
Verifying ω-Regular Properties of Markov Chains

Doron Bustan1, Sasha Rubin2, and Moshe Y. Vardi1

1 Rice University�

2 The University of Auckland��

Abstract. In this work we focus on model checking of probabilistic models.
Probabilistic models are widely used to describe randomized protocols. A
Markov chain induces a probability measure on sets of computations. The no-
tion of correctness now becomes probabilistic. We solve here the general prob-
lem of linear-time probabilistic model checking with respect to ω-regular speci-
fications. As specification formalism, we use alternating Büchi infinite-word au-
tomata, which have emerged recently as a generic specification formalism for
developing model checking algorithms. Thus, the problem we solve is: given a
Markov chain M and automaton A, check whether the probability induced by
M of L(A) is one (or compute the probability precisely). We show that these
problem can be solved within the same complexity bounds as model checking
of Markov chains with respect to LTL formulas. Thus, the additional expressive
power comes at no penalty.

1 Introduction

In model checking, we model a system as a transition system M and a specification as a
temporal formula ψ. Then, using formal methods, we check whether M satisfies ψ [7].
One of the most significant developments in this area is the discovery of algorithmic
methods for verifying temporal logic properties of finite-state systems [23, 18, 6, 33].
This derives its significance both from the fact that many synchronization and commu-
nication protocols can be modelled as finite-state programs, as well as from the great
ease of use of fully algorithmic methods. Looking at model-checking algorithms more
closely, we can classify these algorithms according to two criteria. The first criterion is
the type of model that we use – nondeterministic or probabilistic. The second criterion
is the specification language.

For nondeterministic models and linear temporal logic (LTL), a close and fruitful
connection with the theory of automata over infinite words has been developed [32–34].
The basic idea is to associate with each LTL formula a nondeterministic Büchi automa-
ton over infinite words (NBW) that accepts exactly all the computations that satisfy
the formula. This enables the reduction of various decision problems, such as satisfia-
bility and model checking, to known automata-theoretic problems, yielding clean and
asymptotically optimal algorithms. Furthermore, these reductions are very helpful for
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implementing temporal-logic based verification algorithms, cf. [14]. This connection to
automata theory can also be extended to languages beyond LTL, such as ETL [34] and
µTL [30].

In this paper we focus on model checking of probabilistic models. Probabilistic
models are widely used to describe randomized protocols, which are often used in dis-
tributed protocols [5], communication protocols [8], robotics [27], and more. We use
Markov chains as our probabilistic model, cf. [29]. A Markov chain induces a probabil-
ity measure on sets of computations. The notion of correctness now becomes probabilis-
tic: we say here that a program is correct if the probability that a computation satisfies
the specification is one (we also discuss a quantitative notion of correctness, where we
compute the probability that a computation satisfies the specification). Early approaches
for probabilistic model checking of LTL formulas [19, 29] required determinization of
NBW, which involves an additional exponential blow-up over the construction of au-
tomata from formulas [24], requiring exponential space complexity, unlike the polyno-
mial space complexity of standard model-checking algorithms for LTL, cf. [28].

The exponential gap for probabilistic model checking was bridged in [9, 10], who
provided a polynomial-space algorithm, matching the lower bound of [26]. The algo-
rithm in [9, 10] is specialized to LTL (and ETL) specifications, and proceeds by induc-
tion on the structure of the formula. An automata-theoretic account of this algorithm
was given in [11]. It is shown there that LTL formulas can be translated to a special
type of NBW, which they call separated automata. (An NBW is separated if every
two states that are located in the same strongly connected component have disjoint lan-
guages). As with the standard translation of LTL formulas to NBW, the translation to
separated automata is exponential. It is then shown in [11] how to model check Markov
chains, in nondeterministic logarithmic space, with respect to separated NBW as com-
plemented specification. This yields a polynomial space upper bound for probabilistic
model checking of LTL formulas.

The automata-theoretic framework in [11] is very specifically tailored to LTL. As
mentioned earlier contrast, the automata-theoretic framework for model checking non-
deterministic models is quite general and can also handle more expressive specification
languages such as ETL and µTL. This is not a mere theoretical issue. There has been a
major recent emphasis on the development of industrial specification languages. These
efforts resulted in a several languages [17, 21, 4, 2], culminating in an industrial stan-
dard, PSL 1.01 (www.accellera.com). Most of the new languages have the full
power of NBW, i.e., they can express all ω-regular languages. Thus, they are strictly
more expressive than LTL [35], and, thus, not covered by the framework of [9–11].

In this paper we solve the general problem of probabilistic model checking with
respect to ω-regular specifications. As specification formalism, we use alternating Büchi
infinite-word automata (ABW); see discussion below. Thus, the problem we solve is:
Given a Markov chain M and an ABW A, check whether the probability induced by M
of L(A) is one (i.e., whether PM(L(A)) = 1). (A more refined problem is to calculate
the probability precisely, see the full version.)

The motivation for using ABWs as a specification formalism is derived from recent
developments in the area of linear specification languages. First, ABWs have been used
as an intermediate formalism between LTL formulas and nondeterministic Büchi word
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automata (NBW). As shown in [12, 13], one can exploit the linear translation from LTL
formulas to ABWs ([31]) for an early minimization, before the exponential translation
to NBW. Second, not only can logics such as ETL and µTL be easily translated to ABW,
but also most of the new industrial languages can be translated to ABW. Furthermore,
for some of them efficient such translations are known (cf. [1]). Thus, ABW can serve
as a generic specification formalism for developing model checking algorithms. Note
that applying the techniques of [9, 10] to ABW specifications requires converting them
first to NBW at an exponential cost, which we succeed here in avoiding.

We present here an algorithm for model checking of Markov chains, using ABWs
as specifications. The space complexity of the algorithm is polylogarithmic in M and
polynomial in A. The linear translation of LTL to ABW implies that this complexity
matches the lower bound for this problem.

As in [10, 11], our algorithm uses the subset construction to capture the language
of every subset of states of A (an infinite word w is in the language of a set Q of
states if w ∈ L(s) for every state s ∈ Q and w �∈ L(s) for every s �∈ Q). While
for LTL, a straightforward subset construction suffices, this is not the case for ABW.
A key technical innovation of this paper is our use of two nondeterministic structures
that correspond to the alternating automaton A to capture the language of every set
of automaton states. The first nondeterministic structure is an NBW Af called the full
automaton, and the second a “slim” version of the full automaton without accepting
conditions, which we call the local transition system TA. Every state q of Af and TA

corresponds to a set Q of states in A. While is possible, however, that a several states of
Af correspond to the same set of states of A, every state of TA corresponds to a unique
set of states of A. The model-checking algorithm make use of the products G and Gf

of the Markov chain M with TA and Af , respectively.

2 Preliminaries

2.1 Automata

Definition 1. A nondeterministic Büchi word automaton (NBW) is A=〈Σ,S, S0, δ, F 〉,
where Σ is a finite alphabet, S is a finite set of states, δ : S ×Σ → 2S is a transition
function, S0 ⊆ S is a set of initial states, and F ⊆ S is a set of accepting states.

Let w = w0, w1, . . . be an infinite word over Σ. For i ∈ IN, let wi = wi, wi+1, . . .
denote the suffix of w from its i’th letter. A sequence ρ = s0, s1, . . . in Sω is a run of A
over an infinite wordw ∈ Σω, if s0 ∈ S0 and for every i > 0, we have si+1 ∈ δ(si, wi).
We use inf(ρ) to denote the set of states that appear infinitely often in ρ. A run ρ of A
is accepting if inf(ρ) ∩ F �= ∅. An NBW A accepts a word w if A has an accepting
run over w. We use L(A) to denote the set of words that are accepted by A. For s ∈ S,
we denote by A(s) the automaton A with a single initial state s. We write L(s) (the
language of s) for L(A(s)) when A is clear from the context.

Before we define an alternating Büchi word automaton, we need the following def-
inition. For a given set X , let B+(X) be the set of positive Boolean formulas over X
(i.e., Boolean formulas built from elements in X using ∧ and ∨), where we also allow
the formulas true and false. Let Y ⊆ X . We say that Y satisfies a formula θ ∈ B+(X)
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if the truth assignment that assigns true to the members of Y and assigns false to the
members ofX \Y satisfies θ. A tree is a setX ⊆ IN∗, such that for x ∈ IN∗ and n ∈ IN,
if xn ∈ X then x ∈ X . We denote the length of x by |x|.

An alternating Büchi word automaton (ABW) is A = 〈Σ,S, s0, δ, F 〉, where Σ,
S, and F are as in NBW, s0 ∈ S is a single initial state, and δ : S × Σ → B+(S)
is a transition function. A run of A on an infinite word w = w0, w1, . . . is a (possibly
infinite) S-labelled tree τ such that τ(ε) = s0 and the following holds: if |x| = i,
τ(x) = s, and δ(s, wi) = θ, then x has k children x1, . . . , xk, for some k ≤ |S|,
and {τ(x1), . . . , τ(xk)} satisfies θ. The run τ is accepting if every infinite branch in τ
includes infinitely many labels in F . Note that the run can also have finite branches; if
|x| = i, τ(x) = s, and δ(s, ai) = true, then x need not have children.

An alternating weak word automaton (AWW) is an ABW such that for every strongly
connected component C of the automaton, either C ⊆ F or C ∩ F = ∅. Given two
AWW A1 and A2, we can construct AWW for Σω \ L(A1), L(A1) ∩ L(A2), and
L(A1) ∪ L(A2), which are linear in their size, relative to A1 and A2 [22].

Lemma 1. [16] Let A be an ABW. Then there exists an AWW Aw such that L(A) =
L(Aw) and the size of Aw is quadratic in the size of A. Furthermore, Aw can be
constructed in time quadratic in the size of A.

2.2 Markov Chains

We model probabilistic systems by finite Markov chains. The basic intuition is that
transitions between states are governed by some probability distribution.

Definition 2. A Markov chain is a tuple M = 〈X,PT , PI〉 such that X is a set of
states, PT : (X × X) → [0, 1] is a transition probability distribution that assigns to
every transition (x1, x2) its probability. PT satisfies that for every x1 ∈ X we have∑

x2∈X PT (x1, x2) = 1. PI : X → [0, 1] is an initial probability distribution that
satisfies

∑
x∈X PI(x) = 1.

We denote by M(x) the Markov chain M with PI that maps x to 1. Sometimes we
consider a Markov chain as a graph 〈X,E〉 where (x1, x2) ∈ E iff PT (x1, x2) > 0. For
an alphabet Σ = 2AP , let V : X → Σ be a labelling function, then each path ρ in X∗

or in Xω in M is mapped by V to a word w in Σ∗ or in Σω respectively. For simplicity
we assume that Σ = X and that V (x) = x for every x ∈ X , this simplification does
not change the complexity of verifying the Markov chain [10]. Note, that every infinite
path of M is a word in Xω but the converse does not necessarily hold. The probability
space on the set of pathes of M is defined as in [29].

The following property of Markov chains is called ergodicity and is proved in [15].
Let M be a Markov chain, then a path of M, with probability one, enters a bottom
strongly connected component (BSCC) K of M, and contains every finite path in K
infinitely often. In other words, let Le be the set of infinite words of M such that every
word w in Le has a suffix that is contained in a BSCC K of M, and contains every
finite path in K infinitely often. Then, PM (Le) = 1.
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3 The Full Automaton and the Local Transition System

In this section we capture the behavior of an AWW A using two nondeterminstic sys-
tems. First we define the full automaton, which captures the languages of subsets of
the states of A. Then we define the local transition system, which captures the local
relations between subsets of states of A.

3.1 The Full Automaton

Given a AWW A = 〈Σ,S, δ, F 〉 (we ignore its initial state), we define its dual AWW
Â = 〈Σ,S, δ̂, F̂ 〉, where the Boolean formula δ̂(s, σ) is obtained from δ(s, σ) by re-
placing every true with false and vice versa, and every ∨ with ∧ and vice versa, in
addition we define F̂ = S \ F . It is easy to see that Â is an AWW.

Lemma 2. [22] Let A be an AWW and Â be its dual AWW. For every state s we have
that L(A(s)) = Σω \ L(Â(s)).

Given an AWW A and its dual AWW Â we define the state space of the full automaton
as a subset of 2S × 2S × 2S × 2S . We start with the following definition.

Definition 3. A tuple (Q1, Q2, Q3, Q4) is consistent if Q2 = S \ Q1, Q3 ⊆ Q1 \ F ,
and Q4 ⊆ Q2 \ F̂ .

Definition 4. Given an AWW A = 〈Σ,S, δ, F 〉 we define its full automaton as the NBW
Af = 〈Σ,Sf , δf , Ff 〉 where

– Sf is the set of consistent tuples over 2S × 2S × 2S × 2S .
– A state (Q′

1, Q
′
2, Q

′
3, Q

′
4) is in δf ((Q1, Q2, Q3, Q4), σ) if Q′

1 |= ∧s∈Q1δ(s, σ),
Q′

2 |= ∧s∈Q2 δ̂(s, σ), and either:
1. Q3 = Q4 = ∅, Q′

3 = Q′
1 \ F , and Q′

4 = Q′
2 \ F̂

2. Q3 �= ∅ or Q4 �= ∅, there exists Y3 ⊆ Q′
1 such that Y3 |= ∧s∈Q3δ(s, σ) and

Q′
3 = Y3 \ F , and there exists Y4 ⊆ Q′

2 such that Y4 |= ∧s∈Q4 δ̂(s, σ) and
Q′

4 = Y4 \ F̂
– Ff = {(Q1, Q2, Q3, Q4) ∈ Sf |Q3 = Q4 = ∅)}

Theorem 1. Let A be an AWW and let Af be its full automaton, let Q ⊆ S be a set of
states, then for every state (Q1, Q2, Q3, Q4) such that Q1 = Q we have that

⋂

s∈Q

L(A(s))
⋂

s�∈Q

L(A(s)) = L(A(Q1,Q2,Q3,Q4)
f )

We now present more properties of the full automaton. We use these properties later.

Definition 5. Let A be an ABW and let w be an infinite word. We define the type of w
w.r.t. A as the set typeA(w) = {s|A(s) accepts w}.

The following lemma is a direct consequence of Theorem 1.

Lemma 3. Let Af be full automaton, and let (Q1, Q2, Q3, Q4) and (Q′
1, Q

′
2, Q

′
3, Q

′
4)

be states of Af . Then,
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– If Q1 = Q′
1 then L(A(Q1,Q2,Q3,Q4)

f ) = L(A(Q′
1,Q′

2,Q′
3,Q′

4)
f ).

– If Q1 �= Q′
1 then L(A(Q1,Q2,Q3,Q4)

f ) ∩ L(A(Q′
1,Q′

2,Q′
3,Q′

4)
f ) = ∅.

Lemma 3 and Theorem 1 imply that the first element Q1 of the states of Af character-
izes a distinct language.

Definition 6. The language of Q1 is defined as L(Q1) = L(A(Q1,S\Q1,∅,∅)
f ).

3.2 The Local Transition System

As observed above, it is sufficient to look at Q1 in order to determine the language
of a state of Af . Recall that L(Q1) = L(A(Q1,S\Q1,∅,∅)). We observe that if there
exists a transition ((Q1, Q2, Q3, Q4), σ, (Q′

1, Q
′
2, Q

′
3, Q

′
4)) in δf , then for every state of

the form (Q1, Q2, Y3, Y4) there exists a state (Q′
1, Q

′
2, Y

′
3 , Y

′
4) such that the transition

((Q1, Q2, Y3, Y4), σ, (Q′
1, Q

′
2, Y

′
3 , Y

′
4)) is in δf .

These observations imply that there are some local relationships between the lan-
guages of the states of Af . Indeed, if a word w is in L((Q′

1, Q
′
2, Q

′
3, Q

′
4)) then for

the word σ · w that is in L((Q1, Q2, Q3, Q4)), there exists a state of the form (Q′
1, Q

′
2,

Y ′
3 , Y

′
4) that is in δf ((Q1, Q2, Q3, Q4), σ). Thus, we can say that there exists a transition

on σ from L(Q1) to L(Q′
1). The local transition system captures these relationships.

Definition 7. Given an AWW A = 〈Σ,S, δ, F 〉 we define its local transition system as
TA = 〈Σ,ST , δT 〉 where

– ST is the set of subsets of S and δT is a function from ST to 2ST .
– A state Q′ is in δT (Q, σ) if Q′ |= ∧s∈Qδ(s, σ) and (S \Q′) |= ∧s�∈Qδ̂(s, σ).

Example 1. We now present an example of a full automaton and a local transition sys-
tem. The example is presented at Figure 1. For simplicity we use a deterministic au-
tomaton A. The figure shows A’s dual automaton Â, the full automaton Af , and the lo-
cal transition system TA. Note that Â has F̂ = S, thus for every state (Q1, Q2, Q3, Q4)
of Af , we have Q4 = ∅. For this reason, and since Q2 is always equal to S \ Q1, we
only write the sets Q1 and Q3 inside the states.

The definitions of the full automaton and the local transition system implies the follow-
ing lemma:

Lemma 4. Let A be an AWW and let Af and TA be its full automaton and local tran-
sition system respectively. Let (Q1, Q2, Q3, Q4) be a state of Af , and let σ be a letter
in Σ. Then, for every state Q′

1 we have that Q′
1 is in δT (Q1, σ) iff there exists a state of

the form (Q′
1, Q

′
2, Q

′
3, Q

′
4) in δf ((Q1, Q2, Q3, Q4), σ).

The proof of Lemma 4 is straightforward from the definitions of Af and TA. In partic-
ular for every state (Q1, Q2, Q3, Q4) and infinite word w we have that A(Q1,Q2,Q3,Q4)

has a run on w iff T (Q1)
A has a run on w. However, we do not define accepting condi-

tions for the local transition system. Thus, it is possible that T (Q1)
A has a run on w, but

A(Q1,Q2,Q3,Q4)
f does not have an accepting run on w.
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Fig. 1. An example of a full automaton Af and a local transition system TA.

Lemma 5. Let TA be a local transition system, and let Q, Q′ and Q′′ be states of TA.
Let σ be a letter in Σ. If Q′′ ∈ δT (Q′, σ) and Q′′ ∈ δT (Q, σ), then Q = Q′.

When a transition system satisfies the property shown in Lemma 5, we say that the
transition system is reverse deterministic.

4 Verifying Markov Chains

In this section we construct a product GM,A of the Markov chain M and the local
transition system TA. We show that the problem of checking whether PM (L(A)) = 1,
can be reduced to checking for a state (x,Q) of G whether the probability of L(Q) ∩
x ·Σω is positive. Then, we show how to use the full automaton to solve this problem.

Definition 8. Let A be an AWW, TA be A’s local transition system, andM be a Markov
chain. We define the graph GM,A as having vertex set (x,Q) such that x is a state of
M and Q is a state of TA. An edge (x,Q) → (x′, Q′) is included in GM,A if M has a
transition x→ x′ and (Q, x,Q′) is a transition in TA.

When A and M are clear from the context, we write G instead of GM,A. Lemma 5
implies that for every three states (x,Q), (x′, Q′), and (x′′, Q′′), if there is a transition
from (x,Q) to (x′′, Q′′) and there is a transition from (x′, Q′) to (x′′, Q′′), then x �= x′.
We say that G is reverse deterministic.
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Example 2. We present in Figure 2 two Markov chains M1 and M2. We assume that
the initial probability for each state in the Markov chains is 1

2 . The figure also presents
the products G1 and G2 of M1 and M2 respectively, with the local transition system
TA from Example 1.

a b

1

M2

a, {1}

b, ∅

a, {1, 2}

b, {1}

G2

a b

1

1
2

M1

a, {1}

b, ∅

a, {1, 2}
G1

1
2

1

b, {1}

a

a

a

b

b

b

TA

{1}

∅

{1, 2}

Fig. 2. Two Markov chains M1 and M2, and the graphs they impose G1 and G2.

Every infinite path inG projected on the first component gives a path in M. Conversely,
every path of M is the projection of at least one path inG. In fact, let w = x0 ·x1 ·. . . be
a path of M. For each j, letQj be the type of the suffix xj ·xj+1xj+2 · · ·. Then for each
j there is a transition (Qj , xj , Qj+1) in δT and thus an edge (xj , Qj) → (xj+1, Qj+1)
in G. We call this path the augmented path corresponding to w.

Definition 9. For a state (x,Q) of G we denote by P (x,Q) the probability that a path
that starts in state x has type Q, namely P (x,Q) = PM (M(x) has type Q). We call
(x,Q) probable if P (x,Q) > 0.

The importance of the probable states is demonstrated in the following two lemmas.

Lemma 6. PM (L(Q)) =
∑

x∈X PI(x) · P (x,Q).

Let x be a state of a Markov chain with PI(x) > 0. Then for every state (x,Q) we have
that if (x,Q) is probable, then PM (L(Q)) > 0. Thus we conclude Lemma 7.

Lemma 7. Let s be a state of an AWW A and let M be a Markov chain. Then,
PM (L(s)) < 1 iff there exists a state x of M and a set Q ⊆ S such that PI(x) > 0,
s �∈ Q and the state (x,Q) is probable.

Thus, in order to determine whether PM (L(s0)) = 1, it is enough to determine the
probable states of G. In the rest of this section we show how to identify the probable
states. We define H as the restriction of G to the probable states.
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Example 3. Look again at Figure 2. It is easy to see that given that a path of M1 starts at
state a, the path is of the form a((ba)+a)ω with probability 1. a((ba)+a)ω is contained
in L({1, 2})∪{(ab)ω}, since PM1((ab)ω) = 0, we have P (a, {1, 2}) = 1. Similarly, a
path of M1 that starts at b is with probability one in L({1}), thus, P (b, {1}) = 1. This
implies that in G1, H is the subgraph induced by the states (a, {1, 2}) and (b, {1}). On
the other hand, looking at M2, we see that a path that starts at a is of the form (ab)ω

and a path that starts at b is of the form (ba)ω. Thus, in G2, H is the subgraph induced
by the states (a, {1}) and (b, ∅).

We start with the following observation. Partition the language L(Q) according to the
first letter of a word and the type of the suffix that starts from the second letter. Then,
for every state (x,Q) of G we have P (x,Q) =

∑
(x,Q)→(x′,Q′) PT (x, x′) · P (x′, Q′).

Note that if (x,Q) → (x′, Q′) is an edge ofG, then PT (x, x′) > 0 and thus P (x,Q) ≥
PT (x, x′) · P (x′, Q′). Hence, if (x′, Q′) is probable then all its ancestors are probable.
This implies that it is sufficient to identify the BSCCs of H and then to construct the
set of probable states using backward reachability.

Let C be an SCC of G. If it contains some probable state (x,Q), then since all the
states in C are ancestors of (x,Q), all states in C are probable. That is, either C is an
SCC ofH or C ∩H = ∅. Recall that every path in C projects to a path in M. So the set
of first components of all members of C are in the same SCC, say K , of M, which is
the SCC of M containing x. We say that C corresponds to K . Note that distinct SCC’s
of G may correspond to the same K .

Theorem 2 characterizes the SCCs of G which are the BSCCs of H . Before we
present the theorem we need the following notation. For a tuple E = 〈E1, E2, . . . En〉,
we define πi(E) = Ei to be the i’th element in E. This notation is extended naturally
to sequences of tuples.

Definition 10. A finite path ρG in G is fulfilling if there exists a path ρf in Af such
that π2(ρG) = π1(ρf ), the first state of ρf is of the form (Q1, Q2, (Q1 \F ), (Q2 \ F̂ )),
and the last state of ρf is of the form (Q′

1, Q
′
2, ∅, ∅).

Theorem 2. Let C be an SCC ofG. ThenC is a BSCC of H iff it satisfies the following
conditions:

1. C corresponds to a BSCC K of M.
2. Every finite path of K is a projection of a path in C.
3. C contains a fulfilling path.

5 Algorithms

In Figure 3 we present the algorithm that determines for an AWW A and a Markov chain
M whether PM (L(A)) = 1. An extension for exact probability is presented in full
version. Theorem 2 implies that the algorithm mark the BSCCs ofH . Thus,B is the set
of probable states. Lemma 7 implies that the algorithm returns true iff PM (L(A)) = 1.
Finding SCCs in G that correspond to BSCCs in M, and doing backward reachability
can be done in time linear in the size of G. The most complex part of the algorithm is
to identify, SCCs C of G that satisfy:
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Inputs: Markov chain M = 〈X, PI , PT 〉, AWW A = 〈Σ, S, s0, δ, F 〉.
Construct the full automaton Af of A.
Construct the local transition system TA and the graph G.
Mark all SCCs C of G that satisfy:

1. C corresponds to a BSCC K of M.
2. Every finite path of K is a projection of a path in C.
3. C contains a fulfilling path.

Construct the set B of all states of G from which the marked
SCCs are reachable.
return true iff for every state (x, Q) ∈ B, if PI(x) > 0, then s0 ∈ Q.

Fig. 3. The model-checking algorithm.

1. C corresponds to a BSCC K of M.
2. Every finite path of K is a projection of a path in C.
3. C contains a fulfilling path.

The following lemma is proved in [10]. The only property of G that they use is that G
is reverse deterministic.

Lemma 8. Let C be an SCC of G that corresponds to an SCC K of M. Then the
following are equivalent:

1. Every finite path in K is a projection of a path in C.
2. No other SCC of G corresponding to K is an ancestor of C.

Lemma 8 implies that the second task is equivalent to checking whether there is no
ancestor SCC ofC that corresponds toK . This check can be easily done while scanning
the SCCs of G.

Example 4. In G1 at Figure 2 there are two SCC’s that correspond to the single BSCC
of M1. The SCC of (a, {1, 2}) and (b, {1}) does not have ancestors and contains
the fulfilling path (a, {1, 2}), (a, {1, 2}), (a, {1, 2}) that corresponds to the path
({1, 2}, {1, 2}), ({1, 2}, {1}), ({1, 2}, ∅) in Af , thus, this SCC is the BSCC of H . In
G2 there are two SCCs that correspond to the single BSCC of M2 and neither of them
have an ancestor. However, only the SCC of (a, {1}) and (b, ∅) has a fulfilling path,
thus it is the BSCC of H .

We now explain how to check whether an SCC C of G contains a fulfilling path. We
construct the product Gf = M×Af , similarly to the construction of G.

Definition 11. Let A be an AWW, Af be A’s full automaton, and M be a Markov
chain. We define the full graph Gf as having vertex set (x, (Q1, Q2, Q3, Q4)) such
that x is a state of M and (Q1, Q2, Q3, Q4) is a state of Af . An edge
(x, (Q1, Q2, Q3, Q4)) → (x′, (Q′

1, Q
′
2, Q

′
3, Q

′
4)) is included in Gf if M has a tran-

sition x→ x′ and (Q′
1, Q

′
2, Q

′
3, Q

′
4) is in δf ((Q1, Q2, Q3, Q4), x).

Lemma 9. An SCC C of G contains a fulfilling path iff there exists a path
(x0, (Q0

1, Q
0
2, Q

0
3, Q

0
4)), (x1, (Q1

1, Q
1
2, Q

1
3, Q

1
4)), . . . , (xn, (Qn

1 , Q
n
2 , ∅, ∅)) in Gf such

that the path (x0, Q
0
1), (x1, Q

1
1), . . . (xn, Q

n
1 ) is contained in C, Q0

3 = Q0
1 \ F , and

Q0
4 = Q0

2 \ F̂ .
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Complexity. Finding SCCs inG that correspond to BSCCs in M, and doing backward
reachability can be done in linear time and polylogarithmic space in |G|. Constructing
BSCCs of M can be done in time linear in |M|, identifying SCCs of G that corre-
spond to these BSCC can be done in time linear in |G|. Marking SCCs that do not have
ancestors that correspond to the same BSCC in M can also be done in time linear in
|G|. Checking that an SCC of G contains a fulfilling path can be done in time linear in
|Gf |, simply by scanningGf andG in parallel, thus, the algorithm can be implemented
in time linear in |M × Af |. Since the size of Af is 2O(|A|), we have that the time
complexity of the algorithm is |M| · 2O(|A|).

As for space complexity we show that algorithm works in space polynomial in |A|
and polylogarithmic in |M|. We rewrite the conditions of Theorem 2, Lemma 7, and
Lemma 8 as follows: PM (L(A)) < 1 iff there exists a probable state (x0, Q0) such
that s0 �∈ Q and PI(x0) > 0. This is true iff (x0, Q0) reaches a state (x,Q) that is in a
BSCC of H , s0 �∈ Q0, and PI(x0) > 0. That is

1. (x,Q) is reachable from a state (x0, Q0) such that PI(x0) > 0 and s0 �∈ Q0.
2. x is in a BSCC of M (Theorem 2, (1)). This condition is equivalent to the follow-

ing: for every state x′ of M we have that if there exists a path in M from x to x′

then there exists a path from x′ to x.
3. No other SCC of G that corresponds to the SCC of x in M is the ancestor of the

SCC of (x,Q) (Lemma 8). This condition is equivalent to the following: for every
state (x′, Q′), if there exists a path from (x′, Q′) to (x,Q), then either there exists
a path from (x,Q) to (x′, Q′), or there is no path from x to x′.

4. The SCC of (x,Q) contains a fulfilling path (Theorem 2, (3)). By Lemma 9 this
condition is equivalent to the following: there exists a path in Gf from a state
(x′, (Q′

1, Q
′
2, Q

′
1 \ F,Q′

2 \ F̂ )) to a state (x′′, (Q′′
1 , Q

′′
2 , ∅, ∅)) such that the pro-

jection of the path on G is contained in the SCC of (x,Q). This condition is
equivalent to: there is a path from a state (x′, (Q′

1, Q
′
2, Q

′
1 \ F,Q′

2 \ F̂ )) to a
state (x′′, (Q′′

1 , Q
′′
2 , ∅, ∅)) in Gf and there are paths from (x,Q) to (x′′, Q′′

1), from
(x′′, Q′′

1) to (x′, Q′), and from ((x′, Q′) to (x,Q) in G.

In [25] it is shown that checking whether there is a path from one state to another in a
graph with n states requires log2(n) space. This implies that the conditions above can
be checked in spaceO(log2(|Gf |)) = log2(|M|·2O(|A|)) = O(log2(|M|)+log(|M|)·
|A| + |A|2) = O(log2(|M|) + |A|2).

6 Concluding Remarks

We presented here an optimal solution to the general problem of linear-time probabilis-
tic model checking with respect to ω-regular specifications, expressed by alternating
automata. Beyond the interest in the problem itself, our solution is interesting from a
theoretical perspective, since the concept of full automaton may have other applications.
More work is needed in reducing our result to practice. One direction is to extend the
ProbaTaf system, which currently handles LTL specifications of Markov chain [11],
to ABW specifications. Another, is to combine the symbolic approach to alternating
automata [20] with the symbolic approach to probabilistic model checking [3].
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