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Abstract. In linear discriminant (LD) analysis high sample size/feature ratio is 
desirable. The linear programming procedure (LP) for LD identification handles 
the curse of dimensionality through simultaneous minimization of the L1 norm 
of the classification errors and the LD weights. The sparseness of the solution – 
the fraction of features retained - can be controlled by a parameter in the objec-
tive function. By qualitatively analyzing the objective function and the con-
straints of the problem, we show why sparseness arises. In a sparse solution, 
large values of the LD weight vector reveal those individual features most im-
portant for the decision boundary.  

1   Introduction 

In a high-dimensionality / small sample size scenario, many linear classification rules 
are possible. When the sample to feature ratio (SFR) is low, we face the problem of 
overfitting - many perfect classification rules for the training data and poor generali-
zation on the test data.  Achieving the proper ratio between number of features and 
available sample size is of great interest [1],[17]. Conventional dimensionality reduc-
tion techniques [2], [3] are not very useful if retaining the original feature positions is 
important. For high-dimensional situations, methods producing sparse solutions are in 
demand. Sparse means that only a few solution coefficients have large values. The 
linear programming (LP) technique of identifying a linear discriminant function be-
longs to the category of methods producing sparse solutions. Its usefulness in feature 
selection has been demonstrated [4]. There are case studies showing the potential of 
the technique in microarray analysis [5] and in face recognition [6]. This LP tech-
nique is a variant of linear support vector machine (SVM), the only difference being 
in the objective function. Selecting the value of a parameter in the objective function 
will force sparseness on the linear discriminant solutions of LP. The sparseness of the 
solution depends on the geometrical configuration of the data points. Although there 
exist studies on SVM via linear programming [8] and [7] there is a lack of systematic 
analysis on how the sparse solution is obtained, and what factors govern the sparse-
ness. A deeper insight is also missing concerning the characteristics properties of the 
features the sparse solution identifies. Our analysis concerns the objective function of 
the LP formulation for linear discriminant and constraints imposed by the dataset. In 
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the following, variables denoting vectors will be bold. We consider a 2-class classifi-
cation problem. Our dataset consists of the vectors Xi ∈x having compo-

nents ],...,,[ 21 p
iiii xxx=x , labeled by { }1,1 −+∈iy , where

21,...,1 NNi += are the 

number of samples in the classes and p  is data dimensionality. Our problem is to 

find a linear discriminant function classifying the samples into one of the two classes 
ω1, ω2: 
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We may formulate this problem as a system of linear equations: 

yXw = . (2) 

If there are more equations than unknowns, then (2) represents a system of over de-
termined equations. We may obtain the solution for the weight vector by least squares 
or by minimizing the total absolute error [10]. When there are more unknowns (fea-
tures) than equations, the system (2) is underdetermined and has many solutions.  

During the last decade, SVM or maximal margin classifiers were used extensively. 
This learning algorithm is not parametric and implements an approximation of the 
unknown functional relationship between training data and class label/target. The 
unknown discriminant weight vector is found by optimizing a functional derived in 
learning theory [11], [12]:   

LpLp
CGJ ww **)( += , (3) 

where Lp denotes the p-norm, w is the vector of the weights of the linear discriminant 

to be found, is the vector of errors between the actual output and the desired output:  

yXw −= . The choice of norm and the values of the constants in (3) span a range of 

criteria for regression and classification problems [12], [13] and [14]. Different crite-
ria implement different methods to get the solution. Some instances of the criterion 
function with different choices of norm and parameter values are summarized in Ta-
ble 1. The criterion for LD identification by the linear programming technique pro-
ducing sparse solution is: 

11
*)(

LL
CJ ww += . (4) 

Two terms are minimized: the total absolute error and the sum of the components of 
the linear discriminant. The constraints are the same as for SVM in the linearly not 
separable case, and are given by (5). For some values C > Cmax, we get the maximal 
margin classifier, identical to linear SVM.  If the value of C is in the interval 0 <C < 
Cmax, then we get a sparse solution for the weight vector. For different datasets, the 
value of Cmax is different. Our goal is to show how C influences the objective function 
and why small values of C lead to sparse solutions. 
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Table 1. Criteria and solution methods spanned by different norms and values of the parame-
ters in the objective function (3). When G>0  the function (3) is studied in [16]. 

Values of the parameters  
Norm G = 1, C >  Cmax  G= 0, C = 1 G = 1, 0 < C < Cmax 

L1 SVM, Linear 
programming 
method 

Minimization of  

yXw − . 

Least absolute error problem, 
usually solved by LP method. 

Sparse solutions for linear discrimi-
nant function. Implements SVM by 
Linear programming method. The 
value of C, controlling sparseness, 
depends on dataset configuration. C 
is the upper bound on variables in 
the dual problem. 

L2 
SVM, Quadratic 
programming 
method 

Minimization of  

( ) ( )yXwyXw T −− . 

Least Squares problem.  

Sparse solutions for linear discrimi-
nant function. Implements SVM by 
Quadratic programming method. C 
is the upper bound of Lagrange 
multipliers. 

2   Analysis of the Constraints and Objective Function 

2.1   Formulation of the Problem for the General Linear Program Solver 

The optimal solution minimizing (4) is usually obtained by using general linear pro-
gram solvers [8]. SVM imposes the constraints onto the separating hyperplane. It has 
to be at the desired distance from the training points and have maximal margin with 
respect to vectors of the opposite classes [9]: 

( ) 210
1

1 ,...,1,0,1... NNiwxwxwy ii
p
ipii +=≥−≥+++ ξξ . (5) 

The inequalities in (5) define the region of feasible solutions for (4). For an arbitrary 

hyper plane, the actual distance of the points ix from it is: 
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The desired distance imposed by the constraints is not less than ∆ : 

2

1
w

=∆ . (7) 

The quantities iξ in (5) are proportional to the differences between the desired and 

actual distances: 

ii
i dy−∆=

2
w
ξ

. (8) 

The value of i shows the position of the data point with respect to the separating 

hyperplane: i = 0 means that the data point is exactly at distance ∆ from the sepa-
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rating hyperplane, i < 0 means that the data point is correctly classified, i > 0 

means that the data point is misclassified or closer to the hyper plane than ∆ . Mini-
mizing the second term in (4) means minimizing the empirical risk/classification 
errors. The constraint i � 0 in (5) restricts the feasible region of the weights of linear 
discriminant vector w to the region where classification errors occur or where the 
data point is closer than the desired distance. In order to present the minimization 
problem in a form suitable for a general linear program solver, the variables in the 
objective function should be positive. Thus, each weight component variable is mod-
eled as a difference of two non-negative variables, as is common in linear program-
ming [15], page 32: 

jjj vuw −= , (9) 

and the absolute value of the weight is: 

jjj vuw +=|| . (10) 

The pair 
jj vu , satisfying (9) and (10) is unique. Only three choices are possible 

simultaneously satisfying (9) and (10): 1) 00 == jj vu , 2) 00 ≠= jj vu  and 

3) 00 =≠ jj vu . The constraints (5) now are: 
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and 

21,,...,1,,...,0,0,0,0 NNNNiPjvu ijj +===≥≥≥ ξ . (12) 

The objective function (4) is transformed to: 
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)()( ξv,u, . (13) 

We need to find: 

)(minarg)( v,u,,v,u *** J= . (14) 

One basic feasible solution of (13) subject to (11) and (12) is 10,v0,u ===  not 

useful for classification. In (13) the empirical risk is minimized, thus only non-
negative i are considered and the modulus of i in (4) is equivalent to a positive i 

in (13). If the exact objective function (4) is minimized, then each i should be mod-
eled by two positive variables as were the components of linear discriminant w  in 
(9) and (10). More details on the SVM formulations with different norms can be 
found in [7]. The slacks in (11) are decoupled from the weights of the linear discrimi-
nant, although, strictly speaking, slacks and weights depend on each other.  
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2.2   What Is the Origin of  the Sparseness? 

The sparseness of the optimal solutions (13) subject to (11) and (12) depends on the 
value of C. In available SVM software, this parameter is set to the default value, or is 
determined by cross validation [16]. To discover the origin of sparseness, we analyze 
qualitatively the dependence of the shape of the objective function (4) on the parame-
ter C. With real instances of the weight vector and a given set of data points, the slack 
variables equal to the deviations from the target: 

( )0
1

1 ...1 wxwxwy p
ipiii +++−=ξ . (15) 

Substituting (15) directly into (4), we express (4) as a function: 
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The function (16) has two parts: 

)(*)()( 00 wACRwJ w,ww, += , (17) 

R is called a regularizer and A is the empirical risk or penalty and loss in [16]. The 
objective function (16) is piecewise linear. Convex piecewise linear functions of the 
type (16) are analyzed in depth in [15]. In a constrained optimization problem, the 
optimal solutions for the objective function lie in the feasible region defined by the 
constraints. Here this region is fixed and determined by the data points as defined by 
(5). The objective function is controlled by the values of C leading to the different 
optimal solutions. When C is large, the term A dominates in the objective function. 
When C is small, the term R dominates in the objective function. When C is ap-
proaching zero, the objective function becomes flat and balanced. The minimum 
point of function (16) is forced to approach the zero origin point by small C. This 
narrows the set of possible optimal solutions to the points of feasible region lying 
near the origin. We illustrate this statement graphically by using a one-dimensional 
example. It is depicted in Figure 1. In higher dimensions, visualization of the con-
cepts becomes intractable. Let the data consist of three points: (x1=0.5, y1=1), (x2=           

-2, y2=-1) and (x3=5, y3=-1). Let 00 =w  in the example. The linear discriminant 

w  in the example is a scalar. The function (16) with these values is: 

|)51|215.01()( wwwCwwJ ++−+−+= . (18) 

It is a sum of convex functions and is convex itself. The coefficients 0.5, 2 and 5 
can be interpreted as the influence of the data on the objective function. Higher values 
of the data-dependent coefficients increase the slopes of the components of the objec-
tive function and dominate the total sum. The constraints are:  

.0,51

,0,21

,0,5.01
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The functions e1(w)=1-0.5w, e2(w)=1-2w and e3(w)=1+5w for a given dataset repre-
sent the functional relationship (8) for all values of  linear discriminant w . The inter-
val of w  values, satisfying all (19) constraints (feasible region, which does not 
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change) is [ ]5.02.0−∈w . However the shape of the objective function is deter-
mined by C. In Fig.1 we illustrate the difference of the objective functions J1(w), 
J2(w) and J3(w) given in (18) corresponding to different values of C: C=0.2, C=1.5 
and C=5. Function J1(w) attains its minimum at the point 0=w  ( sparse solution), 
which is forced by the C=0.2.  

 

 

Fig. 1. The influence of the parameter C on the objective function. Solid lines represent the 
objective functions J1(w), J2(w) and J3(w) of (18)  for different values of C: C=0.2, C=1.5 and 
C=5. The feasible region is shown by dotted lines. The functions e1(w), e2(w) and e3(w) are 
represented by dashed lines.  

The simple one-dimensional example illustrates the effect of small values of C on 
the objective function of the form (4). In the high-dimensional case, many data points 
form a complicated convex surface for the feasible region. The objective function of 
form (4) is a superposition of hyperplanes defined by constraints plus a regularization 
term. When C approaches zero, the objective function is flattened. The minimum 
value of this function is forced to lie near the coordinate origin. Since all variables in 
the minimization problem (13) subject to (11) and (12) are constrained to be non-
negative, the feasible region is restricted to the positive half of the high-dimensional 
space where minimization takes place. For C approaching zero, the optimal solutions 
of (13) will be at the points where the hyperplane of the objective function encounters 
the borders of the positive half of coordinate space. The level of sparseness depends 
on the dataset, determining the orientations of the constraints. 

If we take the expression of i in (15) and substitute it into (13), then express the 
components of the weight vector w  through u and v using (9) and (10) and rear-
range the terms, we express (13) as a linear combination of the components of the 
vectors u and v : 



Control of Sparseness for Feature Selection      713 

CNyCvuCkvCkuvuJ
N

i
i

p

j
jj

p

j
jj +−−++−= ∑∑∑

=== 1
00

11
001 )()1()1(),( v,u, . (20) 

The term  
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is the data-dependent term. In expression (20) coefficients (1-Ckj) , (1+Ckj)  j =1…p, 
represent the coordinates of the normal vector of the hyper plane of the objective 
function (20) which is equivalent to (13). They determine the direction in which the 
function decreases. For the positive coordinates of a normal vector, the decreasing 
direction of the objective function hyperplane is towards the origin. As C vanishes, 
more coefficients become positive, depending on the term (21). C should be 

||/1 jkC <  in order to set the corresponding normal coefficient positive. If all normal 

coefficients are positive, the optimal minimum value of (20) is zero 0v0,u == . 
The analysis of (20) reveals how sparse solutions evolve and the type of influence the 
data has on the solutions. Noting that the empirical mean of the observations is: 
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For (21) we have: 

21 ˆˆ 21
ωω
jjj mNmNk −= . (23) 

The data term kj is the difference between the weighted centroids of the two classes. 
(20) and (23) show that the last retained non-zero component of the sparse solution 
corresponds to the feature that has the largest distance between the centroids of the 
two classes.  

3   Classification Example 

We illustrate the geometrical property of the sparse solution induced by small C on a 
simple artificial example of linearly separable data. In order to compare with other 
methods, we present several decision boundaries obtained by LP with different values 
of C and linear SVM, least squares presented in Fig 2. Sparse solutions of the weight 
vector have zero components. The interpretation of zero components is that they iden-
tify unimportant features. “Unimportance” means that individual features, 
corresponding to zero components of the linear discriminant, do not contribute to the 
decision boundary. The geometrical property of unimportant features is that their 
centroids for the two classes are closer than those of the important features.  

4   Conclusions 

We presented the analysis of a particular example of the objective function used in the 
LP method for identification of a linear discriminant. Our analysis is qualitative, aim-
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ing at a better understanding of the relationships between data, constraints and shape 
of the objective function. We show that we can control the sparseness of the solution 
by the parameter C. Small values of C induce sparseness, making the objective func-
tion flat and moving its extreme points towards zero. The solutions of the weight 
vector are affected by the changes in the objective function. The practical effect is 
that for individual features, with centroids for the two classes close (in the Euclidean 
sense),  the corresponding components of the weight vector are very small. In the high 
dimension/small sample scenario, the method is useful for finding subsets of individ-
ual features that contribute to the class separation.  However, the value of the sparse-
ness-controlling parameter C for different sets must be identified experimentally. We 
are currently investigating the impact of the parameter C on the solution of the L1 
norm classification problem in real life applications of high-dimensional biomedical 
spectra. 
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