
A Memoizing Semantics for Functional Logic
Languages

Salvador España and Vicent Estruch

Departamento de Sistemas Informáticos y Computación-DSIC
Technical University of Valencia, C. de Vera s/n, 46022 Valencia, Spain.

{sespana,vestruch}@dsic.upv.es

Abstract. Declarative multi-paradigm languages combine the main
features of functional and logic programming, like laziness, logic
variables and non-determinism. The operational semantics of these
languages is based on a combination of narrowing and residuation.
In this article, we introduce a non-standard memoizing semantics for
multi-paradigm declarative programs and prove its equivalence with
the standard operational semantics. Both pure functional and pure
logic programming have for long time taken advantage of tabling
or memoizing schemes [15,19,7], which motivates the interest in the
adapation of this technique to the integrated paradigm.

Keywords: Programming languages, formal semantics, memoization.

1 Introduction

Declarative multi-paradigm languages [11] (like Curry [10]) combine the main
features of functional and logic programming. In comparison with functional
languages, such integrated languages are more expressive thanks to the ability to
perform function inversion and to implement partial data structures by means of
logical variables. With respect to logic languages, multi-paradigm languages have
a more efficient operational behaviour since functions allow more deterministic
evaluations than predicates.

The operational semantics of these languages is usually based on a combina-
tion of two different operational principles: narrowing and residuation [12]. The
residuation principle is based on the idea of delaying function calls until they are
ready for a deterministic evaluation (by rewriting). On the other hand, the nar-
rowing mechanism allows the instantiation of variables in input expressions and,
then, applies reduction steps to the function calls of the instantiated expression.
Each function specifies a concrete evaluation annotation (see [12,10]) in order to
indicate whether it should be evaluated by residuation (for functions annotated
as rigid) or by narrowing (for flexible functions). Due to its optimality properties
w.r.t. the length of derivations and the number of computed solutions, needed
narrowing [5] is currently the best narrowing strategy for multi-paradigm func-
tional logic programs. The formulation of needed narrowing is based on the use
of definitional trees [3], which define a strategy to evaluate functions by apply-
ing narrowing steps. Recently, [13] introduced a flat representation for functional

D.A. Schmidt (Ed.): ESOP 2004, LNCS 2986, pp. 109–123, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



110 S. España and V. Estruch

logic programs in which definitional trees are embedded in the rewrite rules by
means of case expressions. The interest in using the flat representation arises
because it provides more explicit control (hence the associated calculus is sim-
pler than needed narrowing), while source programs can be still automatically
translated to the new representation.

Several techniques from pure functional and pure logic languages have been
extended to implement multi-paradigm languages. In particular, both pure para-
digms have exploited memoization1 to memoize sub-computations and reuse
their results later. In some situations [15] a reduction of the asymptotic cost
can be obtained2. The advantages of memoization have long been known to the
functional programming community [15,8]. Tamaki and Sato [19] proposed an
interpretation for logic programming based on memoization; this seminal paper
has stimulated a large body of work [7,18,16,6]. In addition to reuse previous
computed sub-goals, infinite paths in the search space can be detected, enabling
better termination properties [7].

These properties motivate the adaptation of the memoization technique to
the integrated functional logic paradigm. This adaptation is not straightforward
due to some differences between functional evaluation and narrowing. Firstly, in
addition to the computed normal form, functional logic programs also produce a
computed answer. Secondly, non-determinism of narrowing computations leads
to a large, possibly infinite, set of results arising from different sequences of nar-
rowing steps. Previous work attempting to introduce memoization in narrowing
[4] focused in finding a finite representation of a (possibly infinite) narrowing
space by means of a graph representing the narrowing steps of a goal.

In this article, we define a new memoizing semantics for flat programs, the
MLNT calculus, and prove its equivalence with the standard operational seman-
tics.

The rest of the paper is organized as follows. In the next section we briefly
introduce a flat representation for multi-paradigm functional logic programs and
its operational semantics based on the LNT (Lazy Narrowing with definitional
Trees) calculus [13]. Section 3 presents the proposed memoizing semantics and
proves the completeness w.r.t. LNT calculus. Finally, Section 4 offers some con-
clusions.

2 The Flat Language

This section briefly introduces a flat representation for multi-paradigm func-
tional logic programs and its standard operational semantics. Similar represen-
tations are considered in [13,14,17]. Unlike them, here we distinguish two kinds
of case expressions in order to make also explicit the flexible/rigid evaluation an-
notations of source programs. The syntax for programs in the flat representation
is as follows:
1 Other terms (tabling, caching, etc.) are used to refer to the same concept too.
2 Memoization can be viewed as an automatic technique for applying dynamic pro-

gramming optimization [9].



A Memoizing Semantics for Functional Logic Languages 111

R ::= D1 . . . Dm (program)
D ::= f(xn) = e (rule)
e ::= x (variable)

| c(en) (constructor)
| f(en) (function call)
| case e of {pn → en} (rigid case)
| fcase e of {pn → en} (flexible case)
| e1 or e2 (disjunction)

p ::= c(xn) (flat pattern)

Here, we write on for the sequence of objects o1, . . . , on. Thus, a program R
consists of a sequence of function definitions D such that the left-hand side is
linear and has only variable arguments, i.e., pattern matching is compiled into
case expressions. The right-hand side of each function definition is an expres-
sion e composed of variables (X ), constructors (C), function calls (F), and case
expressions for pattern-matching. Variables are denoted by x, y, z . . . , construc-
tors by a, b, c . . . , and defined functions by f, g, h . . . The general form of a case
expression is:

(f )case e of {c1(xn1) → e1; . . . ; ck(xnk
) → ek}

where e is an expression, c1, . . . , ck are different constructors of the type of e, and
e1, . . . , ek are expressions (possibly containing case structures). The variables
xni are local variables which occur only in the corresponding expression ei. The
difference between case and fcase only shows up when the argument e is a
free variable: case suspends (which corresponds to residuation) whereas fcase
nondeterministically binds this variable to the pattern in a branch of the case
expression (which corresponds to narrowing). Functions defined only by fcase
(resp. case) expressions are called flexible (resp. rigid).

Without loss of generality, we will assume some restrictions in flat programs
in the following: on the one hand, all (f )case arguments are variables; on the
other hand, or and (f )case expressions appear at the outermost positions i.e.,
they do not appear inside function and constructor calls. Every flat program can
be automatically transformed to one which satisfies these restrictions.

Example 1. The following flat program will be used to illustrate some examples
throughout the paper. It defines some functions on natural numbers which are
represented by terms built from Zero and Succ. double is defined by means of
the addition, coin nondeterministically computes Zero or Succ(Zero). add is
the arithmetic addition and leq defines the relation “less than or equal to”.

double(x) = add(x, x)
coin = Zero or Succ(Zero)
add(x, y) = fcase x of {Zero → y; Succ(m) → Succ(add(m, y))}
leq(x, y) = fcase x of {Zero → True;

Succ(m) → fcase y of {Zero → False;
Succ(n) → leq(m, n)}}



112 S. España and V. Estruch

Case Select
[[(f)case c(en) of {pk → e′

k}]] ⇒id [[σ(e′
i)]] if pi = c(xn) and σ = {xn �→ en}

Case Guess
[[fcase x of {pk → ek}]] ⇒σ [[σ(ei)]] if σ = {x �→ pi}, i = 1, . . . , k

Case Eval
[[(f)case e of {pk → ek}]] ⇒σ [[σ((f)case e′ of {pk → ek})]]

if [[e]] ⇒σ [[e′]], e �∈ X , and root(e) �∈ C
Function Eval

[[f(en)]] ⇒id [[σ(e′)]] if f(xn) = e′ ∈ R and σ = {xn �→ en}
Or

[[e1 or e2]] ⇒id [[ei]], i = 1, 2

Fig. 1. LNT calculus

The operational semantics of flat programs is based on the LNT (Lazy Nar-
rowing with definitional Trees) calculus [13]. In Figure 1, we present a slight
extension of this calculus in order to cope with case expressions including eval-
uation annotations and disjunction; nevertheless, we still use the name “LNT
calculus” for simplicity. First, let us note that the symbols “[[” and “]]” in an
expression like [[e]] are purely syntactical (i.e., they do not denote “the value
of e”). Indeed, they are only used to guide the inference rules. LNT steps are
labelled with the substitution computed in the step. The empty substitution is
denoted by id. Let us briefly describe the LNT rules:

Case Select. It is used to select the appropriate branch of the current case
expression.

Case Guess. It non-deterministically selects a branch of a flexible case ex-
pression and instantiates the variable at the case argument to the appropriate
constructor pattern. The step is labelled with the computed substitution σ. Rigid
case expressions with a variable argument suspend, giving rise to an abnormal
termination.

Case Eval. It is used to evaluate case expressions with a function call or
another case expression in the argument position. Here, root(e) denotes the
outermost symbol of e. This rule initiates the evaluation of the case argument
by creating a (recursive) call for this subexpression.

Function Eval. This rule performs the unfolding of a function call. As in logic
programming, we assume that rules are renamed so that they only contain fresh
variables.

Or. It non-deterministically selects a choice of a disjunction expression.
Arbitrary LNT derivations are denoted by e ⇒∗

σ e′ which is a shorthand for
the sequence of steps e ⇒σ1 . . . ⇒σn e′ with σ = σn ◦ · · · ◦ σ1 (if n = 0 then
σ = id). We say that a LNT derivation e ⇒∗

σ e′ is successful when e′ is in head
normal form (i.e., it is rooted by a constructor symbol) or it is a variable; in
this case, we say that e evaluates to e′ with answer σ. This calculus can be
easily extended to evaluate expressions to normal form, but we keep the above
presentation in both calculi for simplicity. In the rest of the paper, a value will
denote a term in head normal form or a variable.



A Memoizing Semantics for Functional Logic Languages 113

leq(u,add(u,v))

leq(Succ(w),Succ(add(w,v)))

true

{w �→ u}

{u �→ Zero}

{u �→ Succ(w)}

Fig. 2. Graph representation of the narrowing space of the goal leq(u, add(u, v))

3 MLNT Calculus

Previous work aiming at introducing memoization in narrowing [4] focused in
finding a finite representation of a (possibly infinite) narrowing space by means
of a graph representing the narrowing steps of a goal. Let us consider the example
of Figure 2 extracted from [4]. This figure shows the graph representation3 of
the narrowing space of the goal leq(u, add(u, v)).

The vertices of this graph are goals i.e., terms being narrowed, and the edges
are narrowing steps between these goals. Terms are considered the same vertex
if they differ only by a renaming of variables. Solutions can be obtained by
composing the set of substitutions which appear in any path in the graph whose
origin is the goal vertex and whose destination vertex is a value.

Our proposal is based in a graph representation too, but in contrast to [4],
every subgoal is explicitly introduced in the graph in order to take advantage of
memoization. Therefore, the graph represents no longer the search space of the
original goal, but also contains the search space of all derived subgoals. The sets
of results are pairs composed by a value and a computed answer.

Furthermore, search spaces from different goals may share common parts in
order to further improve memoization. For instance, consider the narrowing space
of the goal double(coin) shown in Figure 3. The term add(coin, coin) denoted
by v2 requires subgoal coin at position 1 to be reduced, thus a new vertex
v3 associated to coin is introduced in the graph. Later, v2 is reduced to v3.
Therefore, v3 has played a double role.

The proposed calculus consists of a state transition system MLNT where a
MLNT-State is a 4-tuple from

Eval × Ready × Suspended × Graph

Eval may be a special symbol void or an EvaluationState. An EvaluationState
is a 3-tuple composed by a goal to be solved, a flat expression and a substitution.

Non-determinism (for instance, variable instantiation in a (f )case) is ad-
dressed by considering every possible choice and creating a different Evaluation-
State associated to it. Note that despite non-determinism, only one graph is
3 For simplicity, we omitted some intermediate steps which basically correspond to

(f )case reductions.



114 S. España and V. Estruch

considered which memoizes the information of all these branches as soon as they
are computed.

Since the computation process must pursue only a single branch at a given
moment, we maintain a set of ready EvaluationStates which are stored to be
selected later. This set is the second component of a MLNT-State.

Every goal evaluation that needs a subgoal to be solved is suspended and
stored in a “suspended table”. This table maps every suspended EvaluationState
to the set of subgoal’s solutions already used to continue this EvaluationState.
These sets of solutions are needed to avoid resuming the suspended Evaluation-
State several times with the same subgoal’s solution.

Given an initial goal e, the initial MLNT-state associated to it is the tuple:
〈void, {〈e, e, id〉}, ∅, ∅〉. A sequence of steps is applied and the calculus proceeds
until Eval is void, the set Ready is empty and no rules can be applied.

The aim of this calculus is to obtain a graph which contains the original goal
e as a vertex and also value vertices connected to it by a path. The edges of
the graph are labelled with substitutions. The composition of substitutions in
a path, in reverse order, gives the computed answer. This scheme can be easily
adapted to evaluate expressions to normal form.

Let us briefly describe the MLNT rules shown in Figure 4. (sel) and (sol) are
the only ones which overlap and the only non-deterministic too. They may be
applied to a MLNT-state with void in the Eval field:

(sel) This rule takes an EvaluationState element of the set Ready and puts it in
the field Eval to be used later by other rules.

(sol) A solution may be generated whenever a path appears in the graph from
a goal to a value vertex. A new solution is searched in the graph for some
vertex v corresponding to a goal appeared in the (f )case argument of some
suspended EvaluationState. A new EvaluationState is created from the sus-
pended one by replacing its goal argument by the solution previously found,
and is stored in the set Ready to be selected later. The mapping Suspended
is updated to reflect the fact that this solution has already been used.

The rest of the rules are applied when Eval is not void, they are non-overlapping
and deterministic:

(or) The outermost position of the second component of Eval is an or expression.
This rule breaks this expression into two who are introduced in the set Ready
to be selected later.

(val) The second component of Eval must be a value (head normal form or a
variable) in order to apply this rule. A new edge in the graph is inserted
connecting the goal being solved to the value.

(goal) The outermost position of the second component of Eval is a function
call f(tn). This expression is always a term because of the restrictions im-
posed to flat programs. An edge is added from the goal being solved to this



A Memoizing Semantics for Functional Logic Languages 115

function call when they are different. If the goal was not in the graph, a new
EvaluationState Unfold(f(tn)) is introduced in the set Ready to be selected
later.

The three following rules (casec), (casef) and (casev) correspond to the case
where an expression of the form (f )case e of {c1(xn1) → e1; . . . ; ck(xnk

) → ek}
is at the outermost position of the second component of Eval.

(casec) This rule is used when e in the above expression is constructor rooted
(with root ci). The corresponding pattern ci(xni

) is selected and matched
against e. The associated expression ei replaces the current expression of the
field Eval. Other fields remain unchanged.

(casef) In this case, e is a function call f(tn) which must be computed. The
current EvaluationState of field Eval is stored in the mapping Suspended.
The evaluation 〈f(tn), f(tn), id〉 is also introduced in the set Ready.

(casev) This rule is applied to a fcase expresion whenever e is an unbound vari-
able. This variable may be bound to every ci(xni) pattern. Thus, a new
EvaluationState is inserted in the set Ready for every possible variable in-
stantiation. This set of EvaluationStates is finite and equal to the arity of
the fcase expression. Note that this rule does not consider a rigid case, the
evaluation is suspended whenever this situation is produced.

To illustrate this calculus, a trace of double(coin) is shown in Figure 3. The
following domains and auxiliary functions are used to simplify the MLNT rules
shown in Figure 4:

Eval: is (EvaluationState ∪ {void})
EvaluationState: Term × Expr × Substitution.
Ready: 2EvaluationState .
Suspended: set of partial mappings from EvaluationState to 2Substitution×Term .
Graph: set of partial mappings from Term to 2Substitution×Term a set of pairs

〈edge label, destination vertex〉. Vertices(G) will denote Dom(G)

The partial mappings Suspended and Graph described above consider terms
modulo variable renaming.

ObtainSolution: Searches a path in the graph from a given vertex to a value
vertex. Returns a pair 〈computed answer,value 〉, where the computed answer
is obtained by composing the path’s sequence of substitutions (taken in
reverse orden). This function is non-deterministic, but it must guarantee
that every solution will be found eventually.

UnionMap: This function performs the union of two partial mappings and is
used to update Suspended and Graph mappings. Dom(UnionMap(G, H)) =
Dom(G) ∪ Dom(H). UnionMap(G, H)(x) = G(x) if x �∈ Dom(H) and
UnionMap(G, H)(x) = H(x) if x �∈ Dom(G). UnionMap(G, H)(x) =
G(x) ∪ H(x) whenever both exists. For instance, UnionMap(G, {t → ∅})
adds vertex t to G.



116 S. España and V. Estruch

v1 double(coin)

v2

v3 v6

v4 v5

add(coin,coin)

Succ(Zero)Zero

coin

e2−3

e3−4 e3−5

e2−6

e1−2

Succ(add(Zero,coin))

ev1 = 〈double(coin), double(coin), {}〉
ev2 = 〈double(coin), add(coin, coin), {}〉
ev3 = 〈add(coin, coin), fcase coin of {Zero → coin;

Succ(m) → Succ(add(m, coin)), {}〉
ev4 = 〈coin, coin, {}〉
ev5 = 〈coin, Zero or Succ(Zero), {}〉
ev6 = 〈coin, Zero, {}〉
ev7 = 〈coin, Succ(Zero), {}〉
ev8 = 〈add(coin, coin), fcase Zero of {Zero → coin;

Succ(m) → Succ(add(m, coin)), {}〉
ev9 = 〈add(coin, coin), coin, {}〉
ev10 = 〈add(coin, coin), fcase Succ(Zero) of

{Zero → coin; Succ(m) → Succ(add(m, coin)), {}〉
ev11 = 〈add(coin, coin), Succ(add(Zero, coin)), {}〉

Step Rule Eval Ready Suspended Graph
void {ev1} ∅ ∅

1 sel ev1 ∅ ∅ ∅
2 goal void {ev2} ∅ 〈{v1}, {}〉
3 sel ev2 ∅ ∅ 〈{v1}, {}〉
4 goal void {ev3} ∅ 〈{v1,v2}, {e1-2}〉
5 sel ev3 ∅ ∅ 〈{v1,v2}, {e1-2}〉
6 casef void {ev4} {ev3 → {}} 〈{v1,v2}, {e1-2}〉
7 sel ev4 ∅ {ev3 → {}} 〈{v1,v2}, {e1-2}〉
8 goal void {ev5} {ev3 → {}} 〈{v1,v2,v3}, {e1-2}〉
9 sel ev5 ∅ {ev3 → {}} 〈{v1,v2,v3}, {e1-2}〉
10 or void {ev6, ev7} {ev3 → {}} 〈{v1,v2,v3}, {e1-2}〉
11 sel ev6 {ev7} {ev3 → {}} 〈{v1,v2,v3}, {e1-2}〉
12 val void {ev7} {ev3 → {}} 〈{v1,v2,v3,v4}, {e1-2,e3-4}〉
13 sel ev7 ∅ {ev3 → {}} 〈{v1,v2,v3,v4}, {e1-2,e3-4}〉
14 val void ∅ {ev3 → {}} 〈{v1,v2,v3,v4,v5}, {e1-2,e3-4,e3-5}〉
15 sol void {ev8} {ev3 → {Zero}} 〈{v1,v2,v3,v4,v5}, {e1-2,e3-4,e3-5}〉
16 sel ev8 ∅ {ev3 → {Zero}} 〈{v1,v2,v3,v4,v5}, {e1-2,e3-4,e3-5}〉
17 casec ev9 ∅ {ev3 → {Zero}} 〈{v1,v2,v3,v4,v5}, {e1-2,e3-4,e3-5}〉
18 goal void ∅ {ev3 → {Zero}} 〈{v1,v2,v3,v4,v5}, {e1-2,e3-4,e3-5,e2-3}〉
19 sol void {ev10} {ev3 → {Zero, Succ(Zero)}} 〈{v1,v2,v3,v4,v5}, {e1-2,e3-4,e3-5,e2-3}〉
20 sel ev10 ∅ {ev3 → {Zero, Succ(Zero)}} 〈{v1,v2,v3,v4,v5}, {e1-2,e3-4,e3-5,e2-3}〉
21 casec ev11 ∅ {ev3 → {Zero, Succ(Zero)}} 〈{v1,v2,v3,v4,v5}, {e1-2,e3-4,e3-5,e2-3}〉
22 val void ∅ {ev3 → {Zero, Succ(Zero)}} 〈{v1,v2,v3,v4,v5,v6},

{e1-2,e3-4,e3-5,e2-3,e2-6}〉

Fig. 3. Trace of the goal double(coin). Bottom table corresponds to the sequence of
MLNT-states. The graphs in this sequence are represented as pairs of sets: The first
component is the set of vertices. The second component is the set of edges. Both sets
use the notation of the graph in the top-left part of the figure. Top-left is the search
space graph; dashed edges represent dependence relations between goals and suspended
evaluations in these vertices; edges are no labeled since this example has no variables.
Top-right table corresponds to EvaluationStates used in the trace.



A Memoizing Semantics for Functional Logic Languages 117

Rule Eval Ready Suspended Graph
(sel) void R S G

⇒ e R − {e} S G
where e ∈ R

(sol) void R S G
⇒ void R ∪ {e} S′ G
where s = 〈t, (f )case f(tn) of {pn → en}, σ〉 ∈ Dom(S)

f(tn) ∈ V ertices(G)
〈ϕ, r〉 = ObtainSolution(G, f(tn)) �∈ S(s)
e = 〈t, (f )case r of {pn → ϕ(en)}, ϕ ◦ σ〉
S′ = UnionMap(S, {s → {〈ϕ, r〉}})

(or) 〈t, e1 or e2, σ〉 R S G
⇒ void R′ S G
where R′ = R ∪ {〈t, e1, σ〉, 〈t, e2, σ〉}

(val) 〈t, val, σ〉 R S G
⇒ void R S G′

where val in head normal form, G′ = UnionMap(G, {t → {〈σ, val〉}})
(goal) 〈t, f(tn), σ〉 R S G

⇒ void R′ S G′

where

G′ =
{

UnionMap(G, {t → {〈σ, f(tn)〉}}) if t �= f(tn) ∨ σ �= id
UnionMap(G, {t → ∅}) otherwise

R′ =
{

R ∪ {Unfold(f(tn))} if f(tn) �∈ vertices(G)
R otherwise

(casec) e R S G
⇒ e′ R S G

where e = 〈t, (f )case c(bk) of {pn → en}, σ〉
pi = c(xk) is the pattern that matches c(bk)
e′ = 〈t, ϕ(ei), ϕ ◦ σ〉, ϕ = {xk �→ bk}

(casef) e R S G
⇒ void R′ S′ G
where e = 〈t, (f )case f(tn) of {pn → en}, σ〉

S′ = UnionMap(S, {e → ∅}), R′ = R ∪ {〈f(tn), f(tn), id〉}
(casev) e R S G

⇒ void R′ S G
where e = 〈t, fcase x of {pn → en}, σ〉

ϕi = {x �→ pi}, ∀i = 1, . . . , n
R′ = R ∪ {〈t, ϕi(ei), ϕi ◦ σ〉 : i ∈ {1, . . . , n}}

Fig. 4. MLNT Calculus



118 S. España and V. Estruch

Unfold: Given a function call f(tn), creates a new EvaluationState 〈f(tn), e, σ〉
where e is obtained by unfolding f(tn) and σ is the associated substitution.
Example: Unfold(add(coin, coin)) is:

〈add(coin, coin), fcase coin of { Zero → coin;
Succ(m) → Succ(add(m, coin))}, id〉

Theorem 1 (Completeness). Let e be an expression, e′ a value, and R a flat
program. For each LNT derivation e ⇒∗

σ e′ in R, there exists a sequence of
MLNT transition steps 〈void, {〈e, e, id〉}, ∅, ∅, ∅〉 = st1 ⇒ st2 ⇒ . . . ⇒ stk =
〈void, R, S, G〉 such that G contains e and e′ as vertices connected by a path
e = e1, . . . , er = e′, and the composition of edge labels of this path (taken in
reverse order) label(er−1, er)◦· · ·◦ label(e1, e2) is the computed answer σ. Where
label(edge) denotes the substitution that labels an edge.

Informally speaking, we would like to reason by induction over the length
of the LNT derivation relating the application of a rule in LNT calculus to the
application of one or more steps in MLNT calculus. This is not easy because
the graph in the MLNT derivation is not updated every step. Only the MLNT
rules (val) and (goal) update the graph (a composition of substitutions is stored
in every EvaluationState and is used later to label the edges created by these
rules). This is the reason why the proof is decomposed in three stages. First, we
demonstrate for arbitrary sequences of LNT rules Case Select, Case Guess and
Or. In a second stage, the LNT rule Function Eval is also considered. Finally, the
LNT rule Case Eval is included.

Note also that memoization should be taken into account in this proof. For
instance, whenever the MLNT rule (goal) is applied, the unfolding of the cor-
responding function call expression is inserted into the set Ready only the first
time this function is to be evaluated (the graph allows the MLNT state tran-
sition system to check it). For simplicity, the proof of Lemma 2 considers only
the case when every function call appears in the graph for the first time. The
general case should take into account EvaluationStates that remain in the set
Ready but which are not taken into account in the induction steps of the proof.

Lemma 1. Let e and e′ be two expressions and R a flat program. For each (not
necessarily successful) LNT derivation e ⇒∗

σ e′ in R which only uses the rules
Case Select, Case Guess and Or, there exists a sequence of MLNT transition steps
〈〈h, e, ϕ〉, R, S, G〉 = st1 ⇒ . . . ⇒ stk = 〈〈h, e′, σ ◦ ϕ〉, R′, S, G〉.
Proof. The proof proceeds by induction on the length n of this LNT derivation.

Base case (n = 0). Trivial.

Inductive case (n > 0). Assume that the LNT derivation has the form
e ⇒θ ea ⇒∗

γ e′

where σ = γ ◦ θ. Now, we distinguish several cases depending on the applied
rule in the first step:



A Memoizing Semantics for Functional Logic Languages 119

Case Select. Then, e has the form [[(f )case c(en) of {pk → e′
k}]] and ea =

[[θ(e′
i)]] if pi = c(xn) and θ = {xn 
→ en}. A single MLNT step suffices:

〈〈h, (f)case c(en) of {pk → e′
k}, ϕ〉, R, S, G〉 ⇒casec 〈〈h, θ(e′

i), θ◦ϕ〉, R, S, G〉.
Case Guess. Then, e has the form [[fcase x of {pk → ek}]] and ea = [[θ(ej)]],
where θ = {x 
→ pj} for some j ∈ {1, . . . , k}. In this case the corresponding
MLNT steps are: 〈〈h, e, ϕ〉, R, S, G〉 ⇒casev 〈void, RI , S, G〉 ⇒sel 〈〈h, ea, θ ◦
ϕ〉, RII , S, G〉.
Case Or. In this case, e has the form [[e1 or e2]] and, in one
LNT-step, non-deterministically we get ea =ei, i∈{1, 2} with θ= id.
In this case the corresponding MLNT steps are: 〈〈h, e1 or e2, ϕ〉,
R, S, G〉 ⇒or 〈void, RI , S, G〉 ⇒sel 〈〈h, ea, ϕ〉, RII , S, G〉, where RI = R ∪
{〈e, e1, ϕ〉, 〈e, e2, ϕ〉} and the EvaluationState with the adequate ei is se-
lected by rule (sel). �

Lemma 2. Let e and e′ be two expressions and R a flat program. For each (not
necessarily successful) LNT derivation e ⇒∗

σ e′ in R which does not use the rule
Case Eval, there exists a sequence of MLNT transition steps 〈〈h, e, ϕ〉, R, S, G〉 =
st1 ⇒ . . . ,⇒ stk = 〈〈h′, e′, ϕ′〉, R′, S, G′〉 such that there exist a path in G′ from
h to h′ and ϕ′ ◦ σ′ ◦ ϕ = σ ◦ ϕ, where σ′ is the composition of edge labels of this
path (taken in reverse order).

Proof. If the rule Function Eval has not been used in the LNT derivation, it
suffices to apply Lemma 1. Now, let us suppose that Function Eval has been used
at least once in the derivation. In this case, the derivation e = e1 ⇒σ1 e2 ⇒σ2

. . . ⇒σn−1 en = e′ may be expressed:

e1 ⇒∗
ϕ1

ei1 ⇒θ1 ei1+1 ⇒∗
ϕ2

ei2 ⇒θ2 ei2+1 . . . eik+1 ⇒∗
ϕk+1

eik+1 = en

where eij
⇒θj

eij+1, j = 1, . . . , k are the only steps where the rule Function Eval
has been applied. Therefore, by Lemma 1, the derivations eij+1 ⇒∗

ϕj+1
eij+1 are

equivalent to MLNT-sequences:

〈〈hj , eij+1, ρj〉, Rj , S, Gj〉 ⇒∗ 〈〈hj , eij+1 , ϕj+1 ◦ ρj〉, R′
j , S, Gj〉

Now, it suffices to join these sequences of MLNT transitions by applying the
MLNT-rules (goal) and (sel) whenever LNT rule Function Eval has been applied,
so that eij

⇒θj
eij+1 is associated to 〈〈hj , eij+1 , ϕj+1 ◦ ρj〉, RI

j , S, Gj〉 ⇒goal

〈void, RII
j , S, Gj+1〉 ⇒sel 〈〈hj+1, eij+1+1, ρj+1〉, Rj+1, S, Gj+1〉. �

Lemma 3. Let e be an expression, R a flat program and e′ a value. For each
LNT derivation e ⇒∗

σ e′ in R, there exists a sequence of MLNT transition steps
〈〈h, e, ϕ〉, R, S, G〉 = st1 ⇒ . . . ⇒ stk = 〈〈h′, e′, ϕ′〉, R′, S, G′〉 such that there
exist a path in G′ from h to h′ and ϕ′ ◦σ′ ◦ϕ = σ◦ϕ, where σ′ is the composition
of edge labels of this path (taken in reverse order).

Proof. The proof proceeds by induction on the number of times the rule Case
Eval has been used.



120 S. España and V. Estruch

Base case. Lemma 2.

Inductive case. Assume that the LNT derivation has the form

e = e1 ⇒σ1 e2 ⇒σ2 . . . ⇒σn−1 en = e′

and the rule Case Eval is used in the derivation. There is a maximal subse-
quence of k contiguous Case Eval derivations:

ei+1 ⇒σi+1 . . . ei+k−1 ⇒σi+k−1 ei+k

where ei+j = [[(f)case ej of {pm → em}]], j = 0, . . . , k
Note that k < n since en is a value and, by the condition of maximality, ek

is also a value. Therefore, the sequence

e1 ⇒σi+1 e2 ⇒σi+2 . . . ⇒σi+k
ek

is also a successful derivation of length less than n, therefore the induction
hypothesis can be applied: 〈〈h, e1, ϕ〉, R, S, G〉 ⇒∗ 〈〈h′, ei+1, ϕ

′〉, RI , SI , GI〉
⇒casef 〈void, RII , SII , GI〉 ⇒sel 〈〈e1, e1, id〉, RIII , SII , GI〉 ⇒Ind. Hypothesis

〈〈h′′, ek, ϕ′′〉, RIV , SIII , GII〉 ⇒val 〈void, RIV , SIII , GIII〉 ⇒sol 〈〈h′′′, ei+kϕ′′′〉,
RV , SIV , GIII〉 ⇒∗ 〈void, RV I , SV , GIV 〉
such that GIV contains the path e1, . . . , en. �

Proof (of Theorem 1). 〈void, {〈e, e, id〉}, ∅, ∅〉 ⇒sel 〈〈e, e, id〉, ∅, ∅, ∅〉
⇒Lemma3 〈〈h, e′, ϕ〉, R, S, G′〉 ⇒val 〈void, R, S, G〉 �

Note that a successful LNT derivation obtains a single solution whereas
MLNT can obtain a set of solutions and is complete. Despite these differences,
soundness may be formulated as follows:

Theorem 2 (Soundness). Let e be a goal, R be a flat program and let st1 =
〈void, {〈e, e, id〉}, ∅, ∅, ∅〉 ⇒ . . . ⇒ 〈void, R, S, G〉 = stk be a sequence of MLNT
transition steps. For every path e = e1, . . . , er = e′ in G such that e′ is a value
and label(er−1, er)◦· · ·◦label(e1, e2) = σ, there exists a successful LNT derivation
e ⇒∗

σ e′

Proof. The proof is decomposed in two parts. First, we introduce the notion of
restricted subsequence of MLNT transition steps associated to an edge and show
how this sequence can be obtained. This sequence allow us to relate MLNT and
LNT steps in a more direct manner than the original MLNT sequence4.

In a second part, we obtain a sequence of LNT steps from the restricted se-
quence of MLNT transition steps. This part proceeds by induction when MLNT
4 The sequence of MLNT and LNT steps cannot be related in a direct way for several

reasons. On the one hand, some MLNT steps are used to construct parts of the
graph which are not needed to obtain the solution e′ (they may be used to construct
other solutions). On the other hand, MLNT steps may appear in many different
arrangements. For instance, steps associated to different solutions or even to different
subgoals might be interleaved.



A Memoizing Semantics for Functional Logic Languages 121

rules (casef) and (sol) does not appear in the sequence. This special case is a
base case for a recursive, constructive, procedure that covers the general case.

Given an edge of G, a restricted subsequence5 of MLNT transition steps
m1, . . . , mp associated to this edge is composed by those steps from the original
sequence st1, . . . , stk satisfying the following conditions:

– The step is needed to construct the edge assuming that the origin vertex
already exists and the EvaluationState associated to the unfolding of this
edge is in the set Ready in the first MLNT state of the restricted sequence.

– The steps needed to construct subgoals are not included.

In order to obtain a restricted sequence of an edge, note that only MLNT
rules (val) and (goal) update the graph and both create an edge (and the des-
tination vertex, if necessary). This step can be traced back obtaining previous
EvaluationStates until a (val) or (goal) rule has been applied. Whenever a (sel)
rule is used to obtain an EvaluationState e, we need to search for the previous
step that put e in the set Ready. If the rule that put e was (sol), we consider the
(casef) step that inserted the EvaluationState in Suspended that later was used
to create e by (sol).

In the second part of the proof, we will relate a restricted sequence of MLNT
steps to the corresponding LNT steps. In a first stage, we prove by induction for
sequences where (casef) and (sol) rules have not been applied. We distinguish
several cases depending on the applied rule in the first step. We show here only
two rules, since they are similar Lemma 1:

(or) Since the sequence is restricted, this step is always followed by a (sel)
step: 〈〈t, e1 or e2, σ〉, R, S, G〉 ⇒or 〈void, R∪{〈t, e1, σ〉, 〈t, e2, σ〉}, S, G〉 ⇒sel

〈〈t, ei, σ〉, R ∪ {〈t, ej , σ〉}, S, G〉 where i, j ∈ {1, 2}, i �= j. The corresponding
sequence of LNT steps is a single Case or step: [[e1 or e2]] ⇒id [[ei]].

(casev) This step is also followed by a (sel) step: 〈〈t, fcase x of {pk → ek}, σ〉, σ〉,
R, S, G〉 ⇒casev 〈void, R′, S, G〉 ⇒sel 〈〈t, ϕi(ei), ϕi ◦ σ〉, R′′, S, G〉 where i ∈
{1, . . . , k}. The corresponding sequence of LNT steps is a single Case Guess
step: [[fcase x of {pk → ek}]] ⇒ϕi [[ϕi(ei)]].

By simple concatenation of the associated LNT steps, we can prove the result
for any path in the graph which does not need pairs of (casef) and (sol) rules.

In a second stage, the rules (casef) and (sol) are considered. This part is
proved in a constructive manner using recursion. The base case (there are no
pairs of (casef) and (sol) rules) is guaranteed because there is a partial depen-
dence relation between goals and subgoals. This case corresponds to the second
stage.

Let us consider the transition steps 〈〈h, (f )case r1 of {pk → ek}, θ〉, R, S, G〉
⇒casef 〈void, R′, S′, G〉 ⇒sol 〈void, R′′, S′′, G′〉 ⇒sel 〈〈h, (f )case rj of
{pk → ek}, ϕ ◦ θ〉, R′′′, S′′, G′〉 where r1 = f(tn) is a goal. The rule (sol) uses
a tuple 〈ϕ, r〉 given by ObtainSolution which has traversed a path r1, . . . , rj

in G. By recursion, we obtain a sequence of LNT steps s1 ⇒∗ sp associated to
5 By subsequence we do not mean contiguous.



122 S. España and V. Estruch

r1, . . . , rj . Now, it suffices to create the following LNT steps to obtain the LNT
sequence associated to the MLNT transition steps:

(f )case s1 of {pk → ek}
⇒ (f )case s2 of {pk → ek}

...
⇒ (f )case sp of {pk → ek}

and the claim follows. �

4 Conclusions

This work presents a non-standard memoizing semantics for functional logic pro-
grams (for a class of flat programs, with no loss of generality) and demonstrates
the equivalence w.r.t. a standard operational semantics for such programs. This
coud provide the theoretical basis for a complete sequential implementation of
a functional logic language with memoization.

This work considers a pure memoization approach where every goal is mem-
oized. In some situations, memoizing all subgoals is not feasible from a practi-
cal point of view. Therefore, an obvious extension is a mixed approach which
allows memoizing only some subgoals, as is done in most logic programming
systems [18].

Other extensions to this work could consider the computed graph which may
be used for other purposes such as partial evaluation [1] and debugging [2].

Acknowledgements. We gratefully acknowledge Germán Vidal for many use-
ful questions, suggestions and helpful discussions.

References

1. E. Albert and G. Vidal. The Narrowing-Driven Approach to Functional Logic
Program Specialization. New Generation Computing, 20(1):3–26, 2002.

2. M. Alpuente, F. J. Correa, and M. Falaschi. Debugging Scheme of Functional Logic
Programs. In M. Hanus, editor, Proc. of International Workshop on Functional
and (Constraint) Logic Programming, WFLP’01, volume 64 of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, 2002.

3. S. Antoy. Definitional Trees. In H. Kirchner and G. Levi, editors, Proc. of the 3rd
International Conference on Algebraic and Logic Programming, volume Springer
LNCS 632, pages 143–157, 1992.

4. S. Antoy and Z. M. Ariola. Narrowing the narrowing space. In 9th Int’l Symp. on
Prog. Lang., Implementations, Logics, and Programs (PLILP’97), volume Springer
LNCS 1292, pages 1–15, 1997.

5. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Journal
of the ACM (JACM), volume 47, pages 776–822. ACM Press New York, NY, USA,
2000.



A Memoizing Semantics for Functional Logic Languages 123

6. J. Barklund. Tabulation of Functions in Definite Clause Programs. In Manuel
Hermenegildo and Jaan Penjam, editors, Proc. of the Sixth International Sympo-
sium on Programming Language Implementation and Logic Programming, pages
465–466. Springer Verlag, 1994.

7. W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM, 43(1):20–74, 1996.

8. B. Cook and J. Launchbury. Disposable Memo Functions. ACM SIGPLAN Notices,
32(8):310–318, 1997.

9. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1992.

10. M. Hanus. Curry: An Integrated Functional Logic Language. Available at:
http://www.informatik.uni-kiel.de/˜mh/curry (2000).

11. M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming, 19&20:583–628, 1994.

12. M. Hanus. A Unified Computation Model for Functional and Logic Program-
ming. In Proc. 24st ACM Symposium on Principles of Programming Languages
(POPL’97), pages 80–93, 1997.

13. M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees. Jour-
nal of Functional Programming, 9(1):33–75, 1999.

14. T. Hortalá-González and E. Ullán. An abstract machine based system for a lazy
narrowing calculus. In Proc. of the 5th Int’l Symp. on Functional and Logic Pro-
gramming (FLOPS’2001), volume Springer LNCS 2024, pages 216–232, 2001.

15. J. Hughes. Lazy memo-functions. Proc. of the 2nd Conference on Functional Pro-
gramming Languages and Computer Architecture (FPCA). Lecture Notes in Com-
puter Science, 201:129–146, 1985.

16. M. Leuschel, B. Mertens, and K. Sagonas. Preserving termination of tabled logic
programs while unfolding. in proc. of lopstr’97: Logic program synthesis and trans-
formation, n. fuchs,ed. lncs 1463:189–205, 1997.

17. W. Lux and H. Kuchen. An Efficient Abstract Machine for Curry. In Proc. of
the 8th Int’l Workshop on Functional and Logic Programming (WFLP’99), pages
171–181, 1999.

18. I. V. Ramakrishnan, P. Rao, K. F. Sagonas, T. Swift, and D. S. Warren. Effi-
cient access mechanisms for tabled logic programs. Journal of Logic Programming,
38(1):31–54, 1999.

19. H. Tamaki and T. Sato. Old Resolution with Tabulation. In 3rd International
Conference on Logic Programming, volume Springer LNCS 225, pages 84–98, 1986.


	Introduction
	The Flat Language
	MLNT Calculus
	Conclusions



