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Abstract. The recent approach of a model-based framework for stega-
nography fruitfully contributes to the discussion on the security of stega-
nography. In addition, the first proposal for an embedding algorithm
constructed under the model-based paradigm reached remarkable per-
formance in terms of capacity and security. In this paper, we review the
emerging of model-based steganography in the context of decent ste-
ganalysis as well as from theoretical considerations, before we present
a method to attack the above-mentioned scheme on the basis of first
order statistics. Experimental results show a good detection ratio for a
large test set of typical JPEG images. The attack is successful because of
weaknesses in the model and does not put into question the generalised
theoretical framework of model-based steganography. So we discuss pos-
sible implications for improved embedding functions.

1 Introduction

Steganography is the art and science of hiding information such that its pres-
ence cannot be detected. Unlike cryptography, where anybody on the trans-
mission channel notices the flow of information but cannot read its content,
steganography aims to embed a confidential message in unsuspicious data, such
as image or audio files [18]. Like in cryptography, the Kerckhoffs principle [16]
also applies to steganography: Security relies on publicly known algorithms that
are parameterised with secret keys.

Steganalysis is the task to attack steganographic systems. For a successful
attack, it is sufficient for an adversary to prove the existence of a hidden message
in a carrier even if she cannot decrypt the content. Whereas in most cases the
existence of steganography can only be expressed in probabilities, the literature
suggests a somewhat weaker notion for successful attacks. A steganographic
algorithm is considered as broken if there exists a method that can determine
whether or not a medium contains hidden information with a success rate better
than random guessing.

1.1 Related Embedding Schemes and Successful Attacks

Judging from the set of available steganographic tools, digital images are the
most popular carrier for steganographic data, likely because of being both op-
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erable and plausible. The plausibility of steganographic target formats increases
with the amount of data transmitted in the respective format. Regarding the
WWW and E-mail, JPEG images are widely used, and therefore they are an
ideal target format.

Jsteg [22], released in 1993, is probably the first steganographic tool to em-
bed into JPEG images. Embedding is accomplished by replacing the least signif-
icant bits of quantised coefficients that describe the image data in the frequency
domain. Even though, this simple method can be reliably detected with the
Chi-square attack (χ2) [26]. This attack exploits the pair wise dependencies of
adjacent bins in the histogram, which occur after embedding of uniformly dis-
tributed message bits.

To prevent this attack, the algorithm F5 [24] uses a different embedding
function, adapting the least significant bits to the message by decreasing the co-
efficients’ absolute values. In addition, F5 implements two steganographic tech-
niques to lower the risk of detection for messages below the full capacity. Matrix
encoding [4] minimises the amount of modifications per message bit by carefully
selecting the modified coefficients. A permutative straddling function spreads the
message equally over the whole image.

OutGuess [19], another algorithm, also replaces the least significant bits, but
additionally introduces correction bits to preserve the first order statistics. Thus,
it is not vulnerable to the Chi-square attack. OutGuess voluntarily limits the
maximum steganographic content to 6 % of the file size (about half as much as the
before mentioned algorithms support) in order to realise plausible deniability: At
first, a secret message is embedded together with error correction codes. Then, a
second harmless message can be embedded, which acts as alibi for the case that
the concealed communication is actually discovered.

Both OutGuess and F5 can be detected by computing calibrated statistics.
Uncompressing a JPEG image and re-compressing it after a slight transforma-
tion in the spatial domain accomplishes this. A comparison of both marginal
statistics, of the examined image and of the re-compressed image, reveals the
existence of a hidden message [10, 11].

Apart from targeted attacks, which are constructed for particular embedding
functions, blind attacks [17, 7] do not assume knowledge about the functionality
of particular algorithms. Blind methods extract a broad set of statistical features,
which might be subject to changes due to embedding. Then, a classifier is trained
with a large number of typical images, both pristine carriers and stegotexts.
Although suffering from lower prediction reliability than targeted attacks, blind
attacks have the advantage of easy adaptability to new embedding functions.
While in this case targeted attacks have to be altered or redesigned, blind attacks
just require a new training.

1.2 Towards Model-Based Steganography

There have been several attempts to formalise the security of steganographic
systems from an information theoretic point of view. Based on Anderson and
Petitcolas’ [1] initial idea to argue with entropy measures of carrier, stegotexts,
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and hidden messages, Zöllner et al. [29] show that information theoretical secure
steganography is not feasible in general. As a result, they introduce the notion
of an in-deterministic steganographic function. This concept implies that the
steganographic carrier, represented as random variable X = (Xdet, Xindet), can
be split up into a deterministic part Xdet and an in-deterministic part Xindet.
Zöllner et al. assume that an adversary has knowledge about deterministic parts
of a carrier, ranging from general assumptions about marginal distributions –
for example, the typical macro structures of natural images – to specific infor-
mation about an actual carrier, such as the possibility to verify the accuracy of a
digitised photograph by comparing it to the depicted scene. Hence, the determin-
istic part must not be altered to carry steganographic data. The in-deterministic
part, however, is assumed to be uniformly distributed random noise, which has
been introduced, for example, by quantising the signal with an analogue-digital
converter. Apart from meta-information, such as proportion and marginal distri-
bution, the adversary has no knowledge about the actual shape of Xindet. Under
this assumption, Xindet can be replaced with a similar distributed payload mes-
sage X∗

indet (i. e., compressed data can be considered as uniformly distributed)
to compose a stegotext X∗ = (Xdet, X

∗
indet).

Though this approach sounds simple in theory, its practical application suf-
fers from the problem to separate Xindet from Xdet. This separation is not only
complicated by the varying qualitative assumptions about which information an
adversary can gain about the carrier – in more general terms, this is a ques-
tion of the adversary model –, but also by the difficulty to consider all possible
dependencies between

1. the “noise” and the structure of a carrier, and
2. the intra-dependencies within the “noise” part1.

So, most attempts to separate Xdet from Xindet are rather naive. The most widely
used one is least significant bit (LSB) embedding, which implicitly assumes the
k LSBs as Xindet, and the remaining bits as Xdet. A couple of successful attacks
against this scheme [5, 9, 12, 26, 28] proves the inadequacy of this approach.

Also arguing with information theory, Cachin [3] describes the relation of
the relative entropy between the probability distributions of carrier data and
stegotexts to the error probabilities in a hypothesis test of a passive adversary.
He introduces the concept of ε-security, denoting an upper bound for the binary
relative entropy d(α, β) ≤ ε. In steganographic hypothesis tests, α is the proba-
bility that the adversary falsely suspects a hidden message in a pristine carrier
(also false positives, or type I error), and β is probability that the adversary
does not detect a hidden message (misses, or type II error).

These information theoretic considerations, however, seemed to have only
marginal influence on the design of specific steganographic algorithms. Eventu-
ally, Sallee’s work [21] contributes to remedy this unsatisfactory situation. His
proposal of a model-based approach to steganography can be interpreted as an

1 We put the term noise in inverted commas, because if it were real (i.e., uncorrelated)
noise, we would not face the described problems.
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evolutionary combination of the above mentioned concepts coupled with strong
implications for the design of steganographic algorithms.

Model-based steganography adapts the division of the carrier into a deter-
ministic random variable Xdet and an in-deterministic one Xindet

2. In contrast to
the previous approaches, model-based steganography does not assume Xindet to
be independently and uniformly distributed. Therefore the developers propose to
find suitable models for the distribution of Xindet, which reflect the dependencies
with Xdet. The general model is parameterised with the actual values of Xdet of
a concrete cover medium, which leads to a cover specific model. The purpose of
this model is to determine the conditional distributions P (Xindet|Xdet = xdet).
Then, an arithmetic decompression function3 is used to fit uniformly distributed
message bits to the required distribution of Xindet, thus replacing Xindet by
X∗

indet, which has similar statistic properties and contains the confidential mes-
sage. Figure 1 shows a block diagram of the general model-based embedding
process.

Fig. 1. Block diagram of the principles of model-based steganography

In addition to these general considerations, the initial work on model-based
steganography contains a proposal for a concrete embedding function for JPEG
images in the frequency domain. The purpose of this paper is to point to weak-
nesses of this concrete model, which allow an adversary to separate stegotexts
from innocuous images.

The remainder of this paper is structured as follows: In the next section we
explain the functionality of the actual embedding scheme, before we discuss its
weaknesses in Section 3 in order to construct an operable attack. In Section 4,
we report experimental results evaluating the performance of the presented de-
tection method. In the final Section 5, we discuss the insights in a more general
context and derive implications towards ever more secure steganography.

2 Model-Based Steganography for JPEG Images

In this section, we briefly explain the steganographic algorithm for JPEG images
proposed in [21]. As we acknowledge the theoretical framework of the model-
based approach, we expect further development under the new framework. So,
2 Sallee [21] denotes Xindet as Xα and Xdet as Xβ . We do not follow this convention

because the symbols α and β usually stand for error probabilities and might lead to
confusion in other contexts.

3 The idea of employing a decompression functions to generate arbitrary target dis-
tributions has been described in the literature as mimic function [23].
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Fig. 2. Typical histogram of JPEG coefficients and approximated Cauchy distribution
with data points. The frequency of the low precision bins b

(i,j)
k is not modified during

embedding

we will refer to the examined method as MB1, because it was the first one derived
from the general considerations of model-based steganography.

Standardised JPEG compression cuts a greyscale image into blocks of 8 × 8
pixels, which are separately transformed into the frequency domain by a two
dimensional discrete cosine transformation (DCT). The resulting 64 DCT coef-
ficients, (i, j) : i, j = 1, . . . , 8 , are quantised with a quality dependent quanti-
sation step size and further compressed by a lossless Huffman entropy encoder.
The MB1 algorithm, as most steganographic schemes for JPEG files, embeds
the steganographic semantic by modifying the quantised values. This ensures a
lossless transmission of the hidden message bits.

Since individual modifications are not detectable without knowledge of the
original values, an attacker reverts to the marginal statistics over all blocks of an
image. Hence, the MB1 algorithm has been designed to preserve these distribu-
tions. Figure 2 depicts an example histogram of a selected DCT(2,2) coefficient.
The histogram shape is typical for all JPEG DCT coefficients except DCT(1,1),
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which are therefore excluded from embedding (i. e., the DCT(1,1) coefficients
belong to Xdet).

Let us denote h
(i,j)
k as the number of quantised DCT(i,j) coefficients equal to

k in a given image. We will further refer to this quantity as the k-th high precision
bin of the histogram h(i,j). By contrast, the low precision bins comprise several
high precision bins. Without restricting generality, we focus on the case when a
low precision bin b

(i,j)
k (k �= 0) contains exactly two high precision bins, so that

b
(i,j)
k =






h
(i,j)
2k+1 + h

(i,j)
2k for k < 0

h
(i,j)
0 for k = 0

h
(i,j)
2k−1 + h

(i,j)
2k for k > 0 .

To avoid the case differentiation and simplify the notation, we will write
further equations only for k > 0. Furthermore, q ∈ [0, 1] denotes the quality
parameter of a JPEG compression that is used to compute the quantisation
tables.

The MB1 algorithm defines the size of the low precision bins b
(i,j)
k as part of

Xdet, while the distribution within the low precision bins (i. e., the correspond-
ing high precision bins h

(i,j)
2k−1 and h

(i,j)
2k ) is considered as part of Xindet. The

embedding function alters the quantised DCT coefficients, so that

1. the new values belong to the same low precision bin, and
2. the conditional distribution of h

(i,j)
2k−1 and h

(i,j)
2k from a given b

(i,j)
k keeps

coherent according to a model.

This is accomplished by altering coefficient values of 2k−1 to 2k and vice versa.
In contrast to simple LSB overwriting, the conditional probabilities of occurrence
P (Xindet|Xdet = xdet), actually P (h(i,j)

2k−1|b(i,j)
k ), are derived from the model in

dependency of the low precision bin b
(i,j)
k . As it is obvious that the probabilities

for all high precision bins sum up to 1 in each low precision bin,

P (h(i,j)
2k−1|b(i,j)

k ) + P (h(i,j)
2k |b(i,j)

k ) = 1, ∀ i, j, k,

we further refer only to the P (h(i,j)
2k−1|b(i,j)

k ) as p
(i,j)
k . The required p

(i,j)
k is adjusted

to the shape of a Modified Generalised Cauchy (MGC) distribution f(k, π, s):

p
(i,j)
k =

f(2k − 1, π, s)
f(2k − 1, π, s) + f(2k, π, s)

The density function of the MGC distribution applied is defined as follows:

f(k, π, s) =
p − 1
2s

(|k/s| + 1)−π
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The scale parameter s and the location parameter π are computed separately
for all DCT modes by a maximum likelihood estimation over the low precision
bins b(i,j). Then, p

(i,j)
k is determined for all low precision bins b

(i,j)
k , k �= 0 of

each DCT mode, but DCT(1,1) coefficients and zero value coefficients b
(i,j)
0 are

excluded from embedding. An arithmetic entropy decoder [27, cited from [21]] is
used to fit the compressed and encrypted – thus uniformly distributed – message
bits m ∼ U to a discrete vector with defined symbol probabilities p

(i,j)
k and

1 − p
(i,j)
k

4. As b(i,j) is not modified due to embedding, the receiver can re-
compute the model parameters and thus extract the message.

One way to evaluate the performance of an embedding algorithm is the em-
bedding efficiency. According to [24], the embedding efficiency in JPEG files can
be defined as the average message bits encoded per change of a coefficient. The
application of an arithmetic decoder is an elegant way to achieve an exception-
ally high embedding efficiency. Sallee reports embedding efficiencies between 2.06
and 2.16 bits per change for test images with q = 80 % [21]. Other decent algo-
rithms achieve values between 1.0 and 2.0 (OutGuess), or just under 2.0 (F5)5.
Also in terms of capacity, MB1 performs on the upper end of the range. The
capacity is defined as ratio of message bits per transmitted bits. MB1 reaches
values of just under 14%, which is slightly better than F5 and Jsteg (about 13%
and 12%, respectively), and clearly above OutGuess (below 7 %).

Being explicitly designed as proof of concept, the developers of MB1 concede
that the simple model does not include higher order statistics. However, they
claim it to be “resistant to first order statistical attacks” [21, p. 166]. First order
statistics are all measures describing data regardless of the inter-dependencies
between observations, such as mean, variance, and histograms. Higher order
statistics consider the relationship between observations and their position in the
dataset; for example correlations between adjacent pixels in an image. As a rule
of thumb, if the results of a statistical measure are invariant to any permutation
of the data, then it is first order statistics.

Until today, none of the existing attacks against other algorithms also works
on MB1, and no targeted attack has been published. Though, it is not surpris-
ing that a blind attack with special second order features, such as blockiness
measures and co-occurrence tables, can discriminate between plain carriers and
MB1 stegotexts [7]. But according to the outlook in the initial paper, we soon
expect improved methods also taking into account some second order statistics.
Whereas research clearly goes into this direction, it is somewhat important and
also surprising that MB1 steganography is also vulnerable from the believed safe
side: In the following section, we present a detection method which is completely
based on first order statistics.

4 The use of a de-coder might sound surprising, however, entropy considerations sug-
gest that the length of the symbol stream increases with the skewness of the target
distribution. For all p

(i,j)
k �= 0.5 the amount of symbols and of consumed coefficients

dominates the length of the message bit stream.
5 Matrix encoding in F5 leads to higher efficiencies if the capacity is not fully used.
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Fig. 3. Example DCT histogram with non-conforming bin b
(i,j)
−1 . The divergences in

the carrier between actual frequency and Cauchy-based expected frequencies disappear
after MB1 embedding

3 Detection Method

The main idea of the proposed attack can be summarised as follows: Although
the Cauchy distribution generally fits well to the DCT histograms, there are
outlier bins in natural images. After embedding, these non-conforming bins are
adjusted to the density function of the model distribution.

The construction of an attack can be structured into two steps: First, a test
discriminates non-conforming bins from conforming ones. The test is run on all
independent low precision bins of a particular JPEG image. Second, the count
of positive test results is compared to an empirical threshold value for natural
carrier images. If a questionable image contains less non-conforming bins than
plain carrier images usually have, it is likely that the histograms are smoothed by
the MB1 embedding function and thus, the image is classified as steganogram.

Figure 3 depicts a DCT histogram with a typical outlier in the low precision
bin b−1. The bins b

(i,j)
0 are excluded from embedding, so the respective bars are
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blanked out in the histogram. It is clearly visible that the original frequencies
h−1 and h−2 (left bars of the triples) differ from the expected frequencies (middle
bars). The expected frequencies and the frequencies in the stegotext (right bars)
are fitted to the same level.

The differences can be measured by a contingency test between the observed
frequencies and expected frequencies of both high precision bins represented in
one low precision bin. To calculate the expected frequencies, we model the symbol
output of the arithmetic decoder as a Bernoulli distributed random variable Y (p)
with p = p

(i,j)
k

6. So the high precision histogram bins of stegotexts ĥ(i,j) follow
a Binomial distribution

ĥ
(i,j)
2k−1 ∼ B(b(i,j)

k , p
(i,j)
k ) , and

ĥ
(i,j)
2k ∼ B(b(i,j)

k , 1 − p
(i,j)
k ).

The expected frequencies h̄(i,j) are given by the expected values of B:

h̄
(i,j)
2k−1 = E(B(b(i,j)

k , p
(i,j)
k )) = b

(i,j)
k · p(i,j)

k .

An adversary can compute these values by refitting the model for p
(i,j)
k be-

cause the low precision bins are not altered. Then a contingency table is used
to perform Pearsons’s χ2-test, whether or not individual low precision bins are
conform to the model (see Table 1). The distribution function Q(χ2, df) of the χ2

distribution gives an error probability for the null hypothesis that the contrasted
frequencies are independent. The test will reject the null for non-conforming bins
if p < plim.

Table 1. Contingency test for non-conforming low precision bins

High precision bin

left right
∑

Observed frequencies h
(i,j)
2·k−1 h

(i,j)
2·k b

(i,j)
k

Expected frequencies h̄
(i,j)
2·k−1 h̄

(i,j)
2·k b

(i,j)
k

p = Q(χ2, df = 1)

To explore the average count of non-conforming bins in typical JPEG images,
contingency tests are run on the low precision bins b

(i,j)
1 and b

(i,j)
−1 for 63 DCT

modes of a set of 100 JPEG images (altogether 126 tests per image). These
images were randomly drawn from a large number of digital photographs with the
6 The assumption that the symbol output is drawn from a Bernoulli distribution is a

worst case assumption. Any “better” arithmetic decoding algorithm would – apart
from reducing the entropy – on average fit the stegotext bin sizes closer to the
expected sizes and thus lead to more arbitrable contingency tests.
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resolution 800×600 and a JPEG quality parameter of q = 0.8. Figure 4 contrasts
the results to 100 full capacity stegotexts created from the same carriers. It is
obvious that a threshold of, say, clim = 3 can quite reliably discriminate the two
sets.

At last, two more details of the contingency test are worth to mention: First,
as the test is unreliable for low frequency numbers in any of the cells, tables
with a minimal cell value below 3 are excluded from the evaluation. Second,
the reliability of the test depends on the number of DCT coefficients unequal
to zero. Since this number varies both with the size of the test image and with
the quantisation step size derived from q, the critical probability plim has to
be adjusted to the above mentioned parameters. This method allows an opti-
mal differentiation in terms of low error probabilities α and β of the stegotext
detection.

4 Experimental Results

The reliability of the proposed detection method was assessed using a test
database of about 300 images from a digital camera7. To reduce unwanted in-
fluences or atypical artefacts due to previous JPEG compression [8], all images
were scaled down to a resolution of 800 × 600 pixels and stored as JPEG with
six different quality settings, q = 0.4, 0.5, . . . , 0.9. In all experiments, only the
luminance component of colour images has been regarded. All analyses were
accomplished with the R Project for Statistical Computing [20, 14].
7 Sony Cybershot DSC-F55E, 2.1 mega-pixel.



Breaking Cauchy Model-Based JPEG Steganography 135

To generate comparable histogram sets of plain carrier and steganograms, 63
DCT histograms were extracted from all images. The plain carrier histograms
were transformed to equivalent stegotext histograms by replacing the high pre-
cision bins with random numbers drawn from a Binomial distribution, using
before determined parameters from the model:

ĥ
(i,j)
2k−1 = Rbinom(b(i,j)

k , p
(i,j)
k )

ĥ
(i,j)
2k = b

(i,j)
k − ĥ

(i,j)
2k−1

Furthermore it is obvious that limiting capacity leads to smaller changes in
the histograms and thus shorter messages are less detectable. To estimate this
effect we also varied the capacity usage in 10 levels from full capacity down to
10% for all test images and quality factors. This leads to a set of 1.2M stegotext
DCT histograms (equivalent to 18,120 stegotext images), which were compared
to the same amount of plain carrier histograms. Explorative analyses of suitable
bins for the contingency test revealed that the bins b

(i,j)
−1 and b

(i,j)
1 yielded to

the best results for all DCT modes. So, all other bins were excluded from the
evaluation.

In a first experiment, the proposed attack was run on a subset of this database
with 100% capacity usage and q = 0.8. Here, all images could be correctly
classified with plim = 0.014 (corresp. χ2 = 6, df = 1). The threshold clim = 2
was fixed in all experiments. Attacks on steganograms with lower capacity usage
or lower q cause misclassifications. The number of false positives (α) and misses
(β) depends on the choice of the threshold parameters.

To further explore the relationship between α and β, the attack was repeated
multiple times with different plim ∈ [0.0001, 0.2] 8, and the resulting error rates
were plotted in a receiver operating characteristics (ROC) diagram shown in
Figure 5. Here again, we reached good discriminatory power for capacity usages
higher than 80%, and still acceptable detection rates for capacities above 50%.
Hence, we can state that the MB1 algorithm is broken with first order statistics.

The qualitative interpretation of the shape of ROC curves can be quantified
in an aggregated measure of the reliability of a detection method. Unfortunately,
different quality measures in the literature complicate comparisons between dif-
ferent studies. Some authors argue with the probability (1 − β) for a fixed pro-
portion of false positives, say α = 1 % [17]. Others compare α values for a fixed
detection rate of β = 1 − β = 50 % [15]. In this paper, we follow the third ap-
proach from [7], which reflects both α and β: The detection reliability ρ is defined
as ρ = 2A − 1, where A is the area under the ROC curve. It is normalised, so
that ρ = 0 indicates no discriminatory power at all (i. e., random guessing) and
ρ = 1 stands for a perfect detection.

Table 2 reports the empirical ρ values derived from the test images for dif-
ferent allocations of capacity, and different quantisation factor q. The minimum

8 In fact, varying the underlying χ2 threshold leads to equivalent results since the
(computing intensive) transformation function Q is strictly monotonic decreasing.
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embedding rate that is detectable under the arbitrary definition of ‘reliablility’
stated in [15], namely α = 5 % and β = 50 %, is about 45 % of the capacity of
JPEG images with q = 0.8. Note that these figures reflect average estimations.
The actual detectability is likely to vary for certain carrier images.

5 Discussion and Conclusion

It is important to emphasise that this vulnerability of the MB1 scheme is rather
a problem of the specific model used in the scheme, than a weakness of the
general approach of model-based steganography. Having said this, the successful
attack is still somewhat surprising, because the theoretical considerations given
in the original paper [21, p. 166] suggest that possible vulnerabilities come from
analyses of higher order statistics, which are not reflected in the model. However,
the proposed detection method only uses characteristics of first order statistics,
which were considered as safe.

The remainder of this section addresses three open subjects. First, we point to
limits of the proposed attack and propose future improvements. Then, we discuss
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Table 2. Experimental attacks: Detection reliablility ρ

Capacity Avg. message size JPEG quality q

usage per file size 0.9 0.8 0.7 0.6 0.5 0.4

100 % 13.1 % 1.0000 1.0000 0.9999 1.0000 1.0000 0.9979

90% 11.8 % 1.0000 1.0000 0.9997 1.0000 0.9996 0.9963

80% 10.5 % 0.9989 0.9982 0.9949 0.9970 0.9940 0.9826

70% 9.2 % 0.9890 0.9850 0.9797 0.9777 0.9740 0.9596

60% 7.9 % 0.9593 0.9527 0.9440 0.9322 0.9292 0.9202

50% 6.6 % 0.9012 0.8898 0.8782 0.8615 0.8552 0.8519

40% 5.2 % 0.8057 0.7906 0.7796 0.7624 0.7509 0.7516

30% 3.9 % 0.6576 0.6476 0.6457 0.6185 0.6063 0.6180

20% 2.6 % 0.4568 0.4549 0.4583 0.4295 0.4214 0.4362

10% 1.3 % 0.2289 0.2294 0.2357 0.2160 0.2133 0.2252

The ROC curves for values printed bold-face meet a reliability criterium of
more than 50 % detection rate with less than 5% false positives.

possible countermeasures to prevent this attack, before we finally conclude with
more general implications for the design of new and better embedding functions.

This attack is considered as proof of concept and as first step towards more
precise attacks. It has been mainly driven by the feeling that an embedding
algorithm offering a payload capacity of about 13% of the transferred data is
very likely to be detectable with a targeted attack. Similar to the evolution
of attacks against LSB steganography after the publication of [26], we expect
that this existential break will lead to far better attacks, which shall be able to
estimate the hidden message length and thus will even detect tiny messages.

A possible extension to this attack can be the anticipation of common image
processing steps. As the experiments were run on a limited set of test images
directly loaded from a digital camera, we cannot generalise our results to all
kind of carrier data. At first, computer generated images may have different
characteristics than natural images. This is a reason why the literature suggests
that this type of carrier should be avoided for steganography [18]. Even though,
natural images are often subject to image manipulation. It is likely that some
of these algorithms, e. g. blurring, also result in smoother DCT histograms. The
challenge to detect these manipulations in advance and thus reduce the number
of false positives, or even to distinguish between “white collar” image processing
and “black hat” Cauchy-based steganography, is subject to further research.

Thinking about possible countermeasures, the ad hoc solution is as old as
digital steganography, namely a reduction in capacity usage. Nevertheless it is
an interesting research question, how this limitation can be optimally accom-
plished for model-based steganography. Whereas the conditional distributions
for individual bins depend on the deterministic part Xdet, a careful selection of
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the skipped bins or coefficients may lead to a far better ratio between security
and capacity, than random selection. A similar approach is described in [6]. This
method exactly preserves the low precision bins without a model – albeit in
the spatial domain of losslessly compressed images, and in a less optimal man-
ner. Therefore it is not vulnerable to attacks on first order statistics, but still
detectable due to other flaws [2].

Refining the model could be another promising countermeasure. As a rather
fussy preservation of the properties of the actual carrier is often superfluous and
also complicates the embedding function, we could imagine to model a certain
amount of non-conforming bins, and to randomly intersperse the stegotext with
outliers.

Despite the specific obstacles of MB1, the model-based approach offers a
promising framework for the design of adaptive steganographic algorithms. The
clear link between information theoretic considerations and the design of actual
algorithms contributes to structure the research area. A generalisation from the
concrete vulnerabilities suggests two implications for the design of more secure
embedding functions.

First, it is dangerous to give up the information superiority of the colluding
communication partners. The described attack on MB1 is successful, because an
adversary can re-compute the model parameters. If the adversary had no access
to the Cauchy distribution, she would not be able to compute the expected fre-
quencies. Hence, future algorithms should either consider to make the parameter
retrieval key dependant, or perform an embedding operation which does not re-
quire the receiver to know the exact model. The recently developed wet paper
codes [13] seem to be a promising technique to tackle this problem.

Second, the reliability of statistical attacks increases with the amount of ob-
servations. Although MB1 already computes distinct models for each of the 63
usable DCT modes, an even more detailed segmentation of individually mod-
elled – and maybe even locally correlated – statistics breaks the steganalyst’s
advantage of large numbers. Apart from including second order dependencies
into the models, the challenge to harden future algorithms against the here dis-
cussed weaknesses can be accomplished by modelling the carrier medium with a
multiple of key dependent models.

To conclude, as it is common sense that the ultimate and provable secure
model cannot exist [1, 21, 29], the core contribution of this paper is pointing
out that future models should reflect the particularities that made this attack
successful.
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140 Rainer Böhme and Andreas Westfeld

18. Petitcolas, F.A.P., Anderson, R. J., Kuhn, M.G.: Information Hiding – A Survey.
Proceedings of the IEEE 87 (1999) 1062–1078

19. Provos, N.: OutGuess – Universal Steganography (2001)
http://www.outguess.org/

20. The R Project for Statistical Computing, http://www.r-project.org/.
21. Sallee, P.: Model-Based Steganography. In: Kalker, T., et al. (eds.): International

Workshop on Digital Watermarking, LNCS 2939, Springer-Verlag, Berlin Heidel-
berg (2004) 154–167

22. Upham, D: Jsteg (1993)
http://ftp.funet.fi/pub/crypt/cypherpunks/applications/jsteg/

23. Wayner, P.: Mimic Functions. Cryptologia 16 (1992) 193–214
24. Westfeld, A.: F5 – A Steganographic Algorithm. High Capacity Despite Better

Steganalysis. In: Moskowitz, I. S. (ed.): Information Hiding. Fourth International
Workshop, LNCS 2137, Springer-Verlag, Berlin Heidelberg (2001) 289–302

25. Westfeld, A.: Detecting Low Embedding Rates. In: Petitcolas, F. A.P. (ed.): Infor-
mation Hiding. Fifth International Workshop, LNCS 2578, Springer-Verlag, Berlin
Heidelberg (2003) 324–339

26. Westfeld, A., Pfitzmann, A.: Attacks on Steganographic Systems. In: Pfitzmann,
A. (ed.): Information Hiding. Third International Workshop, LNCS 1768, Springer-
Verlag, Berlin Heidelberg (2000) 61–76

27. Witten, I. H., Neal, R., M., Cleary, J. G.: Arithmetic Coding for Data Compression.
Communications of the ACM 20 (1987) 520–540

28. Zhang, X., Wang, S., Zhang, K.: Steganography with Least Histogram Abnormal-
ity. In: Gorodetsky et al. (eds.): MMM-ACNS 2003, LNCS 2776, Springer-Verlag,
Berlin Heidelberg (2003) 395–406
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