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Abstract. The paper deals with the problem of knowledge discovery in
spatial databases. In particular, we explore the application of decision
tree learning methods to the classification of spatial datasets. Spatial
datasets, according to the Geographic Information System approach, are
represented as stack of layers, where each layer is associated with an at-
tribute. We propose an ID3-like algorithm based on an entropy measure,
weighted on a specific spatial relation (i.e. overlap). We describe an ap-
plication of the algorithm to the classification of geographical areas for
agricultural purposes.

1 Introduction

Spatial data are usually handled by means of a Geographical Information Sys-
tem, that is a system able to represent a territory along with its characteristics.
In general a territory is represented as a stack of layers. Each of the layers is
associated to a specific attribute, and the layer represents a partitioning of the
territory according to the values of the attribute itself. In other words each of
the partitions of the layer corresponds to an area of the territory associated to
a specific value of the attribute.

Geographical Information Systems provide the user with the possibility of
querying a territory for extracting areas that exhibit certain properties, i.e. given
combinations of values of the attributes. Just as it is intuitive to extend stan-
dard database query language to embody inductive queries, we believe that an
analogous approach can be explored for Geographical Information Systems, and,
in general, for spatial databases. For example, finding a classification of areas
for a given exploitation, agriculture say, or finding associations among areas, or
even clustering areas seem to be sensible questions to answer. All the inductive
algorithms for knowledge discovery in databases starts from considering a col-
lection of “transactions”, usually represented as a table of tuples. In the case of
a spatial database, the notion of transaction naturally corresponds to the tuple
of attribute values that characterize an area. That leaves us with two problems:

1. the selection of the transaction: i.e. which area with which values;
2. the exploitation of the area in the inductive algorithms.
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In this paper we address the problem of constructing a classification tree for
classifying areas with respect to their properties. Given spatial databases that
store a collection of layers for one or more territories, choose one of the layers
as the output class and try to construct a classification tree capable of placing
an area in the right class given the values of the other attributes with respect
to the area. As a running example, we consider an agricultural territory, and we
choose the kind of crop as the classification task, whereas the other attributes
concern properties of the ground (amount of water etc.). We show how a suitably
adapted ID3 algorithm can do the job. The crucial point is the introduction of
a suitable entropy measure, that takes into account specific spatial relations.

In the rest of the section we briefly overview the work related to our research.
In Section 2 we formalize the problem and in Section 3, the kernel of the paper,
we discuss the algorithm both formally and informally by using the agriculture
related running example. The Conclusions section is devoted to discussing our
current and future work.

Knowledge Discovery in Spatial Databases. In the analysis of geographi-
cally referenced data it is important to take into account the spatial component
of the data (i.e. position, proximity, orientation, etc.). Many methods have been
proposed in the literature to deal with this kind of information.

Some techniques consider spatial data independently from non-spatial data
during the learning step, and they relate them during pattern analysis. For ex-
ample, in [2] an integrated environment for spatial analysis is presented, where
methods for knowledge discovery are complemented by the visual exploration
of the data presented on the map. The aim of map visualization is to prepare
(or select) data for KDD procedures and to interpret the results. In [1], this
environment is used for analyzing thematic maps by means of C4.5 [14] (for
pattern extraction from non-spatial data). However, the iterative methods pre-
sented there keep spatial and non-spatial data separated, and geo-references are
used as a means for visualization of the extracted patterns.

A tighter correlation between spatial and non-spatial data is given in [7], by
observing that, in a spatial dataset, each object has an implicit neighborhood
relation with the other objects in the set. The authors build a neighborhood graph
where each node represents an object in the dataset and an edge between two
nodes, say n1 and n2, represents a spatial relation between the objects associated
with n1 and n2. The distance between two nodes in the graph (i.e. the number of
edges in the path from the starting node to the target one) is used to weigh the
properties associated to each node. This consideration gives the idea of influence
between nodes, i.e. two nodes connected by a short path are likely to influence
each other in the real world.

Some other papers explore the extension of knowledge discovery techniques
to spatial domain. For example, in [11] an algorithm based on CLARANS for
clustering spatial data is proposed.

In [9] and [10], two methods for extracting spatial association rules from a
spatial dataset are presented.
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Classification and ID3 Algorithm. A classification assigns a category to
transactions according to the values of (some of) their attributes. Usually, the
input is a table of tuples, where each row is a transaction and each column is
an attribute. One of the attributes is chosen as the class attribute. The task is to
build a model for predicting the value of the class attribute, knowing only the
values of the others.

Many methods have been proposed for classification, such as neural networks,
Bayesian classifiers and decision trees. We take into consideration decision tree
models, since they proved to be very robust to noisy data, and in our context
this property is crucial. The decision-tree classifiers proposed in the literature
can be distinguished according to the statistical criterion used for splitting. For
example CART [4] uses the Gini index, whereas ID3 [13] and C4.5 [14] use
the entropy to measure (im)purity of samples. We focus our attention on ID3
algorithm and we show how it has been adapted to our purposes.

2 Spatial Data Model

Spatial data store the geometric description of geographical features, along with
a state associated with these features. The state of a feature is a set of at-
tributes. Many GIS tools organize spatial data as vector or raster maps. The
correspondent attributes are stored in a set of tables related geographically to
the geometric features [3, 6]. Digital maps are organized in layers (sometimes
called coverages or themes). A layer represents a distinct set of geographic fea-
tures in a particular domain. For example, a map of a country may have one layer
representing cities, one representing roads, one representing rivers and lakes, and
so on. Usually, a layer has several properties to control how it is rendered during
visualization (i.e. the spatial extent, the range of scales at which the layers will
be drawn on the screen, the colors for rendering features).

In [12], the Open GIS Consortium provides the specification for representing
vector data to guarantee the interoperability and the portability of spatial data.
We took advantage of the large availability of tools that support this specification
(e.g. PostGIS [15], MySQL, GDAL libraries, JTS [8], GRASS GIS).

Given this organization of digital maps, it seems natural to maintain the same
structure also during the knowledge discovery (and classification, in this case)
task. The process of knowledge extraction aims at extracting implicit information
from raw data. In a spatial dataset, the search for this implicit information is
driven by the spatial relations among objects. For example in [7], a neighborhood
graph is built to express these relationships. This graph is explored to extract
useful information by finding, for example, similarities among paths.

Our point is to exploit the layer structure to select useful relations. For ex-
ample, we may have interest to search “inter-layer” relations among objects (i.e.
spatial relations where at least two members of the relation belong to distinct
layers), rather than “intra-layer” relations. Thus, the heuristics proposed in [7]
(i.e. following a path that tends to go away from its source) may be enriched
by including only edges that represent “inter-layer” relations in the neighbor-
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hood graph. This assumption seems to be reasonable, since almost all papers on
knowledge discovery present methods to extract patterns of this kind, i.e. pat-
terns where the classes of objects involved belong to different layers. although
the entity “layer” is not explicitly present.

We consider an input composed of n layers. Each layer Li has only one geo-
metric type: all the geometric features are polygons, or lines, or points. For the
clarity of the presentation we consider for the moment only polygonal layers.
Each layer has a set of attributes that describe the state of each object in the
layer. We choose one of this attribute as the representative of the layer. Thus,
each layer Li represents a variable xi over a domain Xi, where xi is the cho-
sen attribute. For example, a layer of the agricultural census data has several
attributes associated with each polygon (e.g. the number of farms, the area of
crop land, and other properties). If the attribute number of farms is chosen then
each polygon in the layer can be considered as an instance of this variable.

Spatial Transactions. One of the layers is selected as the class label layer: we
exploit these objects for selecting spatial transactions. Each polygon represents
an “area of interest”. These areas are related to areas in the other layers in order
to extract a set of tuples where each value in a tuple corresponds to the value in
each of the layers, with respect to the intersection with the area of interest. So,
like for relational databases, we now have a set of transactions. While relational
transactions are “measured” by counting tuple occurrences in a table, we use
here, as it is intuitive, the area extension of each spatial transaction.

Example We introduce here a simple example that will be useful for the whole
presentation. Consider an agricultural environment, where information about
crops is organized in layers as described above. For the sake of readability, in
Figure 1 layers are presented side by side, even if they should be considered
stacked one on top of the other. In Figure 1(f) the areas of samples are re-
ported. Layers describe measures of qualities of the soil, like the availability of
water (fig.1(a)) or potassium (fig.1(b)), or other parameters of the environment,
like climate conditions (fig.1(c)). The training set, namely the class label layer
(fig.1(d)), provides information about classified sample regions. In this example,
we have a training set that represents crop types for some areas in the region.

3 Spatial Classification by Decision Tree Learning

Our goal is to build a decision tree capable of assigning an area to a class,
given the values of the other layers with respect to the area. Like in transaction
classification, we follow two steps: first, we build a model from a set of samples,
namely a training set ; then, we use the model to classify new (unseen) areas.

The training set is determined by the spatial transactions extracted from the
dataset. We focus our attention on spatial relations derivable from 9-intersection
model [5] according to the adopted spatial model [12].
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Fig. 1. An agricultural map

Spatial Decision Trees. A Spatial Decision Tree (SDT) is a rooted tree where
(i) each internal node is a decision node over a layer,(ii) each branch denotes an
outcome of the test and (iii) each leaf represents one of the class values.
A decision node ni is associated with a layer Li and with the attribute Xi of

the layer. The outcoming edges are labeled with the possible values of Xi.

SDT Classification. An area A is classified by starting at the root node, testing
the layer associated with this node and following the branch corresponding to
the test result. Let x1, x2, . . . , xm be the labels of the m edges of the root node. If
A intersects an object of type xj in the layer associated with the root node, then
the edge labeled with xj is followed. This testing process is repeated recursively
starting from the selected child node until a leaf node is reached. The area
A is classified according to the value in the leaf. When the query region A
intersects several areas with distinct values, then all the corresponding branches
are followed. The area A is split according to the layer values and each portion
is classified independently.

Example In Figure 2(a) a spatial decision tree for the example in Figure 1
is presented. This decision tree classifies areas according to whether they are
suitable for a type of crop rather than another. In particular, in this example
we have three kind of crops: Corn, Tomato and Potato. Given a new instance s
(marked with “??” in Figure 2(b)), we test s starting from the layer associated
with the root node, i.e. the Water layer. Since s overlaps a water region whose
value is Poor, the corresponding branch is followed and the node associated with
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Fig. 2. A possible spatial decision tree

the Climate layer is selected. Thus, s is tested against the features in the Climate
layer: in this case it overlaps a Sunny region, so the class Tomato is assigned to
the instance s.

3.1 SDT Learning Algorithm

Following the basic decision tree learning algorithm [13], our method employs a
top-down strategy to build the model. Initially, a layer is selected and associated
with the root node, using a statistical test to verify how well it classifies all
samples. Once a layer has been selected, a node is created and a branch is
added for each possible value of the attribute of the layer. Then, the samples
are distributed among the descendant nodes and the process is repeated for each
subtree.

Algorithm 1 shows a general version of the learning method. Initially, termi-
nation conditions are tested to solve trivial configurations (for example, when all
samples belong to the same class). The majority class(S) is the class where
most of the samples in S belong to. The crucial point of the algorithm is the
selection of the split layer for the current node. In Section 3.3 a strategy based on
the notion of entropy is presented to quantify how well a layer separates samples.
Once a layer is selected for a test node, the samples are partitioned according to
the layer itself and the intersection spatial relation. In Section 3.2 we show how
to compute this partition.

3.2 Splitting Samples

When classifying transactions represented as tuples, we aim at grouping trans-
actions together according to an attribute A. If the attribute for splitting is
selected in a proper way, the samples in each subpartition may increase their
uniformity (or, in other terms, they reduce their entropy).

In the same way, we aim at grouping spatial samples according to the infor-
mation found in the other layers. We select a layer Li and we split the samples in
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Algorithm 1: Generate SDT
Input: A layer S of sample areas;

A list L of layers;

Output: A spatial decision tree

Create a new node N ;
if samples in S are all of class c then

label N with c;
exit;

end
if L is empty then

label N with majority class(S);
exit;

end
Select layer best split from L;
Split S according to layer best split in {S(c1), . . . , S(cp)};
foreach S(ci), i = 1, 2, . . . , p do

Let Ni = Generate SDT(S(ci), L\{best split });
Create a branch from N to Ni labeled with the selected value;

end

layer S according to this layer. In general, if layer Li has q possible values then it
can split the samples in q+1 subsets, i.e. a subset for each value vj ,j = 1, 2, . . . , q,
and a special subset correspondig to none of these values (termed ¬L(C)). We
use Li(vj) to refer to all the features in Li that have value vj .

The intersection relation gives us the possibility to express a quantitative
measure on the related objects. In fact, given two polygonal geometries, say g1

and g2, we obtain a new geometry by means of the function intersection(g1, g2).
If the two geometries overlap and their intersection geometry is g3 then the area
of g3 gives the quantitative measure of the relation (under the assumption that
g3 is a polygon; the other cases are discussed below).

Given the subset Li(vj), for j = 1, 2, . . . , q, we consider all the samples that
intersect any feature in Li(vj). We denote this sublayer as Li(vj , C). For each
class value ck, we denote with Li(vj , ck) the features in Li(vj , C) whose class is ck.
Clearly, when a sample overlaps partially a polygon with value vk and a polygon
with value vl (this situtation is showed in Figure 3) it is split: first, a portion of
the sample is computed by intersecting it with polygon vk; the remaining part of
the sample is related to the other polygon; the possibly remaining portion of the
sample is left unclassified. For example, the sample in Figure 3(a) is partitioned
into three samples (Figure 3(b)).

For the sake of simplicity, we may think of each feature in Li(vj , ck) as
a representative for a tuple (vj , ck). While in a tuple-transactions context we
use cardinality as a quantitative measure, we adopt the area as a quantitative
measure for “spatial tuples”.

Example In Figure 3(c) the result of splitting the samples according to Water
Layer is showed. There is just one feature in the layer LWater (Poor ). Then all the
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Fig. 3. (a) A sample (at center) overlaps two polygons; (b) the sample after splitting;
(c) samples splitted according to the Water layer

samples that intersect this object belong to the same subset. The two polygons in
LWater (Rich) enclose the other subset of samples. We denote, respectively, with
LWater (Poor , C) and LWater (Rich, C) the two subsets of samples. In particular,
LWater (Poor , C) is the union of two layers: LWater (Poor ,Corn), that contains
the five corn polygons on the left, and LWater (Poor ,Tomato), that contains the
other two polygons.

One of the samples does not overlap any feature either in LWater (Poor ) nor
in LWater (Rich). Thus, the sample is inserted in ¬LWater (C).

3.3 Selecting Best Split

At each step of the algorithm, we choose one of the candidate layers for growing
the tree and for separating the samples. In this section we introduce a statistical
measure, the spatial information gain, to select a layer that classifies training
samples better than the others. The information gain is based on the notion of
entropy. Intuitively, it is possible to measure the (im)purity of samples w.r.t.
their classes by an evaluation of their entropy. Then, candidates for splitting are
selected considering the reduction of entropy caused by splitting the samples
according to each layer.

Spatial Information Gain. We present now the method to compute the en-
tropy for a layer L, with respect to the class label layer S. First, we evaluate
the entropy of the samples, i.e. the information needed to identify the class of
a spatial transaction. While in tuple-transaction the frequency of a sample is
expressed as a ratio of transaction occurences, we use here the area extent of the
samples.

Thus, given a layer L, we denote with mes(L) the sum of the areas of all
polygons in L. If S has l distinct classes (i.e. c1, c2, . . . , cl) then the entropy for
S is:

H(S) = −
l∑

i=1

mes(Sci)
mes(S)

log2
mes(Sci)
mes(S)

(1)
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If L is a non-class layer with values v1, v2, . . . , vq, we split the samples ac-
cording to this layer, as showed in Section 3.2. We obtain a set of layers L(vi, S)
for each possible value vi in L and, possibly, ¬L(S). From equation (1) we can
compute the entropy for samples in each sublayer L(vi, S). The expected entropy
value for splitting is given by:

H(S|L) =
mes(¬L(S))

mes(S)
H(¬L(S)) +

q∑

j=1

mes(L(vj , S))
mes(S)

H(L(vj , S)) (2)

The layer ¬L(S) represents the samples that can not be classified by the
layer L (i.e. the samples not intersected by the layer L). This scenario may
happen, for example, when layer L partially covers the class label layer. Thus,
when selecting layer L for splitting, we consider the entropy of the samples with
empty intersection in the computation of the expected entropy. While the values
of layer L may be used to label the edges of the tree, the values of layer ¬L(S)
are used as an “handicap” for the layer entropy. For example, consider a layer
L containing a single polygon that covers only a small portion of the class label
layer. The splitting will produce a layer L(v, S) (corresponding to the unique
value of layer L) and a layer ¬L(S) larger than the first one. By considering
only the layer L(v, S) the resulting entropy would be very low, but a larger part
of the sample would remain unclassified. Instead, the entropy measure of layer
¬L(S) gives a measure of the “remaining impurity” left to classify.
The spatial information gain for layer L is given by:

Gain(L) = H(S) − H(S|L) (3)

Clearly, the layer L that presents the highest gain is chosen as best split :
we create a node associated with L and an edge for each value of the layer.
The samples are splitted among the edges according to each edge value. The
selection process is repeated for each branch of the node by considering all the
layers except L.

Example Consider the splitting of samples in Figure 1(d) with respect to the
Potassium layer (Figure 1(b)). The entropy of layers LPotas(Rich) and LPotas

(Poor) is zero. By ignoring the ¬LPotas(S) the overall entropy of splitting would
be zero. Thus, the Potassium layer would be selected for splitting. However, so
doing, the information of samples in ¬LPotas(S) is lost: in fact, the ¬L(·)(S) is
not used to build the tree.

To clarify the layer selection task, consider the training set in Figure 1(d).
Here, the class label layer contains polygons whose classes represent crops relative
to each area. Following Algorithm 1, we start by building the root node for the
tree. One of the available layers has to be selected. So the information gain is
computed for each one (i.e. Water, Potassium, Climate).

For instance, we show the information gain computation for the Water layer.
The splitting of samples according to the Water layer is reported in Section 3.2
and it results into three sublayers: LWater (Poor, C), LWater (Rich, C) and
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¬LWater (C). The areas of the samples are reported in Figure 1(f). The entropy
of each layer is given by, respectively:

H(LWater(Poor, C)) = − 70

110
log2

70

110
− 40

110
log2

40

110
− 0

110
log2

0

110
= 0.9457

H(LWater (Rich, C)) = − 0

142
log2

0

142
− 47

142
log2

47

142
− 95

142
log2

95

142
= 0.9159

H(¬LWater (C)) = −49

49
log2

49

49
− 0

49
log2

0

49
− 0

49
log2

0

49
= 0.0000

From (2), the expected entropy for splitting is:

H(S|LWater ) = −110

301
× 0.9457 − 142

301
× 0.9159 − 49

301
× 0.0000 = 0.1830

Since the entropy is:

H(S) = −119

301
log2

119

301
− 87

301
log2

87

301
− 95

301
log2

95

301
= 1.5718

from (3) we can compute the gain for the Water layer (and for the other two
layers):

Gain(LWater) = 1.3888; Gain(LPotassium) = 1.2331; Gain(LClimate) = 1.2742;

Since the Water layer shows the best gain it is selected as root test layer.

3.4 Experiments

We have performed some experiments with real digital maps. In particular, we
considered a set of layers from the National Atlas of the United States:

– the class label layer contains the information about the average (per farm)
market value of sold agricultural products;

– the ecoregion layer represents areas that present a common climate;
– the aquifr layer shows the distribution of the principal aquifers.
– cotton, soybean, wheat layers specify the areas cultivated with cotton, soy-

beans, wheat for grain respectively;
– cattle layers gives the number of cattle and calves per area.

All the layers, but ecoregion and aquifr, have continuous attributes. We have
discretized each attribute by grouping objects into classes with comparable areas.

The spatial operations and indexing are handled by means of the JTS Topol-
ogy Suite[8]. Each layer is indexed with a STRTree [16]. This reduces drastically
the execution time for the splitting operation. At each split operation:

– for each polygon in the class label layer we compute the intersection with the
current layer. The operation is performed in two steps: first, a coarse query
is executed on the spatial index; then, the query response is refined and the
result is inserted into a new layer;
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Fig. 4. (a) A portion of a geographical map; (b) the test set considered; (c) the SDT
extracted

– the new layer L is partitioned into sublayers L(vi), for each possible value vi,
to compute the entropy. To speed up this operation, we create an additional
hashtable-based index to retrieve each of the sublayer by class.

One of the datasets used for the experiments is showed in Figure 4(a) (the
corresponding test set is reported in Figure 4(b)). Continuous layers have been
classified into three classes, namely Low, Medium and High. The extracted SDT
(Figure 4(c) presents a branch of the whole tree) has the root node associated
with the ecoregion layer. The accuracy reached on the test set is about 80%: the
whole area of the test set is 48.1217; the area of correctly classified polygons is
about 39.1.

4 Conclusions and Future Work

We have presented a method for learning a classifier for geographical areas. The
method is based on the ID3 learning algorithm and the entropy computation is
based on the area of polygons. However, the requirement for polygonal layers
may be relaxed and we are currently investigating several possible solutions. It
is possible to use line layers (for example, road layer) as well. In this case, the
measure of the intersection is computed by considering the length of linear ge-
ometries. For point layers a suitable measure is the count of the occurrences of
points. In practice, the entropy measure would be biased to polygonal layers.
A good tradeoff is to consider a buffered layer (where each polygon contains
all the points within a given distance to an object in the original layer). This
solution creates a fresh polygonal layer. However, the choice of the buffer size
is not so simple: it can also produce a bias as in the previous scenario. An-
other solution is to consider the definition of an entropy function weighted on
each layer. This solution may provide the user with the possibility of promoting
some layers during the learning process (i.e. for specifying the interest toward
a specific layer). We are also considering some heuristics to improve the qual-
ity of data preparation, in particular the discretization of layers with numeric
attributes. Another possible direction of research is considering the problem of
learning spatially explicit classification models based on intra-layer relations, i.e.
topological relations among neighboring spatial objects.
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