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Abstract. This paper presents a novel method for finding interesting
pass patterns from soccer game records. Taking two features of the pass
sequence – temporal irregularity and requirements for multiscale obser-
vation – into account, we have developed a comparison method of the
sequences based on multiscale matching. The method can be used with
hierarchical clustering, that brings us a new style of data mining in sports
data. Experimental results on 64 game records of FIFA world cup 2002
demonstrated that the method could discover some interesting pass pat-
terns that may be associated with successful goals.

1 Introduction

Game records of sports such as soccer and baseball provide important informa-
tion that supports the inquest of each game. Good inquest based on the detailed
analysis of game records makes the team possible to clearly realize their weak
points to be strengthened, or, superior points to be enriched. However, the ma-
jor use of the game records is limited to the induction of basic statistics, such
as the shoot success ratio, batting average and stealing success ratio. Although
video information may provide useful information, its analysis is still based on
the manual interpretation of the scenes by experts or players.

This paper presents a new scheme of sports data mining from soccer game
records. Especially, we focus on discovering the features of pass transactions,
which resulted in successful goals, and representing the difference of strategies
of a team by the pass strategies. Because a pass transaction is represented as a
temporal sequence of the position of a ball, we used clustering of the sequences.
There are two points that should be technically solved. First, the length of a
sequence, number of data points constituting a sequence, and intervals between
data points in a sequence are all irregular. A pass sequence is formed by con-
catenating contiguous pass events; since the distance of each pass, the number
of players translating the contiguous passes are by nature difference, the data
should be treated as irregular sampled time-series data. Second, multiscale ob-
servation and comparison of pass sequences are required. This is because a pass
sequence represents both global and local strategies of a team. For example, as
a global strategy, a team may frequently use side-attacks than counter-attacks.
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As a local strategy, the team may frequently use one-two pass. Both levels of
strategies can be found even in one pass sequence; one can naturally recognize it
from the fact that a video camera does zoom-up and zoom-out of a game scene.
In order to solve these problems, we employed multiscale matching [1], [2], a
pattern recognition based contour comparison method.

The rest of this paper is organized as follows. Section 2 describes the data
structure and preprocessing. Section 3 describes multiscale matching. Section
4 shows experimental results on the FIFA world cup 2002 data and Section 5
concludes the results.

2 Data Structure and Preprocessing

2.1 Data Structure

We used the high-quality, value-added commercial game records of soccer games
provided by Data Stadium Inc., Japan. The current states of pattern recognition
technique may enable us to automatically recognize the positions of ball and
players [3], [4], [5], however, we did not use automatic scene analysis techniques
because it is still hard to correctly recognize each action of the players.

The data consisted of the records of all 64 games of the FIFA world cup 2002,
including both heats and finals, held during May-June, 2002. For each action in a
game, the following information was recorded: time, location, names(number) of
the player, the type of event (pass, trap, shoot etc.), etc. All the information was
generated from the real-time manual interpretation of video images by a well-
trained soccer player, and manually stored in the database. Table 1 shows an
example of the data. In Table 1, ‘Ser’ denotes the series number, where a series
denotes a set of contiguous events marked manually by expert. The remaining
fields respectively represent the time of event occurrence (‘Time’), the type of
event (‘Action’), the team ID (‘T1’) and player ID (P1) of one acting player
1, the team ID (‘T2’) and player ID (P2) of another acting player 2, spatial
position of player 1 (X1, Y1), and spatial position of player 2 (X1, Y1), Player 1
represents the player who mainly performed the action. As for pass action, player
1 represents the sender of a pass, and player 2 represents the receiver of the pass.
Axis X corresponds to the long side of the soccer field, and axis Y corresponds

Table 1. An example of the soccer data record.

Ser Time Action T1 P1 T2 P2 X1 Y1 X2 Y2

1 20:28:12 KICK OFF Senegal 10 0 -33
1 20:28:12 PASS Senegal 10 Senegal 19 0 -50 -175 50
1 20:28:12 TRAP Senegal 19 -175 50
1 20:28:12 PASS Senegal 19 Senegal 14 -122 117 3004 451
1 20:28:14 TRAP Senegal 14 3004 451
...

...
169 22:18:42 P END France 15 1440 -685
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to the short side. The origin is the center of the soccer field. For example, the
second line in Table 2 can be interpreted as: Player no. 10 of Senegal, locating
at (0,-50), sent a pass to Player 19, locating at (-175,50).

2.2 Preprocessing

We selected the series that contains important ‘PASS’ actions that resulted in
goals as follows.

1. Select a series containing an ‘IN GOAL’ action.
2. Select a contiguous ‘PASS’ event. In order not to divide the sequence into

too many subsequences, we regarded some other events as contiguous events
to the PASS event; for example, TRAP, DRIBBLE, CENTERING, CLEAR,
BLOCK. Intercept is represented as a PASS event in which the sender’s team
and receiver’s team are different. However, we included an intercept into the
contiguous PASS events for simplicity.

3. From the Selected contiguous PASS event, we extract the locations of Player
1, X1 and Y1, and make a time series of locations p(t) = {(X1(t), Y1(t))|1 ≤
t ≤ T } by concatenating them. For simplicity, we denote X1(t) and Y1(t) by
x(t) and y(t) respectively.

Figure 1 shows an example of spatial representation of a PASS sequence
generated by the above process. Table 2 provides an additional information, the
raw data that correspond to Figure 1. In Figure 1 the vertical line represents the
axis connecting the goals of both teams. Near the upper end (+5500) is the goal
of France, and near the lower end is the goal of Senegal. This example PASS
sequence represents the following scene: Player no. 16 of France, locating at (-
333,3877), send a pass to player 18. Senegal cuts the pass at near the center of
the field, and started attack from the left side. Finally, Player no. 11 of Senegal
made a CENTERING, and after several block actions of France, Player no. 19
of Senegal made a goal.

By applying the above preprocess to all the IN GOAL series, we obtained N
sequences of passes P = {pi|1 ≤ i ≤ N} that correspond to N goals, where i of
pi denote the i-th goal.

3 Multiscale Comparison and Grouping of the Sequences

For every pair of PASS sequences {(pi, pj) ∈ P |1 ≤ i < N, i < j ≤ N}, we
apply multiscale matching to compare their dissimilarity. Based on the resultant
dissimilarity matrix, we perform grouping of the sequences using conventional
hierarchical clustering [6].

Multiscale Matching is a method to compare two planar curves by partly
changing observation scales. We here briefly explain the basic of multiscale
matching. Details of matching procedure are available in [2].

Let us denote two input sequences to be compared, pi and pj , by A and
B. First, let us consider a sequence x(t) containing X1 values of A. Multiscale
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Fig. 1. Spatial representation of a PASS sequences.

representation of x(t) at scale σ, X(t, σ) can be obtained as a convolution of x(t)
and a Gaussian function with scale factor σ as follows.

X(t, σ) =
∫ +∞

−∞
x(u)

1
σ
√

2π
e−(t−u)2/2σ2

du (1)

where the gauss function represents the distribution of weights for adding the
neighbors. It is obvious that a small σ means high weights for close neighbors,
while a large σ means rather flat weights for both close and far neighbors. A
sequence will become more flat as σ increases, namely, the number of inflection
points decreases. Multiscale representation of y(t), Y (t, σ) is obtained similarly.

The curvature of point t at scale σ is obtained as follows.

K(t, σ) =
X ′Y ′′ − X ′′Y ′

(X ′2 + Y ′2)3/2
, (2)

where X ′, X ′′, Y ′ and Y ′′ denote the first- and second-order derivatives of X(t, σ)
and Y (t, σ) by t, respectively. The m-th order derivative of X(t, σ), X(m)(t, σ),
is derived as follows.

X(m)(t, σ) =
∂mX(t, σ)

∂tm
= x(t) ⊗ g(m)(t, σ). (3)

Figure 2 provides an illustrative example of multiscale description of A.
Next, we divide the sequence K(t, σ) into a set of convex/concave subse-

quences called segments based on the place of inflection points. A segment is a
subsequence whose ends correspond to the two adjacent inflection points, and
can be regarded as a unit representing substructure of a sequence.

Let us assume that a pass sequence A(k) at scale k is composed of R segments.
Then A(k) is represented by

A(k) =
{
a
(k)
i | i = 1, 2, · · · , R(k)

}
, (4)
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Table 2. Raw data corresponding the sequence in Figure 1.

Ser Time Action T1 P1 T2 P2 X1 Y1 X2 Y2

47 20:57:07 PASS France 16 France 18 -333 3877 122 -2958
47 20:57:08 PASS France 18 France 17 122 2958 -210 -2223
47 20:57:10 DRIBBLE France 17 -210 2223 -843 -434
47 20:57:14 PASS France 17 France 4 -843 434 298 -685
47 20:57:16 PASS France 4 France 6 298 685 1300 217
47 20:57:17 TRAP France 6 1300 217
47 20:57:19 CUT Senegal 6 -1352 -267
47 20:57:19 TRAP Senegal 6 -1352 -267
47 20:57:20 PASS Senegal 6 Senegal 11 -1704 702 -2143 2390
47 20:57:21 DRIBBLE Senegal 11 -2143 2390 -1475 5164
47 20:57:26 CENTERING Senegal 11 -1475 5164
47 20:57:27 CLEAR France 17 175 4830
47 20:57:27 BLOCK France 16 281 5181
47 20:57:27 CLEAR France 16 281 5181
47 20:57:28 SHOT Senegal 19 -87 5081
47 20:57:28 IN GOAL Senegal 19 -140 5365

where a
(k)
i denotes the i-th segment of A(k) at scale σ(k). By applying the same

process to another input sequence B, we obtain the segment-based representation
of B as follows.

B(h) =
{
b
(h)
j | j = 1, 2, · · · , S(h)

}
(5)

where σ(h) denote the observation scale of B and S(h) denote the number of
segments at scale σ(h).

The main procedure of multiscale matching is to find the best set of segment
pairs that minimizes the total segment difference. Figure 3 illustrates the process.
For example, five contiguous segments A1 - A5 at the lowest scale of Sequence
A are integrated into one segment A6 at the middle scale, and the integrated
segment A6 well matches to one segment B1 in Sequence B at the lowest scale.
Thus the set of the five segments in Sequence A and the one segment in Sequence
B will be considered as a candidate for corresponding subsequences. While,
another pair of segments A0 and B0 will be matched at the lowest scale. In this
way, matching is performed throughout all scales.

There is one restriction in determining the best set of the segments. The
resultant set of the matched segment pairs must not be redundant or insufficient
to represent the original sequences. Namely, by concatenating all the segments
in the set, the original sequence must be completely reconstructed without any
partial intervals or overlaps. The matching process can be fasten by implementing
dynamic programming scheme [2].

Dissimilarity d(a(k)
i , b

(h)
j ) of two segments a

(k)
i and b

(h)
i is defined as follows.

d(a(k)
i , b

(h)
j ) =

| θ
(k)
ai − θ

(h)
bj

|
θ
(k)
ai + θ

(h)
bj

∣∣∣∣∣∣
l
(k)
ai

L
(k)
A

−
l
(h)
bj

L
(h)
B

∣∣∣∣∣∣ (6)
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Fig. 2. An example of mul-
tiscale description.
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Fig. 3. An illustrative example of multiscale matching.

where θ
(k)
ai and θ

(h)
bj

denote rotation angles of tangent vectors along segments

ai
(k) and bj

(h), l
(k)
ai and l

(h)
bj

denote the length of segments, L
(k)
A and L

(h)
B denote

the total length of sequencesA and B at scales σ(k) and σ(h), respectively.
The total difference between sequences A and B is defied as a sum of the

dissimilarities of all the matched segment pairs as

D(A, B) =
P∑

p=1

d(a(0)
p , b(0)

p ), (7)

where P denotes the number of matched segment pairs.

4 Experimental Results

We applied the proposed method to the action records of 64 games in the FIFA
world cup 2002 described in Section 2. First let us summarize the procedure of
experiments.

1. Select all IN GOAL series from original data.
2. For each IN GOAL series, generate a time-series sequence containing con-

tiguous PASS events. In our data, there was in total 168 IN GOAL series
excluding own goals. Therefore, we had 168 time-series sequences, each of
which contains the sequence of spatial positions (x(t), y(t)).

3. For each pair of the 168 sequences, compute dissimilarity of the sequence pair
by multiscale matching. Then construct a 168 × 168 dissimilarity matrix.

4. Perform cluster analysis using the induced dissimilarity matrix and conven-
tional agglomerative hierarchical clustering (AHC) method.

The following parameters were used in multiscale matching: the number of scales
= 30, scale interval = 1.0, start scale = 1.0. In order to elude the problem of
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Fig. 4. Dendrogram obtained by average-linkage AHC.

Fig. 5. Example sequences
in cluster 1.

Fig. 6. Example sequences
in cluster 2.

Fig. 7. Example sequences
in cluster 3.

shrinkage at high scales, the shrinkage correction method proposed by Lowe et
al. [7] was applied.

Figure 4 provides a dendrogram generated obtained using average-linkage
AHC. Thirteen clusters solution seemed to be reasonable according to the step
width of dissimilarity. However, from visual inspection, it seemed better to se-
lect 10 clusters solution, because the feature of clusters was more clearly ob-
served. Figure 5 - 7 provide some examples of sequences clustered into the three
major clusters 1, 2, 3 in Figure 4, respectively. Cluster 1 contained complex
sequences, each of which contained many segments and often included loops.
These sequences represented that the goals were succeeded after long, many
steps of pass actions, including some changes of the ball-owner team. On the
contrary, cluster 2 contained rather simple sequences, most of which contained
only several segments. These sequences represented that the goals were obtained
after interaction of a few players. Besides, the existence of many long line seg-
ment implied the goals might be obtained by fast break. Cluster 3 contained
remarkably short sequences. They represented special events such as free kicks,
penalty kicks and corner kicks, that made goals after one or a few touches. These
observations demonstrated that the sequences were clustered according to the
steps/complexity of the pass pass routes.
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Fig. 9. Example sequences in cluster 15.

Figure 4 provides a dendrogram generated obtained using complete-linkage
AHC. Because we implemented multiscale matching so that it produces a pseudo,
maximum dissimilarity if the sequences are too different to find appropriate
matching result, some pairs of sequences were merged at the last step of the
agglomerative linkage. This gave the dendrogram in Figure 4 a little unfamiliar
shape. However, complete-linkage AHC produced more distinct clusters than
average-linkage AHC.

Figure 9 - 11 provide examples of sequences clustered into the major clusters
15 (10 cases), 16 (11 cases) and 19 (4 cases), for 22 clusters solution. Most of
the sequences in cluster 15 contained sequences that include cross-side passes.
Figure 9 right represents a matching result of two sequences in this cluster. A
matched segment pair is represented in the same color, with notation of segment
number A1-B1, A2-B2 etc. The result demonstrates that the similarity of pass
patterns - right (A1-B1), cross (A2-B2), centering (A3-B3), shoot (A4-B4) were
successfully captured. Sequences in cluster 16 contained loops. Figure 10 right
shows a matching result of two sequences in this cluster. Although the directions
of goals were different in these two sequences, correspondence between the loops,
cross-side passes, centerings and shoots are correctly captured. This is because
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Fig. 10. Example sequences in cluster 16.
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Fig. 11. Example sequences in cluster 19.

multiscale matching is invariant for affine transformations. Cluster 19 contained
short step sequences. The correspondence of the segments were also successfully
captured as shown in Figure 11.

5 Conclusions

In this paper, we have presented a new method for finding interesting pass pat-
terns from time-series soccer record data. Taking two characteristics of the pass
sequence – irregularity of data and requirements of multiscale observation – into
account, we developed a cluster analysis method based on multiscale matching,
which may build a new scheme of sports data mining. Although the experiments
are in the preliminary stage and subject to further quantitative evaluation, the
proposed method demonstrated its potential for finding interesting patterns in
real soccer data.
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