
Optimizing Cache Access:
A Tool for Source-to-Source Transformations

and Real-Life Compiler Tests

Ralph Müller-Pfefferkorn, Wolfgang E. Nagel, and Bernd Trenkler

Center for High Performance Computing (ZHR)
Dresden University of Technology

D-01062 Dresden, Germany
{mueller-pfefferkorn,nagel,trenkler}@zhr.tu-dresden.de

Abstract. Loop transformations are well known to be a very useful tool
for performance improvements by optimizing cache access. Nevertheless,
the automatic application is a complex and challenging task especially for
parallel codes. Since the end of the 1980’s it has been promised by most
compiler vendors that these features will be implemented - in the next
release. We tested current FORTRAN90 compilers (on IBM, Intel and
SGI hardware) for their capabilities in this field. This paper shows the
results of our analysis. Motivated by this experience we have developed
the optimization environment Goofi to assist programmers in applying
loop transformations to their code thus gaining better performance for
parallel codes even today.

1 Introduction

Usually, a developer focuses on implementing a correct program which solves
the problem underneath. Applications which do not take into account the cache
hierarchy of modern microprocessors, most times achieve only a small fraction of
the theoretical peak performance. Tuning a program for better cache utilization
has become an expensive and time consuming part of the development cycle.

The EP-CACHE project1 [1, 2] is developing new methods and tools to im-
prove the analysis and the optimization of programs for cache architectures.
The work presented here is part of this research activity and focuses on the
optimization of the source code.

One way to optimize the cache usage of applications are source-to-source
transformations of loops. There are a number of transformations known that
improve data locality and therefore the reuse of the data in the cache, like loop
interchange, blocking, unrolling etc. (see Fig. 1).

Modern compilers claim to use loop transformations in code optimization.
We have tested three FORTRAN90 compilers (Intel ifc 7.1 [3], SGI MIPSpro 7.3
[4], and IBM xlf for AIX V8.1.1 [5]) for loop transformations. On one hand, an
1 Funded by the German Federal Ministry of Education and Research (BMBF) under

contract 01IRB04.

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 72–81, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Optimizing Cache Access 73

(a) (b)

Fig. 1. Visualization of the measured L1 misses per load instruction as a function of
time in Vampir [6] of a nested loop (a) before and (b) after the “unrolling” transfor-
mation.

example program was compiled with optimizations switched on. On the other
hand, the example source code was optimized manually. In Sect. 2 the tests and
their results are outlined in more detail.

Restructuring source code (e.g. applying loop transformations) by hand is
a complicated and error-prone task. Therefore, we developed a tool to assist
developers in optimizing their FORTRAN applications: loop transformations
are done automatically on user request. Sect. 3 gives and overview of this tool.
Finally, in Sect. 4 our future work and intentions are pointed out.

2 Current Compilers and Their Optimization Capabilities

2.1 Compiler Tests

In order to test the optimization capabilities of current compilers in terms of
cache access, we compared the code generated by compilers with code optimized
by hand. An example program was written in Fortran, which solves a system of
linear equations based on the Gaussian algorithm. Step by step the original code
of the algorithm was optimized manually and executed, both sequential and in
parallel. OpenMP was used for the realization of the parallel processing.

The original source code did not utilize any optimizations. The elements
of the coefficient matrix are accessed line by line. As this is contrary to the
internal storage order of the matrix elements, a large number of cache-misses
are produced. In the compilation process the maximum optimization level (-O5
for IBM’s xlf, -O3 for the other compilers) was used with all tested compilers.

A first manual optimization was realized by implementing a loop interchange.
This adapts the data access to the storage order on FORTRAN, increasing tem-
poral locality in the cache and therefore decreasing the cache miss rate.

Further optimizations were tested, both for the sequential and parallel case.
The following changes were applied: loop fission; replacing of multiple divisions
with one division and multiple multiplications; loading of loop invariant matrix
and vector elements into temporary variables; use of different names for loop
indices.



74 R. Müller-Pfefferkorn, W.E. Nagel, and B. Trenkler

2.2 Results

Figure 2 shows the results on SGI Origin 3800 with MIPS R12000 processors
(400 MHz) using the MIPSpro 7.3 compiler. With optimizations switched on,
the compiler recognizes the cache access problems and optimizes the sequential
code (“sequential: -O3” in Fig. 2). Further manual transformations provide only
very few improvements in the runtime of the sequential code (“sequential: loop
interchange” and “sequential: additional optimizations”).

The parallel programs are not optimized by the compiler automatically (“4
threads: -O3”). This can be concluded from the fact, that the manually optimized
code yields much better runtimes (“4 threads: loop interchange” and “4 threads:
additional optimizations”). The runtime even increases in parallel mode without
manual changes compared to the sequential case, which is probably caused by
the very good optimization results of the sequential code.

matrix size
0 200 400 600 800 1000 1200 1400 1600

ru
n

 t
im

e 
[s

]

0

10

20

30

40

50

60

SGI MIPSpro 7.3 FORTRAN compiler, SGI Origin 3800

sequential: -O3

sequential: loop interchange

sequential: additional optimizations

4 threads: -O3

4 threads: loop interchange

4 threads: additional optimizations

Fig. 2. Runtime as function of the matrix dimension on the SGI Origin 3800 with the
MIPSpro 7.3 FORTRAN compiler.

In Figs. 3 and 4 the results of the measurements on Fujitsu Siemens Celsius
670 and IBM Regatta p690 are illustrated. The Celsius machine consists of two
Intel Xeon 2.8 GHz processors running in hyperthreading mode (thus having
only 4 logical CPUs in contrast to the other machines with 4 physical CPUs). As
compiler Intel’s ifc Version 7.1 was used. On the Regatta with its Power4 1.7GHz
processors, the code was compiled with IBM’s xlf FORTRAN compiler for AIX
V8.1.1. For either compiler and both in sequential and parallel processing the
findings are similar: the improvement in runtime due to manual optimizations
is significant and larger than on the SGI Origin. The speedup is in the order of
about 10. In contrast to the MIPSpro7 compiler on the Origin, the appliance of
the additional optimizations does not result in any improvement. This implies,
that comparable optimizations were already done by the compilers.



Optimizing Cache Access 75

matrix size
0 200 400 600 800 1000 1200 1400 1600

ru
n

 t
im

e 
[s

]

0

20

40

60

80

100

120

140

160

180

200

Intel ifc 7.1 FORTRAN compiler, Celsius Intel P4, 2 physical, 4 logical CPUs

sequential: -O3

sequential: loop interchange

sequential: additional optimizations

4 threads, 2 CPUs: -O3

4 threads, 2 CPUs: loop interchange

4 threads, 2 CPUs: additional optimizations

Fig. 3. Runtime as function of the matrix dimension on a Fujitsu Siemens Celsius 670 (2
CPUs in hyperthreading mode) with Intel’s FORTRAN compiler 7.1; the measurement
curves of the two manually optimized parallel codes and of the code with additional
optimizations are on top of each other.

As an example the runtimes for a matrix size of 1600 are listed in Table 1.

Table 1. Runtime in seconds for all tested compilers and cases (matrix size: 1600)
Remark: In the parallel case the Intel machine uses Hyperthreading mode. This means
that the 4 threads run on 2 physical CPUs only.

SGI Intel IBM
MIPSpro 7.3 ifc 7.1 xlf V8.1.1

sequential
-03 35.8 190.5 82.4
loop interchange 34.5 19.9 8.7
additional optimizations 31.2 11.4 7.8

parallel, 4 threads
-03 62.4 125.7 28.5
loop interchange 16.7 11.2 2.6
additional optimizations 6.4 11.2 3.0

2.3 First Summary

Our measurements demonstrate, that the capabilities of the three tested FOR-
TRAN compilers to optimize cache behaviour vary. Only MIPSpro7 is able to
automatically optimize sequential code in such a way, that the resulting speedup
is comparable with a manual optimization.



76 R. Müller-Pfefferkorn, W.E. Nagel, and B. Trenkler

matrix size
0 200 400 600 800 1000 1200 1400 1600

ru
n

 t
im

e 
[s

]

0

10

20

30

40

50

60

70

80

IBM xlf V8.1.1 FORTRAN compiler, IBM Regatta Power4

sequential: -O3

sequential: loop interchange

sequential: additional optimizations

4 threads: -O3

4 threads: loop interchange

4 threads: additional optimizations

Fig. 4. Runtime as function of the matrix dimension on a IBM Regatta p690 system
with IBM’s xlf for AIX FORTRAN V8.1.1 compiler; the measurement curves of the
two manually optimized parallel codes are on top of each other.

In the case of parallel OpenMP processing, none of the compilers can im-
prove the original source code. Currently, the only way to improve cache access
problems in FORTRAN programs seem to be the manual optimizations like loop
transformations.

3 Assisting the Developer: Goofi

3.1 Goals

There are three drawbacks in a manual optimization of source code: it is time
consuming, error-prone and can become quite complicated. Therefore, we de-
veloped the tool Goofi (Graphical Optimization Of Fortran Implementations)
to support cache optimizations for FORTRAN applications. The goals are to
provide the user with

• a graphical interface,
• an easy way to request and specify transformations,
• automatic transformations by one mouse click and
• the possibility to easily compare original and transformed source code.

3.2 Doing Loop Transformations with Goofi

Making loop transformations with Goofi is done in two steps: Insert one or a chain
of transformation request directives (called “trafo directives”) and secondly, ask
Goofi to carry out the transformations. A “trafo directive” is composed of the



Optimizing Cache Access 77

name of the transformation requested and their parameters. It is inserted as a
FORTRAN comment beginning with a special character sequence. This allows
the user to save the directives with the source code for later reuse without
interfering with compilation.

The following directive e.g. requests a blocking of size 8 of the loop imme-
diately following the directive (I loop) with the loop nested one level below (J
loop):

!TRA$ BLOCKING 8 1
DO I=1,N
DO J=1,N

=⇒

DO I_1=1,N,8
I_UPPER_1 = N
DO J_1=1,N,8
J_UPPER_1 = N
DO I=I_1,MIN(I_1+7,I_UPPER_1),1
DO J=J_1,MIN(J_1+7,J_UPPER_1),1

It is also possible to specify a chain of directives at once like “normalize a loop
and then merge it with another one”.

Directives can be inserted either by hand or in a more comfortable way by
using Goofi. For the latter, the user loads the FORTRAN file he/she wants to
optimize into the Goofi environment. The original source code will appear on
the left side of a window splitted into two parts (see Fig. 5). Now, the user can
simply insert directives by right clicking into the source code at the places where
he/she wants to apply them. After selecting a special transformation, a popup
window will appear, where the transformation parameters can be filled in or
adjusted.

Finally, the user requests Goofi to do the transformations either by a button
click or by a selection from a menu. The resulting transformed source file will
show up in the right window of the split screen, making direct visual comparison
easily possible. It is also possible to edit the source code directly in Goofi, which
is supported by syntax highlighting.

Currently, the following loop transformations are implemented:

– optimizing loop transformations
• Index Set Splitting: split a loop into several loops
• Fission/Distribution: split a loop into several loops distributing the loop

body → increase temporal locality by reusing cached data that were
overwritten before

• Fusion: merge two loops → increase temporal locality by reusing data
distributed in several loops before

• Interchange: exchange two nested loops → increases temporal locality
• Blocking: decompose loops over arrays into blocks → improves cache line

usage and data locality
• Unrolling: replicate the body of a loop → minimizes loop overhead and

increases register locality
• Outer Loop Unrolling: replicate the body of a outer loop in a loop nest
→ minimizes loop overhead and increases register locality



78 R. Müller-Pfefferkorn, W.E. Nagel, and B. Trenkler

Fig. 5. Screenshot of Goofi with original and transformed source files and the trans-
formation selection window.

– preparing loop transformations
• Normalization: bring the loop in the normalized form
• Reversal: reverse the iteration order

The last group of transformations does not directly improve cache utiliza-
tion. However, it can be used to prepare loops for further transformations. E.g.
sometimes a loop can be fused with another one after the normalization step
only.

When using OpenMP, Goofi is capable to take into account changes needed
in OpenMP contructs that are affected by a transformation. As an example, the
change of the variable in the “private” clause of the outer parallized loop after
an interchange transformation can be mentioned.

Applying transformations can improve the runtime behaviour of applications
as cache access due to a prior cache miss is costly. Though Goofi is not directly
aimed to provide improvements especially for parallel codes the above statement
is true both for sequential and parallel applications. A distributed loop still
experiences pretty much the same problems, bottlenecks or advantages in the
cache behaviour as a sequential one.

3.3 Basics of Goofi

Goofi is based on a client-server architecture (see Fig. 6). The clients graphi-
cal user interface is written in Java to make it portable to different computing



Optimizing Cache Access 79

GOOFI
Java-Client

insert directives

TRAFO
C++, Server
syntax tree

sockets

ADAPTOR
parsing, syntax check,
loop transformations

FORTRAN90
source code

Client machine Server machine

Fig. 6. Basic architectural principles of Goofi. The client is just a user interface, the
server analyses the FORTRAN code and applies the transformations.

platforms. This allows to bring the tool to the users source code on the plat-
form the code runs on. Goofi is dynamically configurable with XML-files. This
includes the GUI (like menu structures) and the language preferences. Currently,
the english and german language preferences are implemented. There is a strict
separation between the server and the client regarding their knowledge on FOR-
TRAN. The client is only the GUI and editor sending the FORTRAN source
code to the server for analysis and transformation. Server and client communi-
cate via sockets and use their own protocol. The server is implemented in C++
and C using the front end of the ADAPTOR [7] compilation system to analyse
the FORTRAN code. After scanning and parsing the source code, definition and
syntax check, a syntax tree is constructed (see Fig. 7). The “trafo directives”
requested by the user are inserted into this tree. The transformations are done
on the tree first. This includes restructuring the loops and statements (e.g. in
an interchange transformation) or inserting new syntax elements (e.g. new lines
with upcounted indices in an unrolling transformation). Finally, the transformed
source code is generated by unparsing the tree and is sent back to the client.

Additional care has to be taken if there are dependencies in the code. For
the syntax analysis, all elements (variables, functions etc.) have to be known. In
FORTRAN, there are two possibilities to introduce such dependencies: include
files and the use of modules. Dependencies due to include-files are resolved by
simply inserting the include-files during parsing. Thus, in the client the user has
to specify the directories where Goofi can look for them. Then, they have to be
sent to the server.

For the usage of modules their syntax trees have to be created before opening
files depending on such a module. These syntax trees are saved in files on the
server side. If a “USE” statement appears the server can load the syntax tree
from file. On the client side, the user only has to specify the directories containing
the source code of the modules. By one further click the modules are transfered
to the server and their syntax trees are created.



80 R. Müller-Pfefferkorn, W.E. Nagel, and B. Trenkler

Elem = ACF_DO

Line = 10

DO_ID = LOOP_VAR

LOOP_VARNAME = VAR_OBJ

Pos = 10

Ident = I

DO_RANGE = SLICE_EXP

FIRST = CONST_EXP

C = INT_CONSTANT

value = 1

kind = 4

STOP = VAR_EXP

V = USED_VAR

VARNAME = VAR_OBJ

Pos = 10

Ident = N

INC = ...

DO_BODY = ...

TRANSFO = TINTERCHANGE_STMT

depth = 1

...

Fig. 7. Example of the syntax tree of a DO-loop. The TRANSFO element marks the
transformation to be performed on this loop.

4 Future Work

Our next steps are to evaluate and validate the performance improvements pos-
sible with Goofi on large applications. Two representative parallel simulation
applications will be used: the local model of the DWD (Deutscher Wetterdienst,
German National Meteorological Service) and the geophysical package GeoFEM
of RIST, Tokio.

Having a tool like Goofi to assist a developer in applying optimizations is
just one part in an optimization process, actually it is even the second step. The
first major part is the identification and the understanding of bottlenecks in a
program due to cache access problems. General information about cache misses
are not very useful, as they give the user only the information that something
goes wrong, but not where and why.

The EP-CACHE project [2] is also intended to overcome this problem. We
are working on the exploration of hardware monitoring and monitor control
techniques (TU München, [8–10]) that can help the user to gain more precise and
detailed information about the cache behaviour of a program. Combined with
the useful performance visualization VAMPIR [6,11,12] and further optimization
tools (SCAI Fraunhofer Gesellschaft, Sankt Augustin) the user will be enabled
to easily speedup his or her application.



Optimizing Cache Access 81

Acknowledgement

First of all, we want to thank Thomas Brandes (SCAI Fraunhofer Gesellschaft,
St. Augustin) for providing the compiler tool ADAPTOR and for all his help. We
thank the students of the Java practical 2002 at the TU Dresden for their initial
work. By providing access to their IBM p690 (JUMP) the John-von-Neuman
Institute at the Research Center Juelich made a part of the measurements pos-
sible.

References

1. EP-CACHE: Tools for Efficient Parallel Programming of Cache Architectures.
WWW Documentation (2002) http://www.scai.fhg.de/292.0.html?&L=1.

2. Brandes, T., et al.: Werkzeuge für die effiziente parallele Programmierung von
Cache-Architekturen. In: 19.PARS-Workshop, Basel (2003)

3. Intel Corporation: Intel r©Fortran Compiler for Linux Systems. (2003)
4. Silicon Graphics Inc.: MIPSpro Fortran 90. (2003)
5. IBM: XL Fortran for AIX V8.1.1. (2003)
6. Brunst, H., Nagel, W.E., Hoppe, H.C.: Group Based Performance Analysis for

Multithreaded SMP Cluster Applications. In: Proceedings of Euro-Par2001. Vol-
ume 2150 of Lecture Notes in Computer Science., Manchester, UK, Springer-Verlag
Berlin Heidelberg New York (2001) 148ff

7. Brandes, T.: ADAPTOR - High Performance Fortran Compilation System. In-
stitute for Algorithms and Scientific Computing (SCAI FhG), Sankt Augustin.
(2000) http://www.scai.fhg.de/index.php?id=291&L=1.

8. Schulz, M., Tao, J., Jeitner, J., Karl, W.: A Proposal for a New Hardware Cache
Monitoring Architecture. In: Proceedings of the ACM/SIGPLAN workshop on
Memory System Performance, Berlin, Germany (2002) 76–85

9. Tao, J., Karl, W., Schulz, M.: Using Simulation to Understand the Data Layout
of Programs. In: Proceedings of the IASTED International Conference on Applied
Simulation and Modeling (ASM 2001), Marbella, Spain (2001) 349–354

10. Tao, J., Brandes, T., Gerndt, M.: A Cache Simulation Environment for OpenMP.
In: Proceedings of the Fifth European Workshop on OpenMP (EWOMP ’03),
Aachen, Germany (2003) 137–146

11. Brunst, H., Hoppe, H.C., Nagel, W.E., Winkler, M.: Performance Optimization
for Large Scale Computing: The Scalable VAMPIR Approach. In: Proceedings of
ICCS2001. Volume 2074 of Lecture Notes in Computer Science., San Francisco,
USA, Springer-Verlag Berlin Heidelberg New York (2001) 751ff

12. Brunst, H., Nagel, W.E., Malony, A.D.: A distributed performance analysis ar-
chitecture for clusters. In: IEEE International Conference on Cluster Computing,
Cluster 2003, Hong Kong, China, IEEE Computer Society (2003) 73–81


	1 Introduction
	2 Current Compilers and Their Optimization Capabilities
	2.1 Compiler Tests
	2.2 Results
	2.3 First Summary

	3 Assisting the Developer: Goofi
	3.1 Goals
	3.2 Doing Loop Transformations with Goofi
	3.3 Basics of Goofi

	4 Future Work
	Acknowledgement
	References



