
A Control Flow Analysis for Safe and Boxed
Ambients�

Francesca Levi1 and Chiara Bodei2

1 DISI, Università di Genova
2 Dpt. di Informatica, Università di Pisa

Abstract. We present two main contributions: (i) an encoding of Boxed
Ambients into a variant of Safe Ambients; (ii) a new Control Flow Anal-
ysis for Safe Ambients. Then, we show that the analysis, when applied
to the encoded processes, permits to accurately verify Mandatory Access
Control policies of the source processes.

1 Introduction

Mobile Ambients (MA) [9] is one of the most relevant linguistic answers, in lit-
erature, to the problem of modelling mobility. Ambients are bounded places,
where multi-threaded computations happen, and represent its central notion.
They are characterized by a name, and by a collection of local processes and of
sub-ambients, therefore generalizing both the idea of agent and the idea of loca-
tion. The ambients hierarchy can be dynamically modified, according to the three
following capabilities: inn allows an ambient to enter into an ambient (named)
n: (m[inn. P1 | P2] | n[Q] −→ n[m[P1 | P2] | Q]); outn allows an ambi-
ent to exit from an ambient (named) n: (n[m[outn. P1 | P2] | Q] −→ m[P1 |
P2] | n[Q]); openn allows to destroy the boundary of an ambient (named) n:
(openn. P | n[Q] −→ P | Q). The previous rules show that the affected ambient
n undergoes the action and has no control on whether or not the action takes
place. This is a serious drawback which is overcome in Safe Ambients (SA) [20,
21], a variant of MA, where a movement or an ambient dissolution can take
place only when the affected ambient, named n, allows it, offering the corre-
sponding coaction. This modification does not change the expressiveness of the
calculus, yet makes it easier both to write programs and to formally prove their
correctness, by using behavioural equivalences [20,22]. Furthermore, the existing
static techniques of MA, based on Type Systems [7,8] and Control Flow Analysis
(CFA) [24], can straightforwardly transplanted to SA, and typically give more
precise results due to the coactions [20,12,11,3,15,1,17].

Recently, another modification of MA has been proposed, called Boxed Am-
bients (BA). In BA there is no ambient dissolution and new primitives are
introduced for exchanging values across ambient boundaries (in MA/SA only
processes local to the same ambient can communicate). Specifically, the down-
ward actions, 〈M〉n and (x)n P , indicate an output for and an input from a
� Work partially supported by EU-project DEGAS (IST-2001-32072)

D.A. Schmidt (Ed.): ESOP 2004, LNCS 2986, pp. 188–203, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Control Flow Analysis for Safe and Boxed Ambients 189

sub-ambient (named) n; and the upward actions, 〈M〉↑ and (x)↑ P , indicate an
output for and an input from the parent ambient.

To understand the relevant difference between the BA and the MA/SA model
it is convenient to consider a simple situation. Assume that an ambient (named)
a is willing to communicate a message to an ambient (named) b. The following
MA and BA (using the semantics of [10]) processes show two typical protocols,

a[in b. m[out a. 〈M〉] | P] | b[openm | (x) S | Q] (1)
a[in b. 〈M〉↑ | P] | b[(x)a S | Q] (2)

In (1) ambient a moves inside ambient b; then an auxiliary ambient (named)
m exits from ambient a, thus ending up within ambient b, where it is opened;
consequently, the input (x) S and the output 〈M〉 can locally interact. The
role of the open capability here is crucial, but at the same time may not give
security guarantees. In fact, any process contained within ambient m is unleashed
inside ambient b; ambient m could for instance contain a malicious process,
which may cause ambient b to move inside possibly hostile locations and to be
there damaged. Further problems arise when we try to understand the opening,
according to the principles of mandatory access control (MAC) policies in multi-
level security. As the ambient interested by the action is dissolved, it is rather
difficult to classify standard read and write operations. In (2) instead there is
no need of the auxiliary ambient m, because ambient a enters inside ambient b,
and can directly communicate. Moreover, the MAC properties have a natural
interpretation: there is clearly a write access from ambient a to ambient b, and
symmetrically a read access from ambient b to ambient a.

As this example shows, the new forms of inter-level communication offer a
valid alternative to the delicate primitive of opening of MA/SA. Nevertheless,
the introduction of a different model for a given language – as BA w.r.t. MA/SA
- suggests the following questions: (i) is it possible to rebuild for the former model
(BA) the techniques previously developed for the latter (MA/SA)? (ii) does it
exist an encoding from the former into the latter model? and, consequently, (iii)
which of the techniques for the latter model keep giving the expected results
when applied to the encoded processes?

The first issue has been investigated: [4,23] introduce type systems for BA,
inspired from those of MA, controlling the consistency of communications and
the mobility of ambients; [5] extends [4] for checking precisely the MAC prop-
erties. In this paper instead we address the other approach and we investigate
whether it is possible to apply the same static techniques for both languages. We
present the following contributions: – an encoding of BA (w.r.t. the semantics of
[10]) into a variant of SA, in Sect. 3; – a new Control Flow Analysis for SA, in
Sect. 4, which is an adaptation of the CFA of [24] for MA, obtained by profitably
exploiting the presence of coactions. It computes a sound approximation of the
run-time behaviour of processes, by giving information about the evolution of
the ambients hierarchy, and about which capabilities may be exercised and which
messages may be exchanged inside any ambient.

We finally show that our analysis can safely be applied to the encoded BA
processes to verify the MAC policies, and that it is particularly adequate for this

190 F. Levi and C. Bodei

application. First, it can be more precise than the types for BA of [5] 1. Moreover,
when compared to the other static techniques for MA/SA, our analysis is a good
compromise between complexity and accuracy.

Some formal statements, here omitted for lack of space, can be found in [18].

2 Syntax and Semantics of SA and BA

With the aim of compacting as much as possible the presentation, we give the
common productions and rules, needed both for (the variant) of SA and for BA,
and then the additional productions and semantic rules specific of any calculus.

We note that the variant of SA is a combination of recent proposals [14,15,22,
23,6] where: the coaction for opening does not refer to the name of the affected
ambient; the coactions for movements reside in the target ambient, and either
refer to the name of the ambient authorized to move or allow any ambient to
move. These modifications are necessary only for the encoding, meaning that
the CFA can be easily adapted to standard SA.
Syntax. As common in CFA, we discipline the α-renaming of bound names and
variables by partitioning names and variables as follows. For SA, we consider
names N̂ = �n∈N Nn, where Nn = {n0, n1, . . .} for the infinite set of names
N = {n, h, k, . . .}; similarly for variables, given the set V = {x, y, z . . .} and
V̂ = �x∈VVx. Analogously, for BA we consider names N̂BA and variables V̂BA

partitioned as in SA. Hereafter, we may use the name n and the variable x for a
generic element of Nn and demand that a name ni ∈ Nn can only be α-converted
with a name nj ∈ Nn. Moreover, to define the CFA it is convenient to label the
SA ambients, using a set of labels L (ranged over by elements λ, µ . . .), where
� ∈ L represents the outermost ambient.

The following productions define the syntax of SA and BA, processes and
expressions (for simplicity we omit capability paths),
Common Part
P ::= Processes M ::= Expressions

0 nil inM enter M
| M . P prefix | outM exit M
| P | P parallel | n name
| (νn)P restriction | x variable
| !P replication | (M1, . . . , Mn) tuple
| 〈M〉 message
| (x1, . . . , xn) P abstraction

Additional Productions for SA
P ::= Processes M ::= Expressions

Mλ[P] ambient inM let M enter
| outM let M exit
| openM open M
| open let open
| in let enter
| out let exit

1 The type system is defined for a slightly different semantics of BA [4]. In this paper
we refer to its easy adaptation to the semantics considered here (see [10]).

A Control Flow Analysis for Safe and Boxed Ambients 191

Additional Productions for BA
P ::= Processes η ::= M |↑

M [P] ambient
| 〈M〉η message up-down
| (x1, . . . , xn)ηP abstraction up-down

For both calculi, we adopt standard syntactical conventions. We often omit
the trailing 0 in processes, and we assume that parallel composition has the
least syntactic precedence. As usual, the operators (νn)P , (x1, . . . , xn)P and
(x1, . . . , xn)ηP act as static binders for name n and for variables x1, . . . , xn;
the free and bound names of processes and expressions are defined, accordingly.
Moreover, we use the standard notation P{M/x} for substitution. We use M̃ to
denote tuples of expressions (M1, . . . , Mk), and we assume that (νñ) stands for
(νn1) . . . (νnk) and P{M̃/̃x} for P{M1/x1} . . . {Mk/xk}. We recall also that in the
untyped calculi bad-formed processes may occur, such as inn[P] and n. P .

Table 1. Reduction Axioms of BA and SA

Common part (Com) 〈M̃〉 | (x̃) P −→ P{M̃/̃x}

Additional axioms of SA

(In) for cap ∈ {in , inn}
nλ[inm. P1 | P2] | mµ[cap. Q1 | Q2] −→ mµ[nλ[P1 | P2] | Q1 | Q2]

(Out) for cap ∈ {out , outn}
mµ[nλ[outm. P1 | P2] | Q2] | cap. Q1 −→ nλ[P1 | P2] | mµ[Q2] | Q1

(Open) openn. Q | nλ[open . P1 | P2] −→ Q | P1 | P2

Additional axioms of BA

(Input ↑) 〈M̃〉n | n[(x̃)↑ P | R] −→ n[P{M̃/̃x} | R]
(Output ↑) (x̃)n P | n[〈M̃〉↑ | R] −→ P{M̃/̃x} | n[R]

Semantics. For lack of space, we comment only the top-level reductions (the
main ones are reported in Tab. 1); the auxiliary relation of structural congruence
≡ and the inference rules, which propagate the reductions, are fairly standard
(for more details [9,4]). The rules (In), (Out) and (Open) of SA model the move-
ments, in and out, and the opening of ambients. The rules of movement for BA
are analogous to those for MA, outlined in the Introduction. Rule (Com), com-
mon to both languages, models local communication, and the additional rules
for BA (Output ↑) and (Input ↑) model the inter-level communications.

In the following, =⇒ stands for the transitive and reflexive closure of −→.
Moreover, to simplify the encoding and the CFA, we consider SA and BA pro-
cesses where all the bound names and variables are distinct one from each other
and from the free names and variables, respectively.

192 F. Levi and C. Bodei

3 Encoding Boxed Ambients into Safe Ambients

We define the encoding of BA into SA in two steps: we give the translation into
unlabeled processes; then we introduce a posteriori a suitable annotation 2.

The encoding, defined in Tab. 2, depends on the enclosing ambient (in general
an expression N) and works compositionally on the structure of the process.
The inter-level communications are simulated by processes which use auxiliary
sets of names Naux and variables Vaux. We define Naux = NG↑,↓ ∪ Ne, where
G↑,↓ = {r↓

1, r
↓
2, w

↑, w↓
1, w

↓
2, r

↑}, NG↑,↓ = {ng | n ∈ NBA, g ∈ G↑,↓} and Ne =
{trd, twd, cru, crd}; analogously, we define Vaux = VG↑,↓ .

Table 2. The encoding.

Expressions

[[M]] = (M, M r↓
1 , M r↓

2 , M w↑
, M w↓

1 , M w↓
2 , M r↑

)

(Mi)g = (Mg)i if M ∈ VBA ∪ NBA (cap M)g = cap Mg if cap ∈ {in , out }
Processes
[[0]]N = 0 [[M . P]]N = M . [[P]]N [[P | Q]]N = [[P]]N | [[Q]]N [[!P]]N = ![[P]]N

[[(νn) P]]N = (ν[[n]]) [[P]]N [[M [P]]]N = M [[[P]]M | !out | !in] | !out

[[〈M〉↑]]N = wu([[M]], N, N r↓
1 , N r↓

2 , N w↑
) [[(x̃)N′

P]]N = rd(([[x̃]]) [[P]]N , N ′r↓
1 , N ′r↓

2 , N ′w↑
)

[[(x̃)↑ P]]N = ru(([[x̃]]) [[P]]N , N, N w↓
1 , N w↓

2 , N r↑
) [[(x̃) P]]N = ([[x̃]]) [[P]]N

[[〈M〉N′
]]N = wd(〈[[M]]〉, N ′w↓

1 , N ′w↓
2 , N ′r↑

) [[〈M〉]]N = 〈[[M]]〉

Names and variables are translated into the corresponding tuple in NG↑,↓

and VG↑,↓ ; the other expressions are translated accordingly. The encoding of pre-
fix, parallel composition, bang, restriction and local communications are fairly
standard. An ambient is translated into a corresponding one, with the same
name; generic coactions in and out are introduced to properly preserve the
feature that a BA ambient can be traversed by any other ambient. More in-
teresting and difficult is the encoding of inter-level communications, rendered
by the four basic protocols, defined in Tab. 3, using the auxiliary ambients.
More in details, upward and downward messages and abstractions, located in-
side an ambient N , are modelled as follows: – wu(〈[[M]]〉, N, Nr↓

1 , Nr↓
2 , Nw↑

) and
ru(([[x]]) [[P]]N , N, Nw↓

1 , Nw↓
2 , Nr↑

) realise 〈M〉↑ and (x)↑ P , respectively; – and,

wd(〈[[M]]〉, N ′w↓
1 , N ′w↓

2 , N ′r↑
) and rd(([[x]]) [[P]]N , N ′r↓

1 , N ′r↓
2 , N ′w↑

) realise 〈M〉N ′

and (x)N ′
P for sub-ambients (named) N ′, respectively.

We now explain how the protocols of Tab. 3 suitably model the inter-level
communications corresponding to (Output ↑) and (Input ↑). We mean that their
2 Notice that the labels are used only by the CFA and do not affect at all the semantics.

A Control Flow Analysis for Safe and Boxed Ambients 193

Table 3. Protocols for inter-level communication

wu(〈M〉, N, N r↓
1 , N r↓

2 , N w↑
) = inN r↓

1 . inN r↓
2 . (N w↑

[outN . open . 〈M〉] | outN r↓
2)

rd((x̃) P , N r↓
1 , N r↓

2 , N w↑
) = (νtrd) (νcrd)

(
trd[inN r↓

1 . openN r↓
1 . open] |

open trd. open crd | N r↓
1 [in . (N r↓

2 [in . outN w↑
. openN w↑

. (x̃) crd[outN r↓
2 . open . P]] |

out crd. out . in trd. open)]
)

ru((x̃) P, N, N w↓
1 , N w↓

2 , N r↑
) = (νcru)(

inN w↓
1 . inN w↓

2 . (N r↑
[outN . open . (x̃) cru[inN . open . P]] | open cru. outN w↓

2)
)

wd(〈M〉, N w↓
1 , N w↓

2 , N r↑
) = (νtwd)

(
twd[inN w↓

1 . openN w↓
1 . open] | open twd |

N w↓
1 [in . (N w↓

2 [in . outN r↑
. openN r↑

. 〈M〉] | in twd. out . open)]
)

execution lead to the expected communication and also that their steps cannot
be interfered by the interactions with the external context.

To illustrate (Output ↑) we consider a process m[n[〈M〉↑] | (x)n P]. The
communication is realised by the processes rd(([[x]]) [[P]]m, nr↓

1 , nr↓
2 , nw↑

), run-
ning inside m, and wu(〈[[M]]〉, n, nr↓

1 , nr↓
2 , nw↑

), running inside the sub-ambient n.
Ambient nr↓

1 , located within m, is a sort of isolating box, which protects the
interaction between the ambients nw↑

, containing the output 〈[[M]]〉, and nr↓
2 ,

containing the input ([[x]]) [[P]]m. The protocol is started by the sub-ambient n

that moves inside nr↓
1 , and then inside nr↓

2 . At this point, ambient nw↑
goes out

of n, and therefore ends up inside nr↓
2 , where it is opened; consequently, the

message 〈[[M]]〉 is unleashed and can be consumed. After the communication has
been realised, both the continuation of the abstraction (contained inside crd)
and ambient n go out from ambient nr↓

2 . Finally, the boundary of nr↓
1 is dis-

solved, thus liberating the ambients n and crd within ambient m. To avoid the
observation of the opening of nr↓

1 from the external context, its name is changed
into a fresh name trd by using a well-known renaming protocol [9].

The interaction (Input ↑) is realised by a similar protocol using the sym-
metric processes and auxiliary ambients. Only slight modifications are necessary,
since here the continuation of the abstraction (that is cru) has to end up inside
the sub-ambient rather than inside the enclosing ambient.

To annotate the BA and auxiliary ambients, resp., we adopt sets of labels
LBA and Laux, where Laux = {(gλ, i) | g ∈ G↑,↓ ∪ Ne, λ ∈ LBA, i ∈ N}.
Formally, we require that, for any ambient Mχ[Q], occurring in the labelled
process: (i) if M is a BA expression, then χ ∈ LBA; (ii) if M is either a name
g ∈ Ne or an expression Ng for g ∈ G↑,↓, then χ is (gλ, i), where λ is the label
of the surrounding BA ambient (possibly �).

194 F. Levi and C. Bodei

Notice that, by condition (ii), the labels of the auxiliary ambients (used in
Tab. 3) depend on the label of the BA ambient, which is ready to engage into
the inter-level communication action (see e. g. Sect. 5). Moreover, different
equivalent labellings can be given, we therefore use [[P]]N for the canonical rep-
resentative. As common in CFA, in order to obtain a more precise analysis it is
convenient to assign distinct labels to the ambients.

The encoding is operationally correct, meaning that any reduction of a BA
process is properly simulated by its SA encoding, and that the steps of the
encoding simulating any BA reduction cannot be interfered. We omit here the
formalization of this property, as it requires to introduce additional notions (in-
cluding behavioural equivalence), and we refer the reader to [18]. We only men-
tion that coactions are necessary to control the interferences, which may damage
the protocols, similarly as in the coalescing encoding of π-calculus [20].

4 Control Flow Analysis for SA

The analysis approximates the run-time behaviour of a process, by predicting for
each ambient, its possible sub-ambients, and which capabilities may be exercised
and which messages may be exchanged locally. Our CFA does not distinguish
among different elements of the same equivalence class Nn and Vx: it only con-
siders their canonical representatives n and x, respectively.
Solutions. A local solution I is either on the form 〈L, U, C〉 or on the form
〈L, U ∪ {open }, C〉; 〈L′, U ′, C ′〉, for L, L′ ⊆ L, C, C ′ ⊆ CE and U, U ′ ⊆ L ∪ CE ,
where CE is the set of closed SA expressions. A solution of the analysis is a triple
(ρ, φ, σ), where : ρ : L → CE , describes the relation between an ambient label
and its possible names; φ : L → I assigns a local solution to any ambient label
(here I is the set of local solutions); and σ : V → CE , predicts which expressions
may be bound to any variable.

The local solution φ(λ) reports the information about the ambients with label
λ ∈ L; more in details, it describes the possible behaviour both of the processes
running inside, and of the processes which may be unleashed, when they are
opened. It may be either (a) 〈L, U, C〉 or (b) 〈L, U, C〉; 〈L′, U ′, C ′〉, provided
that λ ∈ L. In both cases, the sets U and C approximate the behaviour of the
internal processes: U reporting the labels of the possible sub-ambients and the
expressions (in particular the capabilities), which may be exercised; C reporting
the expressions which may be communicated. Local solutions (a) and (b) differ
in the information they give about the opening: (a) says that the ambients may
be opened (if open ∈ U) inside the ambients with label µ ∈ L, and that the
process unleashed is described by U and C; while (b) says that the ambients
may be opened (indeed open ∈ U) within the ambients with label µ ∈ L′, and
that the process unleashed is described by U ′ and C ′.

Technically, to distinguish, inside a local solution I, between what happens
before and after the possible opening, we use the following functions pre(I)
and post(I). We let pre(〈L, U, C〉) = pre(〈L, U, C〉; 〈L′, U ′, C ′〉) = 〈L, U, C〉,

A Control Flow Analysis for Safe and Boxed Ambients 195

post(〈L, U, C〉; 〈L′, U ′, C ′〉) = 〈L′, U ′, C ′〉 and post(〈L, U, C〉) = 〈L, U, C〉, if
open ∈ U , post(〈L, U, C〉) = ∅, otherwise.

The following example is intended to illustrate both the different meaning
of the two forms of local solutions and the role of the coaction open , which is
exploited, in our CFA, to have a more precise treatment of the critical opening
action. This is the main relevant difference with the analysis of [24] for MA,
and follows the lines of the type systems for SA [20,12,15,1,17], in particular the
proposal of [15] adding more flexibility to the single-threaded types of [20].

Example 1. The following process is similar to the process (1) of the Introduc-
tion: aλ[in b. mµ[(out a. open . 〈inh〉) | out k]] | bχ[in a. outm. openm. (x) x].
The only difference is that, when ambient m is opened inside ambient b, both
the message 〈inh〉 and the capability out k are unleashed. A valid solution for
this process is (ρ, φ, σ), where ρ(λ) = a, ρ(µ) = m, ρ(χ) = b, σ(x) = {inh},
φ(�)=〈{�}, {λ, µ, χ}, ∅〉 φ(χ)=〈{χ}, {in a, outm, openm, inh, out k, µ, λ}, {inh}〉
φ(µ)=〈{µ}, {out a, open , out k}, ∅〉; 〈{χ}, {out k}, {inh}〉 φ(λ)=〈{λ}, {µ, in b}, ∅〉

Here, ρ(λ) = a says that a may be the name of the ambient with label
λ (similarly ρ(µ) = m, . . .); σ(x) contains the expression inh, meaning that
variable x may be bound to inh; the function φ describes the possible contents
of any ambient. For instance,
– φ(µ) says that the capabilities out a, open and out k may run inside m;

moreover, ambient m may be opened inside ambient b, and, when opened,
it may unleash the capability out k and the message 〈inh〉.

– φ(χ) says that inside ambient b: the ambients m and a may appear; the
capabilities in a, outm, openm, inh and out k may be exercised; and the
expression inh may be communicated.

Note that in the local solution for ambient m (that is φ(µ)) there is a clear
distinction between what may end up before and after the capability open .
This information is exploited by the CFA to predict that ambient b, when
opening ambient m, acquires only the capability out k and the message 〈inh〉
(see φ(χ)). We could also adopt a local solution (as in the CFA of [24])
φ(µ) = 〈{µ, χ}, {out a, open , out k}, {inh}〉. In this case, there is no distinc-
tion between what may run inside the ambient and what may be unleashed,
when the ambient is opened (inside m or b). This would therefore lead to a
less precise result. In particular, φ(χ) should be modified taking into account
that also the capabilities out a and open may end up within ambient b, as a
consequence to the opening of ambient m.

Validation. The validation of a given solution, as we will see in a while, is
established by a set of clauses, that bring the validation of a compound process
back to the validations of its sub-processes. To capture the distinction between
what happens before and after the opening, it is necessary to keep the local
solutions of the sub-processes and to combine them in a proper way. This is not
a trivial task and can be intuitively introduced by considering Ex. 1 and the
validation of the internal process of ambient m, w.r.t. (ρ, φ, σ) and φ(µ).

196 F. Levi and C. Bodei

The local solution I1 = 〈{µ}, {out a, open }, ∅〉; 〈{χ}, ∅, {inh}〉 approximates
the behaviour of out a. open . 〈inh〉, and is obtained by combining the follow-
ing local solutions: 〈{µ}, {out a}, ∅〉 describing the presence of out a inside m;
〈{µ}, {open }, ∅〉; 〈{χ}, ∅, ∅〉 saying that ambient m may be opened inside b;
〈{χ}, ∅, {inh}〉 describing the presence of message 〈inh〉 inside b. The posi-
tion of the processes establishes the ordering of composition and therefore what
may end up before open (that is inside m) and after open (that is inside the
ambient opening m, named b).

Furthermore, φ(µ) = 〈{µ}, {out a, open , out k}, ∅〉; 〈{χ}, {out k}, {inh}〉 ap-
proximates the behaviour of process out a. open . 〈inh〉 | out k, and is obtained
by combining I1 with the local solution I2 = 〈{χ, µ}, {out k}, ∅〉 describing the
process out k. Note that, since the capability out k may be executed (at run-
time) either before (inside m) or after opening (inside b), then I2 correctly pre-
dicts that it may be enclosed in both ambients and φ(µ) says that it may end up
both before and after opening. We also note that the solution (ρ, φ, σ) is valid
for this process w.r.t. φ(µ), provided that the possible effects of the capabilities
of movement on their enclosing ambients are properly recorded in the ambients
hierarchy. For instance, out a could cause the ambient m to move out of ambient
a (see the discussion below about rule (move)).

To realise the technique explained above, following the type systems for SA
[15,1,17], we introduce two main technical concepts. First, we define two op-
erators of parallel and sequential composition (|) and (.) to properly combine
local solutions. We order components by letting 〈L1, U1, C1〉
 〈L2, U2, C2〉 iff
L2 ⊆ L1, U1 ⊆ U2 and C1 ⊆ C2, and we define

〈L1, U1, C1〉 	 〈L2, U2, C2〉 = 〈L1, U1, C1〉 | 〈L2, U2, C2〉 = 〈L1, U1, C1〉. 〈L2, U2, C2〉
〈L1, U1, C1〉; 〈L2, U2, C2〉 | I ={

(pre(I) | 〈L1, U1, C1〉); (pre(I) | 〈L2, U2, C2〉) if post(I) = ∅
(pre(I) | 〈L1, U1, C1〉); (pre(I) | 〈L1, U1, C1〉 | 〈L2, U2, C2〉 | post(I))

〈L, U, C〉. 〈L1, U1, C1〉; 〈L2, U2, C2〉 ={
(〈L, U, C〉. 〈L1, U1, C1〉); 〈L2, U2, C2〉 if open
∈ U
(〈L, U, C〉. 〈L1, U1, C1〉); (〈L1, U1, C1〉 	 〈L2, U2, C2〉)

〈L1, U1, C1〉; 〈L2, U2, C2〉. I ={ 〈L1, U1, C1〉; (〈L2, U2, C2〉 	 pre(I) 	 post(I)) if post(I)
= ∅
〈L1, U1, C1〉; (〈L2, U2, C2〉 	 pre(I))

Two local solutions of the shape 〈L, U, C〉 are composed by taking the least
upper bound with respect to
 (denoted by �), because we have to collect enough
information to validate both processes. The parallel and sequential composition
with a local solution of the shape 〈L1, U1, C1〉; 〈L2, U2, C2〉 are based on the ideas
explained above. Thus, any parallel process may end up both before and after
the open , also when two open may appear we don’t know which of them will
be executed first; in sequential composition the ordering establishes whether the
process may end up either before or after the open .

Moreover, we introduce contexts, which are expressions, built from local so-
lutions and from the special expression � (denoting the hole) using parallel (|)
and sequential composition (.) operators. Formally, a context is either �, or I. Z

A Control Flow Analysis for Safe and Boxed Ambients 197

Table 4. Control Flow Analysis for SA

move: |= cap : 〈L, U, C〉. � iff cap ∈ U ∧ cap ∈ {inn, outn, out , in , n, outn, inn}
∧ (cap = inn ⇒ ∀λ ∈ L, ∀µ

(n ∈ ρ(µ) ∧ Ein(λ, µ) ⇒ λ E φ(µ)))
∧ (cap = outn ⇒ ∀λ ∈ L, ∀µ, χ

(n ∈ ρ(µ) ∧ Eout(λ, µ, χ) ⇒ λ E φ(χ)))

open: |= openn : 〈L, U, C〉. (� | 〈L1, U1, C1〉) iff openn ∈ U ∧ ∀λ ∈ L, ∀µ
(n ∈ ρ(µ) ∧ Eopen(λ, µ) ⇒
post(φ(µ)) � 〈L1, U1, C1〉)

co-open: |= open : 〈L, U, C〉; 〈L′, U ′, C′〉. � iff open ∈ U

nil: |= 0 : 〈L, U, C〉 iff true res: |= (νn)P : I iff |= P : I

amb: |= Mλ[P] : 〈L, U, C〉 iff λ ∈ U ∧ Mσ ⊆ ρ(λ) ∧ |= P : φ(λ)∧
pre(φ(λ)) = 〈L′ ∪ {λ}, U ′, C′〉

msg : |= 〈M〉 : 〈L, U, C〉 iff Mσ ⊆ C bang : |= !P : I iff I | I1 = I∧ |= P : I1

abs: |= (x̃) P : I iff pre(I) = 〈L, U, C〉∧ |= P : I ∧ ∀λ ∈ L

(pre(φ(λ)) = 〈L′, U ′, C′ ∪ {M̃}〉 ⇒ ∀i ∈ {1, k}Mi ∈ σ(xi))

par : |= P1 | P2 : I1 | I2 iff |= P1 : I1∧ |= P2 : I2

pref: |= M . P : Z[I] iff ∀N ∈ Mσ |= N : Z′ ∧ Z′ � Z∧ |= P : I

or I | Z, where I is a local solution and Z is a context. Contexts are needed to
analyse the capabilities, appearing in a prefix; the hole actually shows where the
local solution of the continuation has to be inserted (see rule (pref) of Tab. 4).
A context Z filled with a local solution I, denoted by Z[I], is evaluated to a
local solution by applying the composition operators defined above.

The clauses for validation are shown in Tab. 43. The judgments for: ex-
pressions are on the form (ρ, φ, σ) |= M : I. Z, where M is a closed expres-
sion (without free variables) and I. Z is a context; processes are on the form
(ρ, φ, σ) |= P : I, where P is a process and I a local solution. The rules for
processes check whether (ρ, φ, σ) is a valid solution for P w.r.t local solution
I, meaning that I contains enough information to approximate the behaviour
of P , when enclosed inside any ambient with label λ, such that λ ∈ L and
pre(I) = 〈L, U, C〉. Analogously for expressions.

The rules for expressions use also the following auxiliary notions: the function
f collects, for any label λ, the labels of the possible fathers; the next three
conditions check whether the capabilities of movement and opening are enabled.
Let f(λ) = {µ | pre(φ(µ)) = 〈L, U ∪ {λ}, C〉}.

3 In the rules we write |= M : Z for (ρ, φ, σ) |= M : Z; similarly for processes.

198 F. Levi and C. Bodei

– Ein(λ, µ) ≡ (in ∈ U1 ∨ (inm ∈ U1 ∧ m ∈ ρ(λ)) ∧ (f(λ) ∩ f(µ)
= ∅) where
pre(φ(µ)) = 〈L1, U1, C1〉;

– Eout(λ, µ, χ) ≡ (µ ∈ f(λ)) ∧ (χ ∈ f(µ)) ∧ (out ∈ U1 ∨ (outm ∈ U1 ∧ m ∈ ρ(λ)))
where pre(φ(χ)) = 〈L1, U1, C1〉;

– Eopen(λ, µ) ≡ (λ ∈ f(µ)) ∧ open ∈ U1, where pre(φ(µ)) = 〈L1, U1, C1〉.

In all the clauses the expression, appearing at top-level, is properly recorded
in the local solution. Rule (move) handles the actions and coactions of move-
ment; the context is simply 〈L, U, C〉. �. The additional conditions verify the
possible movements produced by the capabilities, inn and outn, on their possi-
ble enclosing ambients (those with label λ ∈ L). For instance, for inn we control
whether there exists an ambient (named) n and with label µ, which may be a
sibling of that with label λ and which offers the right coaction. When the ambi-
ent (with label λ) may move, it has to be recorded as possible sub-ambient of the
target ambient (with label µ). To this aim, we use λ E I, where λ E I iff, either
I = 〈L, U, C〉 and λ ∈ U , or I = 〈L1, U1, C1〉; 〈L2, U2, C2〉 and λ ∈ U1 ∩ U2.

In rule (co-open) the context is 〈L, U, C〉; 〈L′, U ′, C ′〉. �, where open ∈ U ,
because the continuation ends up after open . In rule (open) the context
〈L, U, C〉. (� | 〈L1, U1, C1〉) shows that the process unleashed by the opening
of an ambient n (approximated by 〈L1, U1, C1〉) may end up in parallel with the
continuation.

In the clauses for processes the following notion is also used. Given an ex-
pression M , we define Mσ = {N ∈ CE | N = Mη for a substitution η such that
η(x) ∈ σ(x)}. The set Mσ reports the closed expressions, that may appear in
place of M at run-time. The rules (amb) and (msg) are rather standard; the
ambient and the message appear at top-level, and therefore have to be properly
recorded in the local solution. Rule (abs) says that any message, which may be
communicated inside the possible enclosing ambients, has to be recorded by the
function σ. The rules for parallel, sequential composition and bang, (par), (pref)
and (bang), exploit the auxiliary composition operations to properly combine
the local solutions of the sub-processes. Rule (pref) says that the local solution
of a process M . P is obtained by filling the context, modelling the capability,
with the local solution of the continuation. In order to find out a common context
that correctly approximates the behaviour of all the capabilities that may belong
to Mσ we use a relation � over contexts. The relation � is the least transitive
and reflexive relation such that: (i) 〈L, U, C〉. � � 〈L, U, C〉. (� | 〈L′, U ′, C ′〉); and
(ii) 〈L, U, C〉; 〈L, U, C〉. � � 〈L, U, C〉. �.
Properties. A solution (ρ, φ, σ) is valid for a process P iff (ρ, φ, σ) |= P : φ(�),
s.t. pre(φ(�)) = 〈L, U, C〉 and � ∈ L. The CFA satisfies standard properties
(see [24,18]); i.e. Subject Reduction (validity of solutions is preserved under re-
duction) and soundness (the static behaviour is a sound approximation of the
dynamic one). Furthermore, there always exists a least (in terms of precision)
solution which is valid 4. To formalise soundness we use contexts, that are stan-
dard process expressions with a hole. A context is said enabling whenever the
hole does not appear underneath a prefix, an abstraction or a bang.
4 We omit for lack of space the formal definition of the ordering.

A Control Flow Analysis for Safe and Boxed Ambients 199

Theorem 1 (Subject Reduction and Soundness). Let (ρ, φ, σ) be a valid
solution for process P . For any process P ′, s.t. P =⇒ P ′, we have that
1. (ρ, φ, σ) is a valid solution also for P ′;
2. if P ′ ≡ C[nλ[R]], for some enabling context C, then n ∈ ρ(λ). Moreover, if

pre(φ(λ)) = 〈L, U, C〉, we have also that: (a) if R = M . P1 | P2 and M ∈ CE,
then M ∈ U ; (b) if R = mµ[P1] | P2, then µ ∈ U ; (c) if R = 〈M〉 | (x)P1 | P2
and M ∈ CE, then M ∈ C and M ∈ σ(x).

5 Applying the CFA to the Encoding

We show how the MAC properties of BA [5] can be verified by analysing the
encoding. A MAC policy is specified by a boolean predicate P ⊆ NBA × NBA ×
AM, where AM = {r, w, rw} defines the access modes (read, write, read-write).

Definition 1 (MAC Properties). A BA process P satisfies the property P
iff for any P =⇒ P ′, s.t. P ′ ≡ C[m[R1 | n[R2 | Q2] | Q3]] for an enabling
context C, we have that: (i) if R1 = (x)n Q1 and R2 = 〈M〉↑, then P(n, m, α)
and P(m, n, β), for α ∈ {w, rw} and β ∈ {r, rw}; (ii) if R1 = 〈M〉n and R2 =
(x)↑ Q1, then P(n, m, α) and P(m, n, β), for α ∈ {r, rw} and β ∈ {w, rw}.

We introduce a static property on the solutions of the analysis that is safe, i.e. :
if a solution for the encoding passes the test, then the source BA process satisfies
the security property of Def. 1. The basic idea is to translate the conditions of
Def. 1 into equivalent conditions on the behaviour of the auxiliary ambients that
realise the inter-level communication actions. We examine, as an example, case
(ii) corresponding to (Input ↑); (Output ↑) is analogous.

To this aim, we focus on the following process Q = c[〈M2〉a] | a[in c | in b |
(x)↑ P | b[〈M1〉a]], and we consider its encoding (w.r.t k)

[[Q]]k ≡ !out | cc[!out | !in | wdc(〈[[M2]]〉, aw↓
1 , aw↓

2 , ar↑
)] | aa[!out | !in | in c | in b |

rua(([[x]]) [[P]]a, a, aw↓
1 , aw↓

2 , ar↑
) | bb[!out | !in | wdb(〈[[M1]]〉, aw↓

1 , aw↓
2 , ar↑

)]]

For simplicity, we adopt in the encoding the following labels: for the BA am-
bients their names; for the auxiliary ambients the derived labels (see Sect. 3),
where indexes are omitted (they usually are necessary to have distinct labels,
but here are not relevant.). For instance, the ambients aw

↓
1 and aw

↓
2 appear-

ing in wdc(〈[[M2]]〉, aw↓
1 , aw

↓
2 , ar

↑
) have labels w↓

1c and w↓
2c, resp.; while those oc-

curring in wdb(〈[[M1]]〉, aw↓
1 , aw

↓
2 , ar

↑
) have labels w↓

1b and w↓
2b, resp.. Similarly, in

rua(([[x]]) [[P]]a, a, aw
↓
1 , aw

↓
2 , ar

↑
) the ambient ar

↑
has label r↑

a.
Process Q obviously satisfies the MAC policy, specified only by P(a, c, r) and

P(c, a, w) (meaning that a can read from c and c can write to a). In fact, ambient
a may move inside ambient c, and there communicate; while it does not enter
inside and communicate with ambient b (b is a sub-ambient of a).

The condition on the encoded process has to capture whether ambient a
may communicate with ambient c (or analogously with ambient b). The most

200 F. Levi and C. Bodei

relevant auxiliary ambients used in the simulation of (Input ↑) are: the ambient
ar

↑
, containing the upward abstraction ([[x]]) [[P]]a; the ambients aw

↓
2 , one for b

and one for c, containing the downward outputs 〈[[M1]]〉 and 〈[[M2]]〉 resp.. The
communication between a and c takes place whenever ar

↑
ends up (by exiting

from a) inside the ambient aw
↓
2 , local to c (as shown by the label w↓

2c), and there
is opened; similarly, for the communication between a and b. Therefore, one way
to capture these interactions is to detect inside which ambients aw

↓
2 the ambient

ar
↑

may end up. This is formalised by the following definition, according to the
labelling of the auxiliary ambients, explained in Sect. 3.

Definition 2 (Static Property). Let (ρ, φ, σ) be a solution. We say that
(ρ, φ, σ) satisfies the property P when the following conditions hold:
(i) if pre(φ((r↓

2µ, j))) = 〈L, U, C〉, (w↑
λ, i) ∈ U , nr↓

2 ∈ ρ((r↓
2µ, j)), nw↑ ∈

ρ((w↑
λ, i)) and n ∈ ρ(λ), then for any m ∈ ρ(µ), we have P(n, m, α) and

P(m, n, β), where α ∈ {w, rw} and β ∈ {r, rw};
(ii) if pre(φ((w↓

2µ, j))) = 〈L, U, C〉, (r↑
λ, i) ∈ U , nw↓

2 ∈ ρ((w↓
2µ, j)), nr↑ ∈

ρ((r↑
λ, i)) and n ∈ ρ(λ), then for any m ∈ ρ(µ), we have P(n, m, α) and

P(m, n, β), where α ∈ {r, rw} and β ∈ {w, rw}.

Theorem 2 (Safeness). Let (ρ, φ, σ) be a valid solution for [[P]]N . If (ρ, φ, σ)
satisfies the property P, then the BA process P satisfies the property P.

We apply this approach to the example above, by analysing the encoding
of Q. The following is a valid solution 5, where (ρ, φ, σ), and σ(x) = {M2},
ρ(r↑

a) = ar↑
, ρ(crua) = cru, ρ(gb) = ρ(gc) = ag for g ∈ {w↓

1, w
↓
2}, ρ(twdb) = ρ(twdc) = twd,

φ(�) = 〈{�}, {out , a, c, r↑
a}, ∅〉 φ(b) = 〈{b}, {out , in , w↓

1b, w
↓
2b, t

wd
b , open twd}, ∅〉

φ(a) = 〈{a}, {out , in , in b, in c, b, in aw↓
1 , in aw↓

2 , r↑
a, open cru, out aw↓

2 , crua }, ∅〉
φ(c) = 〈{c}, {out , in , a, r↑

a, w↓
1c, w

↓
2c, t

wd
c , open twd}, ∅〉

φ(r↑
a) = 〈{r↑

a}, {out a, open }, ∅〉; 〈{w↓
2c}, {crua }, ∅〉

φ(crua) = 〈{crua }, {in a, open }, ∅〉; 〈{a}, ∅, ∅〉
φ(w↓

1b) = 〈{w↓
1b}, {in , out , in twd, open , w↓

2b}, ∅〉; 〈{twdb}, {w↓
2b}, ∅〉

φ(w↓
2b) = 〈{w↓

2b, }, {in , out ar↑
, open ar↑}〉{M1}

φ(twdb) = 〈{twdb}, {in aw↓
1 , open aw↓

1 , open , w↓
1b, w

↓
2b}, ∅〉; 〈{b}, {w↓

1b, w
↓
2b}, ∅〉

φ(w↓
1c) = 〈{w↓

1c}, {in , out , in twd, open , w↓
2c, r

↑
a, a}, ∅〉; 〈{twdc}, {w↓

2c, r
↑
a, a}, ∅〉

φ(w↓
2c) = 〈{w↓

2c}, {in , out ar↑
, open ar↑

, r↑
a, a, crua }, {M2}〉

φ(twdc) = 〈{twdc}, {in aw↓
1 , open aw↓

1 , open , w↓
1c, w

↓
2c, r

↑
a, a}, ∅〉; 〈{c}, {w↓

1c, w
↓
2c, r

↑
a, a}, ∅〉

The solution says that the ambient ar
↑

(with label r↑
a) can enter only inside the

ambient aw
↓
2 with label w↓

2c, as shown by φ(w↓
2c) and φ(w↓

2b). Since this kind of
access among a and c is authorised, the policy is satisfied according to Def. 2.

Note that the crucial information to achieve this result is that the capabil-
ity in b cannot be exercised (since ambients a and b cannot be siblings); and
5 We assume for simplicity that P = 0 and that M1 and M2 are two closed expressions.

Also, we omit ρ for the BA ambients (it is the identity).

A Control Flow Analysis for Safe and Boxed Ambients 201

therefore ambient a cannot enter inside ambient b (see φ(b)). Moreover, the local
solutions are essential 〈L1, U1, C1〉; 〈L2, U2, C2〉 for the auxiliary ambients to ac-
curately distinguish what happens before and after their dissolution. A weaker
analysis as [24] (see Ex. 1) cannot argue that in a has been consumed before cru

(carrying the continuation of the abstraction) is opened inside ambient a (see
φ(crua) and φ(a)). As a consequence, it would report that ambient a may enter
inside itself, by exercising in a, and that the MAC property may be violated (as
in b may run ambient a inside its possible sibling b). Also the types of [5] for
BA cannot prove this property, precisely because they do not capture that in b
cannot be exercised inside a.

6 Conclusions

We have presented: – an encoding of BA into a variant of SA; – a CFA for SA
that refines the proposal of [24] with a finer treatment of the critical opening
action, along the lines of the type systems for SA [20,12,15,1,17] (see Ex. 1).
The CFA is sufficiently informative to capture the typical security properties of
SA [7,12,3,11,2] controlling which boundaries an ambient may cross and which
ambients it may open.

These results are interesting by themselves, but also when combined together,
given that, by means of the translation, the CFA can be applied to verify security
properties also of BA, in particular the MAC properties. Other properties can
probably be verified this way, e.g. the mobility property of [23]. The relevance
of our CFA for this application is demonstrated by the example, discussed in
Sect. 5, which cannot be proved using either the types of [5] for BA or the
adaptation of CFA of [24] to SA. Several refinements [16,25,11,19,13] of [24]
have been proposed. The analyses of [11,13,19] for MA/SA further restrict the
space of possible interactions, by exploiting more contextual information, and
better handle replication. It is not clear whether their treatment of the opening
is sufficiently accurate for analysing the encoding. The CFA for MA of [16,
25] are more complex than [24] (and also of our CFA), as they exploit more
detailed information about the possible run-time shape of processes, and could
be profitably applied to the encoding to derive more accurate predictions. The
CFA in [2] verifies an information flow property, which does not seem adequate to
capture the MAC properties. The type systems of MA/SA [7,8,20,3,1,12,15,17]
are typically simpler and more elegant than the analyses. They cannot however
distinguish the auxiliary ambients with the same name and therefore cannot give
better results than the types for BA [5], when applied to the encoded processes
(see e.g. the use of labels in the example of Sect. 5).

Finally, we mention that in [4,5,23] a different semantics for the BA inter-
level communications is used, where downward-upward communication actions
interact with local prefixes rather than with each other. In [18] we have adapted
the approach of this paper to the BA version of [4], which seems more expressive,
and we have obtained similar results w.r.t [5]. Although the encoding of [4] is
much more complex, it can be derived along the lines of Sect. 3. It is enough to

202 F. Levi and C. Bodei

modify the translation of local and inter-level communication actions, by using
different auxiliary ambients in the protocols of Tab. 3 and by introducing sum
between non-prefixed terms in SA, reflecting the intrinsic non-determinism on
local prefixes of this model. We intend to study the encoding also of another
version of BA [6], which extends [10] with special coactions using passwords.

References

1. T. Amtoft and A. J. Kfoury and S. M. Pericas-Geertsen. What are
Polymorphically-Typed Ambients? Proc. of ESOP’01, LNCS 2028, 2001.

2. C. Braghin, A. Cortesi and R. Focardi. Control Flow Analysis for information flow
security in mobile ambients. Proc. of FMOODS’02, pp. 197-212, 2002.

3. M. Bugliesi and G. Castagna. Secure safe ambients. Proc. of POPL ’01, pp.
222-235, 2001.

4. M. Bugliesi, G. Castagna, S. Crafa. Boxed Ambients. Proc. of TACS’01, LNCS
2225, pp. 36-61, 2001.

5. — Reasoning about Security in Mobile Ambients. Proc. of CONCUR’01, LNCS
2154, pp. 102-120, 2001.

6. M. Bugliesi, S. Crafa, M. Merro and V. Sassone. Communication Interference in
Boxed Ambients. Proc. of FSTTCS’02, LNCS 2556, pp. 71–84, 2002.

7. L. Cardelli, G. Ghelli, and A.D. Gordon. Mobility types for mobile ambients. Proc.
of ICALP’99, LNCS 1644, pp. 230-239, 1999.

8. — Types for the ambient calculus. Information and Computation, 177(2), 2002.
9. L. Cardelli and A.D. Gordon. Mobile ambients. Proc. of FoSSaCS ’98, LNCS 1378,

pp. 140-155, 1998.
10. S. Crafa, M. Bugliesi and G. Castagna. Information Flow Security in Boxed Am-

bients. Proc. of FWAN ’02, ENTCS, 66(3), 2002.
11. P. Degano, F. Levi and C. Bodei. Safe Ambients: Control Flow Analysis and

Security. Proc. of ASIAN ’00, LNCS 1961, pp. 199-214, 2000.
12. M. Dezani-Ciancaglini and I. Salvo. Security Types for Mobile Safe Ambients.

Proc. of ASIAN ’00, LNCS 1961, pp. 215-236, 2000.
13. J. Feret. Abstract Interpretation-Based Static Analysis of Mobile Ambients. Proc.

of SAS’01, LNCS 2126, pp. 412-430, 2001.
14. X. Guan, Y. Yang, and J. You. Making Ambients More Robust. Proc. of the

International Conference on Software: Theory and Practise, 377–384, 2000.
15. — Typing Evolving Ambients. Inf. Processing Letters, 80(5), pp. 265–270, 2001.
16. R. R. Hansen and J. G. Jensen and F. Nielson and H. R.Nielson. Abstract Inter-

pretation of Mobile Ambients. Proc. of SAS’99, LNCS 1694, pp. 135-148, 1999.
17. F. Levi. Types for Evolving Communication in Safe Ambients. Proc. of VMCAI

’03, LNCS 2575, pp. 102-115, 2003.
18. F. Levi and C. Bodei A Control Flow Analysis for Safe and Boxed Ambients (Ex-

tended Version). Available at http://www.di.unipi.it/˜ levifran/papers.html
19. F. Levi and S. Maffeis. An Abstract Interpretation Framework for Analysing Mobile

Ambients. Proc. of SAS ’01, LNCS 2126, pp. 395-411, 2001.
20. F. Levi and D. Sangiorgi. Controlling Interference in Ambients. Proc. of POPL

’00, pp. 352-364, 2000.
21. — Mobile Safe Ambients. TOPLAS, 25(1), 1–69, 2003.
22. M. Merro and M. Hennessy. Bisimulation congruences in Safe Ambients. Proc. of

POPL ’02, 2002.

A Control Flow Analysis for Safe and Boxed Ambients 203

23. M. Merro and V. Sassone. Typing and Subtyping Mobility in Boxed Ambients.
Proc. of CONCUR’02, LNCS 2421, pp. 304-320, 2002.

24. F. Nielson, H.R. Nielson, R.R. Hansen. Validating firewalls using flow logics. The-
oretical Computer Science, 283(2), 381-418, 2002. Also (joint work also with J.G.
Jensen) appeared in the Proc. of CONCUR’99, LNCS 1664, 1999.

25. H. R. Nielson and F. Nielson. Shape Analysis for Mobile Ambients. Proc. of POPL’
00, pp. 135-148, 2000.

	Introduction
	Syntax and Semantics of SA and BA
	Encoding Boxed Ambients into Safe Ambients
	Control Flow Analysis for {em SA}
	Applying the CFA to the Encoding
	Conclusions

