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Abstract. We propose an original approach for the segmentation of
three-dimensional fields of probability density functions. This presents
a wide range of applications in medical images processing, in particular
for diffusion magnetic resonance imaging where each voxel is assigned
with a function describing the average motion of water molecules. Being
able to automatically extract relevant anatomical structures of the white
matter, such as the corpus callosum, would dramatically improve our
current knowledge of the cerebral connectivity as well as allow for their
statistical analysis. Our approach relies on the use of the symmetrized
Kullback-Leibler distance and on the modelization of its distribution
over the subsets of interest in the volume. The variational formulation of
the problem yields a level-set evolution converging toward the optimal
segmentation.

1 Introduction

Diffusion magnetic resonance imaging is a relatively new modality [4], [9] able
to quantify the anisotropic diffusion of water molecules in highly structured bi-
ological tissues. In 1994, P. Basser [2] proposed to model the probability density
function of the molecular motion r € R? by a Gaussian law whose covariance
matrix is given by the diffusion tensor D. Diffusion Tensor Imaging (DTI) then
produces a volumic image containing, at each voxel, a 3 X 3 symmetric positive-
definite tensor. The estimation of these tensors requires the acquisition of diffu-
sion weighted images in different sampling directions together with a T2 image.
Numerous algorithms have been proposed to perform a robust estimation and
regularization of these tensors fields [I3], [I8]. Recently, Q-ball Imaging has been
introduced by D. Tuch etal. [T4] in order to reconstruct the Orientation Distri-
bution Function (ODF) by the Funk-Radon transform of high b-factor diffusion
weighted images acquired under the narrow pulse approximation. This ODF is
the symmetric probability density function S? — R giving the probability for
a spin to diffuse in a given direction. This method provides a better angular
constrast and is able to recover intra-voxel fiber crossings.

Diffusion MRI is particularly relevant to a wide range of clinical pathologies
investigations such as acute brain ischemia detection , stroke, Alzheimer dis-
ease, schizophrenia [1] ...etc. It is also extremely useful in order to identify the
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neural connectivity of the human brain []], [15], [5]. As of today, diffusion MRI is
the only non-invasive method that allows us to distinguish the various anatom-
ical structures of the cerebral white matter such as the corpus callosum, the
arcuate fasciculus or the corona radiata. These are examples of commisural, as-
sociative and projective neural pathways, the three major types of fiber bundles,
respectively connecting the two hemispheres, regions of a given hemisphere or the
cerebral cortex with subcortical areas. In the past, many techniques have been
proposed to classify gray matter, white matter and cephalo-spinal fluid from T1-
weighted MR [20] images but the literature addressing the issue of white matter
internal structures segmentation is just beginning [21], [7], [17], [19].

In the following, we introduce a novel technique for the segmentation of any prob-
ability density function (pdyf) field by examining the statistics of the distribution
of the Kullback-Leibler distances between these pdfs. Our goal is to perform the
direct segmentation of internal structures of the white matter. Zhukov et al.
defined an invariant anisotropy measure in order to drive the evolution of a
level-set and isolate strongly anisotropic regions of the brain. The reduction of
the full tensor to a single scalar gives a relatively low discrimination power to the
method potentially resulting in segmentation of mixed structures. On the other
side, Wiegell et al. [19], Jonasson et al. [7] and Wang et al. [16] proposed different
measures of dissimilarity between full diffusion tensors: The first method uses
the Frobenius norm of the difference of tensors, together with a spatial coher-
ence term in a k-means algorithm to perform the segmentation of the thalamus
nuclei. The nature of the elements to be segmented (compact, homogeneous)
verify the restrictive hypothesis of the technique, which is rarely the case. The
second method introduces a geometric measure of dissimilarity by computing
the normalized tensor scalar product of two tensors, which can be interpreted
as a measure of overlap. Finally, the third method relies on the natural distance
between two Gaussian pdfs, given by the symmetrized Kullback-Leibler distance.
The authors elegantly derive an affine invariant dissimilarity measure between
diffusion tensors and apply it to the segmentation of 2D fields of pdfs. We gener-
alize the existing methods to the 3D case and exploit the information provided
by the statistics of the distribution of the symmetrized Kullback-Leibler (KL)
distances. KL distances are taken between any pdf and our method is thus appli-
cable not only to DTT but also, for example, to Q-ball data which should enable
the proposed algorithm to catch even finer details. Section [2] will derive the evo-
lution equation used to drive a 3D surface toward the optimal segmentation.
Section [ will present and discuss experimental results both on synthetic and
real DTT datasets.

2 Derivation of the Level-Set Evolution

Let p(z,7) be the probability density function of a random vector 7 of R? de-
scribing the water molecules average motion at a given voxel z of a diffusion MR
image 2 C R3 and for a given diffusion time 7 imposed by the parameters of
the PGSE (Pulsed Gradient Spin Echo) sequence. We are interested in charac-
terizing the global coherence of that pdf field and use the classical symmetrized
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Kullback-Leibler distance to that end. With p(z), ¢(y) Va,y € 2 two pdfs from
R? onto R, their KL distance is given by

(p(r) log ];E:; + q(r)log ]%) dr (1)

Assuming a partition of the data between the structure we try to segment (24
and the rest of the volume (25, we seek the optimal separating surface I" between
those two subsets. We denote by p; and p, the most representative pdfs over 24
and (2 verifying equation Bl It is then possible to model the distribution of
the KL distances to p; and Py in their respective domains by suitable densities
Dd,1,Pd,2- In the following, we make the assumption that py 1, pq 2 are Gaussian of
zero mean and variances o7, 03. It is indeed natural to impose the mean distance
to the pdfs p, and p, to be as small as possible, while retaining an important
degree of freedom by considering the variances of those distributions.

We then define the following energy in order to maximize the likelihood of these
densities on their associated domain:

d(p,q) = KL(p,q) = %/

R3

2
B(2,025) = Y. [ ~logpas(dlp(o). )i ©)

exp —d*(p.,p,) . We denote by ¢ : 2 — R3 the level set distance

where pg; = 307

1
\/27ra7?
function whose zero isosurface coincides with I". We define H.(z) and d.(z) the
regularized versions of the Heaviside and Dirac functions [6] and we can now

rewrite equation 2l and introduce a regularity constraint on I" as follows:

/Q—logpd,l(d(p(x),ﬁl))He(qﬁ)—logpd,z(d(p(w),ﬁz))(l — He(9))+v|VHe(¢)|dx
(3)

The derivation of the Euler-Lagrange equations for this class of energy was
studied in [II] and yields the following evolution for ¢:

Vo 1 Pd2>
+ —log—= ) Vx € 2 4
Vol T2 pas @)

Moreover, the derivation of the energy with respect to o7 and p; provides the
update formulae for these statistical parameters. It can be shown that the vari-
ance must be updated with its empirical estimation, whereas some more work is
needed for the p;,. We indeed have to estimate:

Pi = argmm/ KL*(p;, p(x))dx (5)
£2;

For a general pdf p(z), for instance if we consider the ODF derived from Q-ball
data, the variance is easily computed as in but the estimation of the p;
might require the use of numerical approximation techniques if no closed form
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is available. If we now come back to the DTT case (ie. Gaussian pdfs), a recent
paper by Wang et al. [I6] nicely showed that the mean value of the tensor field

is given by D; = {/B;* (\/ \/BiAi\/Bi) B; ! where A; = Jo, D(x)dz and
Bi = [, D (x)dx

3 Experimental Results and Comparisons

We begin with a validation of our approach on synthetical data with limit cases
where other approaches fail. Then, experiments are conducted on the extraction
of the corpus callosum from real DTI data. Finally, we show how we can improve
the robustness of our approach by introducing an anisotropy measure.

3.1 Synthetical Data

Diffusion tensor images measure the displacement of water molecules. This dis-
placement, which characterizes different tissues, can be split into two different
information: its intensity and its direction. When considering diffusion tensor
images, these information are given respectively by the largest eigenvalue and
the corresponding eigenvector. From this decomposition, we built one limit case
where the two regions differ only with respect to the main orientation of the
tensors. Moreover, to stress the algorithm, we also impose some degree of vari-
ation on the main orientation within the inside region by creating a junction as
shown in Fig[dl. Last, but not least, a Gaussian noise was added directly on the
eigen-elements of each tensor. Initializing the surface with a bounding box, our
approach is able to give the expected segmentation (Figl).

However, this example does not show the necessity of including a statistical
model for the distance distribution of each region and the approach proposed in
[16] for 2D fields of pdf gives a similar result. In order to show the advantages
of our model, which is more general, we have generated a second test image. As
shown in Figf, it is composed by one torus whose internal tensors are oriented
according to the tangents of the central radius of the torus. Noise is also added
to all the tensors of the image but with a different variance whether the tensor is
inside or outside the torus. In Figll we compare the results obtained using [16]
and our approach, for different initializations. The first method fails to segment
the torus because of the orientations high variations within each region. If we
initialize with a bounding box, the surface shrinks until it disappears and if we
start from a small sphere inside the torus, only a small part of the torus can
be captured. Using our approach, which models the variance of the tensors, the
torus is correctly extracted for the different initializations.

3.2 Real DTI Data

Data acquisition: Our dataset consists of 30 diffusion weighted images Sy, :
2 — R, k=1,..,30as well as 1 image Sy corresponding to the signal intensity in
the absence of a diffusion-sensitizing gradient field. They were obtained on a GE
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Fig. 1. Segmentation of a noisy tensor field composed by two regions with same scale
but different orientations (ToP LEFT: 2D-cut of the tensor field, Tor RIGHT: same
with final segmentation, BOTTOM: surface evolution).

1.5 T' Signa Echospeed with standard 22 mT /m gradient field. The echoplanar
images were acquired on 56 evenly spaced axial planes with a 128 x 128 pixels in
each slice. Voxel size is 1.875 mm x 1.875 mm x 2.8 mm. 6 gradient directions gy,
each with 5 different b-factors and 4 repetitions were used. Imaging parameters
were: b values between 0 and 1000 s.mm ™2, TR = 2.5 s, TE = 84.4 ms and a
square field of view of 24 ¢m [10]. Those data are courtesy of CEA-SHFJ/Orsay,
Francdl. References on the estimation and the regularization of diffusion tensors
can be found in [T3].

Experiments: The extraction of anatomical structures from DTI data is of
great interest since it gives the opportunity to discriminate structures like the
corpus callosum which is much harder to characterize using other modalities.
Before any processing, the image is cropped around the element of interest to
respect the assumption of bi-partitioning imposed by our model. The first ex-
periment aims at extracting the lateral ventricles. Two small spheres are placed
inside the ventricles to initialize the surface. The evolution and the final segmen-
tation are shown in Fig[3l This result looks close to what can be expected from
anatomical knowledge.

Improvements using the anisotropy: When we consider only the region
terms presented in Section 2, the initialization is really important and in many
cases, several seeding points have to be set manually to avoid the surface to get

! The authors would like to thank J.F. Mangin and J.B Poline for providing us with
the data
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Fig. 2. Segmentation of a noisy tensor field composed by two regions with different ori-
entations (Top LEFT: 2D-cut of the tensor field, Top CENTER: segmentation obtained
from [16], Tor RIGHT: segmentation obtained with our method, BoTTOM: surface
evolution for both of them).

stuck in a local minima. This can be overcome by introducing a global anisotropy
measure. A popular one is the fractional anisotropy [3)]:

VAL = 22)2 + (A2 — A3)2 + (A1 — A3)?

A(D(z)) =
(D) A+ A3+ A3

An additional term is then defined to impose a given distribution of the
anisotropy inside each region. Let p,1 and pg2 be the pdf of the anisotropy
in 7 and {25, approximated by Gaussian densities. Then, according to [I1] the
partitioning is obtained by minimizing:

—/Qlogpa,l(A(D(fﬂ)))He(sﬁ) +logpa2(A(D(2)))(1 — He(4))dz  (6)

This term is added to the objective function (B) defined in Section 2. Then, we
obtain a new evolution equation for the level set function ¢ composed by two
terms whose influence can be controlled by adjusting the weight o between zero
and one:

Vo
Vol

and the statistical parameters of p, 1 and p, 2 are updated iteratively like in the
previous part. In practice, a small weight on the anisotropy term is sufficient to
avoid the surface to get stuck in a local minima. For example, the extraction
of the corpus callosum in Figl3 was possible thanks to this additional term by
setting o to 0.3.

1 1 o
-l-(l—a)ilog%—l—aﬁlogi—’j) Ve e 2 (7)
k) a/7

d(x) = de((x)) (Vdiv
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Fig. 3. Segmentation of the brain lateral ventricles (Top LEFT) and the corpus cal-
losum (ToP RIGHT) in a real diffusion tensor image, superimposed on the DTT field,
BorToM: surface evolution for both of them).

4 Conclusion

We have presented a novel technique for the segmentation of probability density
fields with a major contribution to the extraction of anatomical structures in
anisotropic biological tissues such as the brain white matter. We have shown
that this method performs very well on synthetic data and is able to catch fine
details on real D'TT thus exhibiting an adequate behavior of the Kullback-Leibler
distance and of the modelization of its distribution by Gaussian densities. We
are currently working on general density functions derived, for example, from
Q-ball imaging to better describe the voxel-wise diffusion process.
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