
Towards High-Performance Active Networking�

Lukas Ruf1, Roman Pletka2, Pascal Erni3, Patrick Droz2, and Bernhard Plattner1

1 Computer Engineering and Networks Laboratory
Swiss Federal Institute of Technology (ETH)

CH-8092 Zürich/Switzerland
{ruf,plattner}@tik.ee.ethz.ch
2 IBM Zurich Research Laboratory

Säumerstrasse 4
CH-8803 Rüschlikon/Switzerland
{rap,dro}@zurich.ibm.com

3 pascal@promethos.org

Abstract. Network processors have been developed to ease the implementation
of new network protocols in high-speed routers. Being embedded in network in-
terface cards, they enable extended packet processing at link speed as is required,
for instance, for active network nodes. Active network nodes start using network
processors for extended packet processing close to the link. The control and con-
figuration of high-performance active network nodes with network processors
such that new services can benefit from the additional processing capacity offered
is nontrivial since the complexity to configure a node while providing sufficient
level of abstraction is hard to master. In this paper, we present PromethOS NP
which is a modular and flexible router architecture that provides a framework for
dynamic service extension by plugins with integrated support of network proces-
sors, namely the IBM PowerNP 4GS3 network processor. We briefly introduce
the PowerNP architecture in order to show how our active networking framework
maps onto this network processor and provide results from performance measure-
ments. Owing to architectural similarities of network processors, we believe that
our considerations are also valid for other network processors.

1 Introduction and Motivation

Network processors (NPs) have been developed to ease the implementation of new
networking functionalities and services in high-speed routers [14]. The programmable
environments provided by processor manufacturers remove the burden of creating
application-specific integrated circuits (ASICs) or other hardware components needed
for extended or new services. Hence, NPs combine the high performance known from
ASICs with the capability to adapt networking functionalities in software, while not
requiring expensive modifications in hardware. Even though not designed for active net-
working in the first place, we are convinced NPs provide a perfect processing platform
for dynamic service deployment and configuration.
� This work is partially sponsored by the Swiss Federal Institute of Technology (ETH) Zürich

and the Swiss Federal Office for Education and Science (BBW Grant 99.0533). PromethOS
v1 has been developed by ETH as a partner in IST Project FAIN (IST-1999-10561). We would
like to acknowledge the great support received from the IBM Zurich Research Laboratory.

N. Wakamiya et al. (Eds.): IWAN 2003, LNCS 2982, pp. 32–43, 2004.
c© IFIP International Federation for Information Processing 2004

Towards High-Performance Active Networking 33

Modern high-performance active network nodes (hANNs) are built by a set of host
CPUs and a set of network interface cards (NICs). NICs provide embedded NPs to
process packets as close as possible to the network link. Host CPUs and NICs are
interconnected by a switching fabric or an node internal bus. A common architecture of
NPs is based on a legacy processor core and specialized processing engines on a single
chip. Thus, the NPs with these engines and the processor core in conjunction with the
host CPUs provide three different processing environments.

Conceptually, hANNs follow a three-level approach to separate management and
control plane from packet forwarding [2]. A management plane is required to deploy ser-
vice specifications and service components as used to setup and configure network-wide
services and nodes [1]. In the control plane, service control information is exchanged.
For example routing information is distributed. The transport plane provides the func-
tionality to deal with the packets like for example forwarding, content encryption or
packet filtering.

A framework that provides a flexible mapping of these three levels to a concrete im-
plementation is essential for the management and control of a hANN. Code portability
is important to ease the deployment of service components. At run-time, service com-
ponents must be installed and interconnected such that the node-local, service-internal
communication path can be established easily.

PromethOS NP provides a framework that copes with the complexity of such an
hANN. It is based on an extended version of PromethOS [8], a Linux kernel-space-based
NodeOS providing the PromethOS EE. The current implementation of PromethOS NP
controls an hANN including an Application Reference Board (ARB) that is based on
the IBM PowerNP 4GS3 network processor [5].

For the implementation of the PromethOS NP framework it is important how the
three levels are mapped to the underlying platform such that the node performance is
maximized. Thus, we present the architecture of PromethOS NP and the fundamental
design considerations in Section 2. Subsequently, we give a brief introduction to the IBM
PowerNP 4GS3 and the ARB in Section 3 and provide further implementation details.
Our implementation is then evaluated by performance measurements and the results are
presented in Section 4. In Section 5 we review related work, before we summarize and
conclude our paper (Section 6).

2 PromethOS NP

The PromethOS NP framework controls an hANN with NICs that provide NPs for
extended packet processing. It is composed of management applications and the Pro-
methOS NodeOS as well as the PromethOS EE. Figure 1 provides an overview of the
main components of a PromethOS NP node:

– Management applications: The management applications control the NodeOS.
Further, they initiate component installation and service configuration. They are
implemented by the NP Control Daemon (NP CtrlD), the NP Control Client (NP
Ctrl).

– NodeOS: The PromethOS NodeOS functionality is provided mainly by the Pro-
methOS plugin manager, which is responsible for the creation, configuration and

34 L. Ruf et al.

control of the PromethOS EE. It attaches to the legacy hooks of the IP stack and to
the fast-path of the proxy device driver.

– EE: The PromethOS EE follows the plugin paradigm, in which plugins are organized
as a directed graph of modules.

– Plugins: Code components installed in the PromethOS EE are called PromethOS
plugins. They provide the service functionality. Every PromethOS plugin is identi-
fied by a node unique plugin ID. We make a difference between PromethOS plugins
installed on NP cores (specialized processor engines of a NP) and those installed on
a general-purpose processor (GPP). PromethOS plugins running on the NP cores
are called picoPlugins. In their current implementation, picoPlugins provide packet
classification only.

PluginPlugin

PluginA

Plugin

Proxy Device Driver

DPPU

N
et

w
o

rk
P

ro
ce

ss
o

r

C
o

n
tr

o
l P

o
in

t

Stack
IP

NP Ctrl
Daemon

NP Ctrl
Client

N
P

4G
S

3
(E

P
C

)

Space
Plugins

User Plugin
Database

Plugin
Loader

NP Ctrl
Point

K
er

n
el

 S
p

ac
e

Layer 1

Layer 2

U
se

r
S

p
ac

e

NodeOS
(Plugin

Manager)

MF CLS

Layer 3

EE

Fig. 1. PromethOS NP: Architectural Overview

A PromethOS NP node spans all processing environments: by design, PromethOS
EEs are located on all three levels, thus providing environments for active service com-
ponents.

PromethOS NP has been extended from traditional PromethOS by the management
applications required to control the NP. Further, the fast-path has been introduced that
makes benefit of early packet classification: if the picoPlugin is able to demultiplex the
packet to the correct service components, packets do not traverse the legacy IP stack of
Linux. Like traditional PromethOS, PromethOS NP is registered at the hooks provided
by Netfilter [11], too. Thus, it allows for packet reception from the IP stack as well.

The PromethOS EE provides a unified interface to service components irrespective
whether PromethOS runs with NP support or not. By the PromethOS NodeOS com-

Towards High-Performance Active Networking 35

ponent, the EE and plugin management is decoupled from the underlying hardware.
Thus, source code compatibility is provided for different hardware platforms. With NP
support, even program code compatibility is provided for the GPP on the NP and the
host CPU if they are based on the same processor architecture.

The PromethOS NodeOS component runs in kernel space while the management
applications are located in user space. Conceptually of minor concern, it is important to
implement components as close as possible to the network link if they are used frequently:
The PromethOS NodeOS component dispatches packets to service components. Thus,
it is of major importance to avoid overhead where possible. Management processes are
carried out infrequently. So, it is perfectly valid to install the management applications
in user space where code development is easier due to extended library and debugging
support.

2.1 Design Considerations

There are three different approaches to how PromethOS plugins can be implemented on
NPs. First, PromethOS plugins can be added in the embedded processor complex (EPC)
and run directly on a NP core. This has the advantage that no additional copying of the
packet is required.As actions are taken directly in the data plane, the overhead of sending
the packet to a control point processor is avoided. On the other hand, the instruction
memory can hold 32k picocode instructions shared among all NP cores, which suffices
for traditional packet-forwarding tasks and advanced networking functions [3] but limits
the size, and therefore the functionality of PromethOS plugins. Although theoretically
feasible, picocode or parts of it cannot be dynamically reloaded with the current version
of the network processor application services (NPAS). This would require all plugins to
be downloaded during the initialization phase, thereby losing the benefit of dynamic code
loading of the plugin approach. Running plugins on NP cores eliminates bottlenecks due
to external interfaces but might add new ones on the code-execution level: Additional
limits can arise owing to the scaled-down RISC architecture of the NP cores (e.g., there
is no floating-point support). Even though a C-compiler for the NP cores exists, efficient
code is closely linked to the hardware and therefore often written directly in picocode,
which lacks code portability. A just-in-time compiler which translates an architecturally
neutral programming language into picocode [9] would then be required. A general
question is where the code will be executed, i.e., on ingress, egress, or both. Active code
placed in the data path and executed on NP cores has been evaluated in [9] for a simple
active networking language.

Second, the ePPC (embedded PowerPC) in the EPC can be used to run PromethOS
plugins. After classification, PromethOS relevant packets are redirected to the CP resid-
ing on the ePPC; all other packets in the data path are handled by the NP cores. The
former is done by the general PowerPC handler (GPH), an NP core capable of writ-
ing the packet into the ePPC’s memory and indicate its arrival to the ePPC by means
of an interrupt. The packet then traverses the Linux IP stack before being handed to
the plugin manager. The plugin identifier found during classification on the NP allows
the plugin manager to select the appropriate plugin. Here the advantages are that only
PromethOS-relevant packets will be redirected to the ePPC, while the flexibility of the
Linux kernel (e.g., Netfilter support) is retained. No additional processor is needed and

36 L. Ruf et al.

Internal
SRAM

DDR SDRAM

DDR SDRAM (10 − 13)
ZBT SRAM (2)

Switch Switch

TSE
Coprocessors

NP Core

Complex
Processor
Embedded

ePPC 405Enqueuer
Dequeuer
Scheduler

Enqueuer
Dequeuer
Scheduler

Ingress EDS

Data
Store

Egress Physical
MAC Multiplexer

Ingress Switch
Interface

Egress Switch
Interface

Egress EDS

Ingress Physical
MAC Multiplexer

Physical Layer Devices Physical Layer Devices

Data
Store

Fig. 2. Main functional blocks of an IBM PowerNP 4GS3.

the approach behaves much like a system-on-a-chip. The approach will eventually en-
counter performance limitation due to the interface between NP cores and the ePPC.
Moreover, the ePPC is clocked at 133 MHz, which might not be enough for extensive
plugin processing.

As a third option, the PromethOS plugin manager can run on an Ethernet-attached
external CP, usually a GPP. This approach is similar to the previous one, but uses a
physical interface and the GMII Gigabit Ethernet-to-PCI-X bridge to copy packet data
into the CP memory. Redirection is done by a guided frame handler (GFH) NP core.
Processing of plugins is limited by the clock speed of the attached external GPP CP.

Compared with an approach without NPs the benefits are that packet classification
is done by the NP, hence reducing packet handling in the Linux IP stack, while normal
data packets are directly forwarded by the NP. In this paper we analyze the latter two
approaches, where the plugin manager resides on the ePPC or an external CP. Given its
limited functionality, the approach with dynamically (re-)loadable picocode plugins is
left for future work.

3 The IBM NP4GS3 Network Processor

3.1 The Power NP4GS3 Architecture

The IBM PowerNP 4GS3 is composed of an embedded processor complex (EPC), the
enqueuer dequeuer scheduler (EDS) blocks, the switch interfaces, the physical MAC
multiplexers, embedded SRAM memory, and additional memory interfaces for external
memories. The EDS is responsible for hardware flow control and scheduling while

Towards High-Performance Active Networking 37

the MAC multiplexers transfer packets from/to the physical-layer devices. The main
functional blocks of a PowerNP are shown in Figure 2.

The EPC consists of 16 packet processor engines called NP cores each supporting
two independent threads, a set of eight specialized coprocessors for each NP core, and an
embedded PowerPC 405 microprocessor, all running at 133 MHz. The coprocessors per-
form asynchronous functions such as longest-prefix lookup, full-match lookup, packet
classification, hashing (all performed by two tree search engines (TSE) per NP core),
data copying, checksum computation, counter management, semaphores, policing, and
access to the packet memory. The NP cores are scaled-down RISC processors which
execute the so-called picocode. The picocode instruction set is specifically designed for
packet processing and forwarding.

Packet processing is divided into two stages: Ingress processing directs packets from
the physical interface to the switch, egress processing does the reverse. Every NP core
can handle both stages, but usually one is associated virtually at dispatch time for con-
venience. Threads are dispatched upon packet arrival from the physical interface or the
switch, or by an interrupt. Each thread has its own independent set of registers, so there
is no overhead in switching threads. When a thread stalls (e.g., when waiting for a copro-
cessor), multi-threading will switch to the other thread if this one is ready for execution.
This dynamic thread execution helps to balance the processor load. A thread entirely
processes a stage of a packet, which is called run-to-completion mode. Additional con-
text information (e.g., output interface identifier gained from the IP forwarding lookup)
can be transferred from ingress to egress along with the packet.

We based our implementation on the Application Reference Board (ARB) from
Silicon Software System This board provides a BroadCom PCI-X Ethernet controller
(BCM5700) for bridging between the application reference board and the host.

3.2 PromethOS NP Implementation

Figure 3 gives an overview of the architecture for the external CP. In case the CP is
internal (running on the ePPC), incoming packets are redirected from the E-EDS to
the ePPC directly and outgoing ones vice versa. Administration and configuration of
classifier rules are handled by the NP CtrlD and the NP Ctrl. The client allows a user
to manage classification rules and plugin IDs similar to tc of the Traffic Control [4]
package in Linux. The daemon provides an interface to the client process and talks to
the NP using the proxy interface to the NPAS from the NP control point. For this, the
daemon performs the necessary translation process and maintains counters of rule hits
at the same time. The NP CP uses the Proxy Device Driver to encapsulate control traffic
from the CP to the NP.

The implementation of PromethOS on the PowerNP is based on the multi-field
classifier from the NPAS which provides a CP API and its corresponding picocode part.
Depending on the memory size, up to 5192 multi-field classification rules can be stored.
The classifier picocode has been enhanced in order to return the plugin ID (later being
used by the plugin manager) if a rule matches.A rule match redirects an incoming packet,
including the plugin ID found, to the CP for further processing.

While the redirection decision is taken on the ingress (i.e. during packet classifica-
tion), the redirection action occurs at the egress. In the case of an attached external CP,

38 L. Ruf et al.

E−EDS

E−PMMI−PMM

DS

I−PMM E−PMM

ePPC
EPC

NP
Control
Point

I−EDS

DS

NP Cores

Switch Itf Switch Itf

NP

Switch
ARB

Proxy Device Driver Space
Kernel

IP
Stack Manager

Plugin

up Path

down Path

Space
User

NP
CtrlD NP Ctrl

PhyPhy

ext. CP

Gbit Enet to PCI Bridge

Redirect
Forward

Fig. 3. Data path of packets handled by the external CP.

the packet is sent to the physical interface and then traverses the Ethernet-to-PCI bridge
to reach the CP. As the plugin ID is already known, the packet will not traverse the full
Linux IP stack, but is handed directly to the plugin manager by the proxy device driver
(fast-path). After processing, the plugin manager sends the packet back to the NP. It will
again traverse the ingress side of the NP, but this time the forwarding decision is taken.
Next it traverses the switch and the egress side of the NP as a normal IP packet does. In
the case of an internal CP, the GPH sends the packet directly to the ePPC, where it will
be handled, and receives it back afterwards for forwarding on the egress.

3.3 Performance Characteristics

The following list mentions the performance characteristics of the PowerNP that play a
major role for all PromethOS NP configurations, as discussed in Section 2.1.

– Data Mover Units: The PowerNP provides five data mover units (DMU). Each
DMU moves data at 1 gigabit per second (Gbps) in both ingress and egress directions.
Four of them can be configured independently (e.g., as an Ethernet medium access
control (MAC)). The fifth pair is directly inter-connected to move data from the
egress to the ingress side of the NP4GS3.

– Ethernet: Three DMUs are configured as 1000Base-T GMII Ethernet ports. The
fourth establishes the connection to the attached external GPP by means of a GMII
gigabit Ethernet-to-PCI-X bridge.

– Switch interface: The switch interface consists of two data-aligned synchronous
link (DASL) interfaces in each direction. Each of them provides a transfer rate
between 3.25 and 4 Gbps surpassing the accumulated bandwidth of the four gigabit
Ethernet interfaces [5]. These interfaces can either connect an NP to a switch fabric,
to another network processor, or directly transfer the data from the ingress to the
egress interface. Thus, this interface will not cause any performance degradation.

Towards High-Performance Active Networking 39

– Data store coprocessor: Data are copied into or from the EPC by the data store
coprocessor of the NP. The packet throughput depends linearly on the number of
bytes copied per packet: Usually only 64 bytes are copied, as this is sufficient for
header inspection. The PowerNP achieves 4.80 Gbps of aggregated throughput of
Internet-like traffic when doing layer 3 packet forwarding [6]. Depending on the
PromethOS configuration, data packets traverse each stage up to two times. Because
PromethOS requires additional layer 4 classification we except that the PowerNP
can provide up to 1.5 Gbps throughput.

– PCI bus: TheARB can be integrated into an hANN using its Ethernet-to-PCI bridge.
The BroadCom PCI-X Ethernet Controller BCM5700 permits bridging at 1 Gbps
full duplex. The PCI standard v2.3 defines the following bus transfer rates: 1.1 Gbps
for an interface with 32 bits width running at 33 MHz (32b/33MHz), 4.3 Gbps
(64b/66MHz), and 8.5 Gbps (64b/133MHz PCI-X 1.0). However, the PCI bus does
not provide full duplex. So, if the ARB were placed in a 32b/33MHz PCI system,
we could expect a throughput of at most 0.55 Gbps (provided the bus is not used
by other devices). Thus, at least 2 Gbps are required from the PCI bus bandwidth to
satisfy the ARB.

– General PowerPC Handler: The ePPC is connected to the general PowerPC han-
dler (GPH), a NP core with extended capabilities, via shared memory for data trans-
mission. The GPH copies data packets into the external DRAM, and signals this
to the ePPC by an interrupt. Thus, it provides functionality comparable to a pro-
grammable DMA controller. The reverse process is carried out if the ePPC sends a
packet. Passing packets to the ePPC has been designed for the control path, hence
we cannot expect high throughput for data-path applications. However, it can be ex-
tremely valuable to offload complex data-path processing as encountered in active
networks in order to prevent packet redirection to an external CP, as long as the rate
is bounded to an acceptable value. As it is difficult to estimate the performance of
this interface, we provide empirical results in section 4.1.

We conclude from this analysis first that the PowerNP should be powerful enough
to carry out packet classification for PromethOS plugins on the one hand, and, on the
other hand, to forward packets of other streams at link speed (1 Gbps) simultaneously.
Second, the PowerNP has no performance bottlenecks if PromethOS NP is run on an
external CP. However, in the case where PromethOS NP and the PromethOS plugins are
run on the ePPC directly, we presume performance limitations since the PowerNP was
originally not designed for this configuration of transport plane packet handling. This
has to be taken into account by the configuration process of PromethOS NP.

4 Evaluation

4.1 Performance Measurements

Following the analysis of all interfaces involved (cf. section 3), we base our evaluation
on an hANN with an Intel Xeon 2.4 GHz processor running Linux 2.4.18 in which the
ARB is installed. The ARB operates at 64b/66MHz PCI speed.

40 L. Ruf et al.

 0

 200

 400

 600

 800

 1000

 100000 1e+06
 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

T
ra

ns
fe

r
ra

te
 [

m
bp

s]

R
T

T
 [

µs
]

Packets sent [pps]

Theoretical transfer rate
Measured transfer rate

RTT

(a) 72B/packet, PromethOS/host CPU

 0

 200

 400

 600

 800

 1000

 100000 1e+06
 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

T
ra

ns
fe

r
ra

te
 [

m
bp

s]

R
T

T
 [

µs
]

Packets sent [pps]

Theoretical transfer rate
Measured transfer rate

RTT

(b) 1460B/packet, PromethOS/host CPU

 0

 20

 40

 60

 80

 100

 100000 1e+06
 0

 200

 400

 600

 800

 1000

T
ra

ns
fe

r
ra

te
 [

m
bp

s]

R
T

T
 [

µs
]

Packets sent [pps]

Theoretical transfer rate
Measured transfer rate

RTT

(c) 72B/packet, PromethOS/ePPC

 0

 20

 40

 60

 80

 100

 100000 1e+06
 0

 200

 400

 600

 800

 1000

T
ra

ns
fe

r
ra

te
 [

m
bp

s]

R
T

T
 [

µs
]

Packets sent [pps]

Measured transfer rate
RTT

(d) 1460B/packet, PromethOS/ePPC

Fig. 4. PromethOS NP on the host CPU (a,b) and on the ePPC (c,d) – Transfer Rate and Round
Trip Time: (a,c) 72 Bytes per packet; (b,d) 1460 Bytes per packet.

We measured the performance of the hANN without real service functionality of
the plugins because otherwise throughput would additionally depend on the service
complexity rather than on the efficiency of the framework. Packets were sent by a traffic
generator (source) to the plugin manager (sink), whereby the plugin manager acts as
source and sink at the same time for convenience. Packets were sent out by one Ethernet
interface and received on another via crossed cables. The up and down paths taken by
packets traversing a hANN are visualized in Figure 3.

Latency, throughput and packet loss have been measured in two configurations: In
the first case PromethOS NP was running on the Ethernet-attached external CP, in the
second case it was placed on the CP running on the ePPC. The results are for different
packets sizes, namely, 72 and 1460 Bytes. We chose these packet sizes since we assume
the former to be the size of signalling control packets approximately while the latter
corresponds to usual data packets. In Figure 4 (a) and (b), we plot the results of the
first configuration in which the NP cores are only used for packet classification. The
measurement results achieved for the second configuration are shown in Figure 4 (c)
and (d). The x-axis (number of packets per second) is plotted with a logarithmic scale.
The packet size corresponds to the number of bytes sent at the Ethernet interface, omitting
the internal header (36 Bytes) added by the Linux proxy device driver for signaling. In
Figure 4, the transfer rate (TR) is shown in megabits per second (Mbps), the round trip

Towards High-Performance Active Networking 41

time (RTT) in units of microseconds (µs), and the packet transfer rate in units of packets
per second (pps). For comparison, we also plot the ideal transfer rate, where the number
of packets attempted to send corresponds to the number of packets received, assuming
all transmission attempts are successful.

Table 1. Comparison of transfer rates and round trip times

PromethOS NP on the host CPU:
72 Bytes per packet 1460 Bytes per packet

TR (pps) TR (Mbps) RTT (µs)

297985 171.639 81.2
20134 11.597 48.7

TR (pps) TR (Mbps) RTT (µs)

81846 955.966 1531.4
20110 234.879 96.2

PromethOS NP on the ePPC:
72 Bytes per packet 1460 Bytes per packet

TR (pps) TR (Mbps) RTT (µs)

9807 5.649 135.9
9640 5.553 124.3

TR (pps) TR (Mbps) RTT (µs)

3638 42.497 849.8
3574 41.471 786.6

In Table 1, we compare the maximum throughput, the maximum transfer rate, and
the minimum round trip time for both configurations. The increase in latency found in
Figure 4 (b) corresponds to the default queue-threshold configuration of the PowerNP.
We note the difference in performance between the two configurations. We further in-
vestigated the second configuration: First, we measured the performance of Linux with
regard to its capacity of creating, sending and receiving socket buffers without real trans-
mission, i.e. the socket buffers are not flattened and then sent out at the physical interface,
but the receive-function is called directly. We achieved a transfer rate of 697.39 Mbps.
Second, we measured the performance of the interface between the NP cores and the
ePPC by transferring full-sized packets (1460 Bytes) via the shared memory and interrupt
signaling back and forth. We were able to measure a transfer rate of 298.04 Mbps1.

From the measurement results, we conclude: The first configuration provides suf-
ficient performance to handle at least one gigabit link. Measurements of the PowerNP
proved that the PowerNP is still capable of carrying out packet forwarding for an ad-
ditional, non-active 1 Gbps flow. Measurement results in the second configuration lead
to the conclusion that the Linux/PromethOS on the ePPC should not be used for trans-
port plane packet handling. However the extensible platform provides a very useful
environment for control plane functionality where less packet processing is expected.

5 Related Work

VERA [7] provides a three-level router architecture to provide a modularized, standards
compliant router. It is implemented by a device driver that interfaces to the IXP1200

1 Note that we did not vary the internal socket-buffer limits imposed by Linux which can further
improve our results.

42 L. Ruf et al.

and, thus, provides the hardware abstraction. In [13] resource allocation and scheduling
issues are analyzed on a three-level processor hierarchy, and evaluates the performance
of the Intel IXP 1200 for vanilla IP packets. In [10], an IXP1200-based network interface
card offering four 100T ports was evaluated. On the IXP1200 StrongARM core, Linux
is run, but used for initialization and debugging purposes only; processing is carried
out in the so-called kernels run on the microEngines of the IXP, while the host CPU is
used for extended processing. A very interesting approach to datapath packet processing
is provided in [12] where the performance of a Click-based NP software architecture
is evaluated. The Active Packet Editing (APE) approach [15] is a two-level active net-
working architecture that consists of an active packet processor in software running on
a GPP and a packet editor based on an FPGA with content-addressable memory (CAM)
for efficiency. The packet processor configures the packet editor, which performs packet
classification and simple packet-modification tasks through active packets. Their packet
editor prototype achieves slightly less than 1 Gbps of throughput for simple IP header
modifications and the packet processor is capable of handling 10 Mbps of small-sized
packets. With the PromethOS NP framework, we focus on run-time extensibility and
mapping flexibility of active service components. The unified interface provided by the
PromethOS EE allows for the portability of service components. By the PromethOS
NodeOS component, the required abstraction is provided such that the service can ben-
efit most from the underlying hardware irrespective whether NP-based or just legacy
NICs are available on an hANN. With PromethOS NP running on the ePPC, an active
platform for control plane functionality is provided thus allowing for greater scalability
of the node since not all control plane traffic must be forwarded to the host CPU.

6 Summary, Conclusion, and Outlook

In this paper, we introduced PromethOS NP, a framework that eases the use of net-
work processors for high-performance active network nodes The framework provides
extended NodeOS functionality that supports plugin portability by the PromethOS EE
across different node configurations. The presented implementation is based on an hANN
supported by network interface cards with an embedded IBM PowerNP 4GS3 network
processor. It is run either on the host CPU (Ethernet-attached external control point) or
on the embedded general-purpose processor of the network processor. In both configu-
rations, the NP cores provide packet classification for the fast-path to circumvent legacy
packet classification by the network stack of the operating system.

Our performance measurements prove the efficiency of our architecture. PromethOS
NP supported by the PowerNP was able to handle gigabit link speed (∼956 Mbps);
297,985 packets per second could be processed without any optimization of legacy
Linux. In addition, when PromethOS NP was run on the Ethernet-attached external
control point (host CPU), the PowerNP provided ample capacity for additional flow-
processing. In the configuration with PromethOS NP run on the embedded PowerPC
(ePPC), measurement results favour the use of the extensible environment for control
plane functionality but not for transport plane packet processing. The PowerNP, whose
ePPC is designed for control plane functionalities and exceptional data-plane packet

Towards High-Performance Active Networking 43

processing, supports, thus, node scalability with regard to control of multiple, concurrent
transport plane services.

We are convinced that PromethOS NP in conjunction with the IBM PowerNP 4GS3
provides a flexible and efficient architecture and platform for active services that need
to process packets at link-speed. Currently, we are investigating the extended use of the
NP cores as well as optimizations of a NodeOS running on the host processor as well as
on the PowerNP creating a multiprocessor high-performance active node.

References

[1] M. Bossardt, L. Ruf, R. Stadler, and B. Plattner. A service deployment architecture for
heterogeneous active network nodes. In IFIP International Conference on Intelligence in
Networks (SmartNet), April 2002.

[2] The FAIN Consortium. D7: Final Active Network Architecture and Design, 2003.
[3] R. Haas, C. Jeffries, L. Kencl, A. Kind, B. Metzler, R. Pletka, M. Waldvogel, L. Freléchoux,

and P. Droz. Creating advanced functions on network processors: Experience and perspec-
tives. IEEE Network, 17(4), July 2003.

[4] B. Hubert et al. Linux Advanced Routing & Traffic Control. http://lartc.org, 2003.
[5] IBM Corp. IBM PowerNP NP4GS3 databook. http://www.ibm.com, 2002.
[6] IBM Corp. LinleyBench 2002 test results, IBM PowerNP NP4GS3.

http://www.chips.ibm.com/techlib, 2002.
[7] S. Karlin and L. Peterson. VERA:An extensible router architecture. In Proceedings of the 4th

International Conference on Open Architectures and Network Programming (OPENARCH),
pages 3–14, April 2001.

[8] R. Keller, L. Ruf, A. Guindehi, and B. Plattner. PromethOS: A dynamically extensible router
architecture supporting explicit routing. In Proceedings of the Fourth Annual International
Working Conference on Active Networks IWAN, December 2002.

[9] A. Kind, R. Pletka, and B. Stiller. The potential of just-in-time compilation in active networks
based on network processors. In Proceedings of IEEE OPENARCH, pages 79–90, June 2002.

[10] K. Mackenzie, W. Shi, A. McDonald, and I Ganev. An Intel IXP1200-based network in-
terface. In Proceedings of the Workshop on Novel Uses of System Area Networks at HPCA
(SAN-2 2003), 2003.

[11] P. R. Russell. The NetFilter Project. http://www.netfilter.org, 2003.
[12] N. Shah, W. Plishker, and K. Keutzer. NP-Click: A programming model for the Intel

IXP1200. In Proceedings of 9th International Symposium on High Performance Computer
Architectures (HPCA), 2nd Workshop on Network Processors, February 2003.

[13] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a robust software-based router
using network processors. In Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP), pages 216–229, October 2001.

[14] J.P.G. Sterbenz. Intelligence in Future Broadband Networks: Challenges and Opportunities
in High-Speed Active Networking. In Proceedings of IEEE International Zürich Seminar
on Broadband Communications (IZS 2002), Feb. 2002.

[15] N. Takahashi, T. Miyazaki, and T. Murooka. APE: Fast and secure active networking
architecture for active packet editing. In Proceedings of IEEE OPENARCH ’02, pages
104–113, June 2002.

http://lartc.org
http://www.ibm.com
http://www.chips.ibm.com/techlib

	Introduction and Motivation
	PromethOS NP
	Design Considerations

	The IBM NP4GS3 Network Processor
	The Power NP4GS3 Architecture
	PromethOS NP Implementation
	Performance Characteristics

	Evaluation
	Performance Measurements

	Related Work
	Summary, Conclusion, and Outlook

