the iterative sequential H., framework
for two sets of data contaminated by different types of noise, showing its desired
robustness for real-world problems.
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3.2 Canine Image Application

Fig.[3 demonstrates the MR phase contrast image data set. The regional volume
of the postmortem injury zone is found by digitizing color photographs of the
triphenyl tetrazolium chloride (TTC) stained post mortem myocardium (Fig.
B), which provides the clinical gold standard for the assessment of the image
analysis results.

Myocardial boundaries and frame-to-frame boundary displacements are ex-
tracted using a unified active region model strategy (as shown in Fig.[3)). The
estimated radial (R), circumferential (C), and R-C shear strain maps, and the
material elasticity distribution are shown in Fig.[], with initial Young’s modulus
set to 75000 Pascal. These maps exhibit vastly different motion and material
parameters at the infarct zone from the normal tissues, and the patterns are in
good agreement with the highlighted histological results of TTC stained post-
mortem myocardium (Fig. B)). Further, the infarct zone myocardial tissues are
relatively stiffer than normal with larger Young’s modulus values, which has
been observed experimentally earlier.
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CERG HKUST6151/03E and National Basic Research Program of China (No:
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