
Multiple Language Family Support for Programmable
Network Systems

Michael Conrad, Marcus Schöller, Thomas Fuhrmann,
Gerhard Bocksch, and Martina Zitterbart

Institut für Telematik
Universität Karlsruhe, Germany

Abstract. Various programmable networks have been designed and implemented
during the last couple of years. Many of them are focused on a single program-
ming language only. This limitation might—to a certain extend—hinder the
productivity of service modules being programmed for such networks. Therefore,
the concurrent support of service modules written in multiple programming
languages was investigated within the FlexiNet project. Basically, support for
three major programming paradigms was incorporated into FlexiNet: compiled
programming languages like C, interpreted languages (e.g., Java), and hardware
description languages such as VHDL. The key concept can be seen in an integral
interface that is used by all three programming languages. This leads to a
configuration scheme which is totally transparent to the programming languages
used to develop the service. In order to get a better idea about the impact of
the programming language used, some measurement experiments were conducted.

Keywords: Programmable Networks, Flexible Service Platforms, Execution En-
vironment, Programming Language

1 Introduction

Active and programmable networks are a vital area of research that aims to improve
existing networks, for example, with respect to the number and flexibility of services
provided to customers or to network operators themselves. In order to achieve this,
programmable networks introduce programmable nodes—a sort of middleboxes—that
are incorporated into the network. These nodes provide services that are not available in
the network itself. For example, routers at the edge of the network do not only forward
packets but also provide some additional services, such as multicast support. These
services can be provided on demand, i.e., they need not to be pre-installed when the
router is put into operation in the network. As a result the number and flexibility of
services being provided to customers can be largly increased without demanding the
overall network infrastructure to be updated. Multicast serves as a good example, since
the introduction of IP multicast into the network would require all routers to talk IP
multicast and to provide suited routing protocols.

Although research in active and programmable networks is on-going since several
years, few working frameworks exist only. The FlexiNet framework based on AMnodes
discussed in this paper is considered as one of those frameworks. On the other hand,

N. Wakamiya et al. (Eds.): IWAN 2003, LNCS 2982, pp. 178–189, 2004.
c© IFIP International Federation for Information Processing 2004

Multiple Language Family Support for Programmable Network Systems 179

an increased interest in these technologies can be observed recently, for example, from
mobile network operators. With programmable nodes, mobility support can be easily
integrated into a network. Performance enhancing proxies (e.g. [10]) can be named as
an example. These proxies boost TCP performance in wireless scenarios. Furthermore,
a high flexibility with respect to the network services needed is considered essential for
next generation networks in general.

Up to now, most research projects concentrated on how to realise the packet mangling
and manipulation, how to do resource management and overcome according limitations,
or how to deploy such a system. From the customers point of view, services form the
most critical part of networks. However, in the context of active and programmable
networks a lack of readily available implemented services that can provide the targeted
flexibility can be observed. On one hand this is due to the concentration of technical issues
related to the design and implementation of such programmable nodes. On the other
hand, many projects are restricted to individual programming languages and, mostly,
just to a single programming language. Some projects have even developed their own
service programming languages to achieve restrictions in their programming model or
to ease tasks like resource control and management. This further limits the number
of programmers that are motivated to implement new services. As a result, currently
available services for programmable networks were mostly developed within related
projects and, thus, are limited to few available services only. However, in order to attract
customers a variety of widely interesting services needs to be readily available. To
achieve this, the hurdle to implement new services should be as low as possible.

Enabling the development of services in a variety of well-known programming lan-
guages should help overcoming this problem and, thus, make programmable networks
more attractive to customers and providers. Typically, programmers are used to a couple
of programming languages they always select for network or service programming and
can not be easily convienced to learn a new one. Their refusal further grows if that new
language follows another programming paradigm. Programmers used to an object ori-
ented programming language often refuse to use systems which only offer support for
classical languages like C. Moreover, different programming languages have different
fortes and bring along different sets of libraries. Some services may be easier imple-
mented in Java whereas for other services C may be favourable. Therefore, the AMnet
framework [4], currently part of the larger FlexiNet project, was extended to provide
support for various programming languages.

In this framework service developers are no longer restricted to a single programming
language. Support for different programming languages was first presented in [7] with
special focus on resource control and limitations. This mechanism forms the basis for
flexible usage of the programming language as long as the execution environment is run
as a user space process. Any additional mechanism like a Java sandbox are usable but
not necessarily needed to safely run the programmable node.

The reminder of the paper is structured as follows. Section 2 provides a brief overview
of the FlexiNet framework for those readers that are not yet familiar with it. The concept
of integrating different programming languages is discussed in detail in Section 3. As a
usage example, an RTSP/RTP implementation with modules implemented in different
languages is presented in section 4. Some measurement results on the integration of C

180 M. Conrad et al.

and Java service modules complement the paper. A brief summary and outlook on future
work concludes the paper.

1.1 Related Work

The basic concepts of programmable networks have been described in various publi-
cation, see, e.g., [2,3]. AMnet [5] which now provides the FlexiNet framework is an
operational implementation of many of these fundamental ideas together with specific
extensions and improvements [4]. Its concept is basically that of a Linux based software
router. Similar approaches have been pursued by various other projects, e.g., the Click
Modular Router project [8]. There, low-level extensions to the regular network proto-
col stack provide a router environment in which so-called elements perform the basic
processing steps like packet classification and mangling. Compared to AMnet, which
(mostly) runs in the user-space of an unmodified Linux installation, Click’s direct hard-
ware access trades security and programming ease against performance. Both projects’
common objective, namely to benefit from existing operating system functionality, is
also shared by SILK [1], in which a port of Scout [9] replaces the standard Linux protocol
stack.

2 Brief Introduction into FlexiNet Framework

The FlexiNet framework provides a design and implementation for the paradigm of
programmable networks. The design paradigm is based on the fact that programs (re-
specticely service modules) can be downloaded on demand in order to provide a service.
This flexibility, however, is not expected to be provided on a per-packet bases but, in
contrast, for dedicated end-to-end data flows. These service modules are available from
so-called service module repositories. Installation and termination of services in the net-
work takes place according to the demands of a service user. Thereby, a service can be
constructed out of several so-called service modules. These service modules are arranged
in a service module chain, i.e. different service modules are processed sequentially for
a certain IP packet in order to provide it with the desired service.

The architecture of the programmable node (so-called AMnode) used in the Flex-
iNet framework basically consists of two major components: the framework and the
execution environment (cf., Fig. 1). The framework itself provides all required system
services, such as handling several execution environments as well as creation and setup
of desired services. The execution environment acts as runtime system for a specified
service, which consists of different service modules. For each service FlexiNet creates a
separate execution environment and instantiates all modules that are needed to provide
a certain service in this execution environment. Inside the framework several execution
environments run separately and independent from each other. IP packets for a desired
service will be forwarded to the corresponding execution environment and, then, can be
processed accordingly by the chain of service modules.

Currently, FlexiNet provides support for the following programming languages: C,
C++, Java and VHDL. They can be used concurrently, i.e., if a service is composed
of different service modules, those modules can be written in different programming

Multiple Language Family Support for Programmable Network Systems 181

system network
services

admin
console

resource
monitorfilter

another EE

another EE

another EEservice modules

Flexinet framework

Flexinet
execution environment

(EE)

Fig. 1. Structure of FlexiNet framework and execution environment

languages. C and C++ were chosen since they are popular languages for network pro-
gramming. Java brings additional support that is particular valuable for higher level
services. The support of VHDL allows us to outsource processing intensive service
modules on dedicated programmable hardware platforms.

In FlexiNet service modules are natively programmed in C and compiled to shared
libraries which are dynamically loaded into the execution environment on demand. In [6]
we introduced the concept of Happlets and gave an extensive overview on performance
and interaction with other service modules. Happlets are an abstraction for various
hardware programming languages, such as VHDL. With Happlets a so-called virtual
service module is loaded into the execution environment which sets up and configures
hardware like DSPs or FPGAs and redirects incoming packets to that hardware. The
concept of Happlets itself will not be discussed further within this paper. Interested
readers are referred to [6].

Furthermore, Java is integrated into FlexiNet as an example of an interpreted pro-
gramming language. An advantage of integrating support for Java is its platform inde-
pendence in contrast to object code which is compiled for a predefined system. This eases
the deployment of modules in heterogeneous environments. Moreover, Java brings along
a vast number of classes and packages which alleviate the design and programming of
new services. Besides C Java is a popular network programming language. Many soft-
ware developers are familiar with its principals and can implement modules very fast.
Both facts are expected to help increase the number of FlexiNet service programmers
considerably.

The decision to integrate the different programming languages as special FlexiNet
modules gave us the freedom to develop them independently as long as the interface
stays the same. Further on an execution environment only has to instantiate the language
support for those languages which were used to program that service. In that way sys-

182 M. Conrad et al.

tem resources can be saved but still any combination of service modules from various
programming language is possible.

3 Integration of Multiple Language Support

This section focuses on the technical issues of integrating support for multiple languages
in FlexiNet. It is our assumption that a service designer has broken up the problem in
several subproblems. Each of these subproblems is realised in one service module. The
module programmer can now freely choose from the programming languages supported
by FlexiNet. The key concept can be seen in an integral interface that is used by all
three programming languages. This leads to a configuration scheme which is totally
transparent to the programming languages used to develop the service. An examples on
how a service can be configured with service modules that are implemented in different
programming languages is presented in section 3.

3.1 General Integration Concept

In the original design FlexiNet only supported shared object code. As a result, all service
modules had to be implemented in C oder C++. For usage by the execution environment
the modules must implement the following function prototypes (cf., Fig. 2).

1 #include "modules.h"
2
3 int module_init(struct module *module);
4 int module_shutdown(struct module *module);
5
6 int module_run(struct module *module, nl_packet_msg *nlPacketMsg,
7 struct iphdr *ip);
% 8
% 9 int getstatus(struct module *module);

Fig. 2. FlexiNet C module interface

The function module init is called once after instantiation of the specified module.
Accordingly the function module shutdown is called once at termination of the module.
The function module run is called for all IP packets that are processed by the corre-
sponding service modules. The parameters of the function provide some information
about the module itself as well as the desired IP packet. Inside this function the module
can create, delete or modify IP packets. For example, a service module may receive a
single IP packet and provide multiple replicated IP packets at its output interface (e.g.,
in case of a multicast service). By setting special return codes the further processing of
the IP packet can be guided.

Multiple Language Family Support for Programmable Network Systems 183

3.2 Integration of Java-Based Service Modules

The interface for Java modules is analogous to the C interface:

1 package de.flexinet.modules;
2
3 public interface FlexinetModule {
4
5 public void moduleInit(Adapter a);
6 public void moduleShutdown();
7
8 public void moduleRun(IPPacket ip, NlPacketMsg nlPacketMsg)
9 throws FlexinetException;
10
11 public String status();
12 }

Fig. 3. FlexiNet Java module interface

To integrate support for Java-based service modules a programming interface for Java
and a wrapper module was designed and implemented. The wrapper module is written
in C and implements the classical FlexiNet module interface already described above.
During module initialisation the Java Virtual Machine (JVM) is started and configured
using the Java Native Interface (JNI). In addition some special memory is allocated
which is used to pass IP packets from the wrapper to Java. Furthermore, within the JVM
an adapter class is started which functions as a counterpart to the wrapper module is
started. As a result, service modules written in Java only must implement the interface
FlexinetModule (cf., Fig. 3).

To process an IP packet the wrapper copies the IP packet into the allocated memory
and calls the function moduleRun of the adapter which only calls the corresponding
function within the Java module. After packet processing within the JVM the wrapper
passes the packet to the next service module or back into the IP layer if that was the last
module of the service module chain.

3.3 Startup Script for FlexiNet Modules

The FlexiNet configuration scheme is transparent to the programming language used to
implement service modules. All startup scripts contain two parts: the first one configures
the modules used to realise the desired service, the second one defines filter rules to
select packets to which the service is applied to.

The module configuration section contains all information, required for correct in-
stantiation and setup of a specified module. The following example (cf. Fig. 4) shows
the module configuration section of a C and a Java module.

184 M. Conrad et al.

1 loadmodule nop_c { 1 loadmodule nop_java {
2 file "libnop.so"; 2 file "libjmod.so";
3 3 className = "Nop";
4 myparameter = "some string"; 4 myparameter = "some string";
5 }; 5 };

Fig. 4. Module configuration section of FlexiNet execution environment script (C and Java)

The left side of figure 4 presents the configuration section for the NOP module written
in C. The right side shows the configuration section for the equivalent module written
in Java. Both start with the loadmodule command in line 1. In line 2 the C example
loads the shared library libnop.so, which contains the NOP module written in C. In the
same line the Java example loads the library libjmod.so, which contains the wrapper
for Java modules. This wrapper creates a virtual machine and loads the desired service
module. Information about that module is taken from the parameter className which
is shown in line 3. In this case the class Nop should be loaded. Both module configuration
sections contain the setting of a paramenter called myparameter in line 4.

In addition to the module configuration section each startup script must contain a
network configuration section. This network configuration section is independent of
the module implementation language. The section holds information about the network
traffic that should be processed by the module. With the following configuration it is
indicated, that the packets for all TCP connections from server www.some-server.net
port 80 should be processed by the service module. The command nfhook in line 3
specifies the Netfilter hook of the Linux kernel, that applies to the service module. In
the example the module selects hook PREROUTING. As a result, the processing of the IP
traffic by this service module takes place before the routing lookup takes place.

1 listen {
2 protocol "tcp";
3 nfhook PREROUTING;
4
5 source {
6 name "www.some-server.net";
7 port 80;
8 };
9 };

Fig. 5. Network configuration section of FlexiNet execution environment script

Multiple Language Family Support for Programmable Network Systems 185

3.4 Structuring the Service Modules

Only very few services can be implemented within one module. Most services are com-
posed of several different modules each of those providing a single task. The next section
shows an example service which consists of three modules.

The easiest way to connect modules is to build a single chain where packets get
processed by each module consecutively. This is the standard behavior of the FlexiNet
execution environment. However the service programmer can influence the order of
modules. The FlexiNet execution environment supports the dynamic creation of multiple
in-ports. One optional parameter of a filter entry is the module name of that module which
should start the packet processing. This mechanismen was used in the following example
as shown figure 6 where RTSP packets are handled diffrently from RTP packets.A second
way to alter the order of modules is by building conditional branches or loops. Within
each module the programmer can set the next module by a simple call to the execution
environment. Furthermore it is possible to abort the packet processing any time by either
deleting the packet or by returning it to the IP layer. All thoses possiblities can be used
in C and Java.

Finally an effective way to pass parameters from one module to another must be
provided to realise real cooperation of modules. The FlexiNet execution environment
provides to mechanisms for that. The first way is to set configuration parameters of
one module by a simple call the the execution environment by another module. This
provides a easy interface of module interaction. The second way is to use a stack which
is provided by the FlexiNet execution environment. Any module can push data onto that
stack where it will remain until a module pops it from there. The access to the stack from
within Java is realised by JNI functions.

4 Cooperation among Heterogeneous Service Modules

To demonstrate the cooperation of service modules programmed with different pro-
gramming languages (so-called heterogeneous service modules) we chose to realise an
RTSP/RTP application level multicast service. The decision was driven by the goal to
provide relevant services to emerging applications. RTSP/RTP has proven to be such
a service. For example, web radio applications often use RTP to deliver audio data to
the end system after the RTSP protocol negotiated several communication parameters.
Many times, multiple end users will request the same audio stream from RTP servers.
In such cases, programmable nodes, such as the once developed within the FlexiNet
project, can help to reduce the server load and the bandwidth utilisation if multiple re-
ceivers of the same audio stream are located behind the same programmable network
node. Therefore, the service placed at the programmable node acts as both, an audio
stream client as well as an audio server. The client role is dedicated to the sender of
the stream, i.e., the programmable nodes acts as one client receiving the audio stream.
Locally, the programmable node replicates the audio stream and forwards it to all clients
in its subnet. Thus it owns the server role with respect to these clients.

In order to implement the above scenario, various service modules are required, as
depicted in figure 6.

186 M. Conrad et al.

Flexinet execution environment (EE)

RTSP Proxy

Configure

Redirect

Reply

RTSP

RTP

TCP−Interceptor

Packet Doubling and Address Rewriting

Fig. 6. A RTSP/RTP application level multicast service

The TCP interceptor module redirects incoming packets from any client to the local
machine. As a result, the RTSP proxy module receives the data and parses the RTSP
message accordingly. RTSP messages are text based similar to HTTP messages. If the
received RTSP message is the first request for a stream, the RTSP proxy initiates a new
RTSP client connection to the requested server and forwards the server information to
the client. If already an earlier request for that stream was received, the RTSP proxy
retransmits the corresponding cached RTSP messages to the client. Any client is added
to a list of receivers for that particular audio stream. The Packet Doubling and Address
Setting module reads this list of clients and replicates as required. Furthermore, the
addresses are set appropriately.

The above described RTSP/RTP scenario is currently being implemented in the
FlexiNet project. For the implementation it turned out to be very convenient to use
different programming languages for the service modules. Since text parsing can be very
easily implemented in Java—regular expression were added in version 1.4 of Java—we
decided to implement that module in Java. The TCP interceptor was already implemented
for other services in C. The packet duplication and address setting is a simple task that
has to be applied to lots of packets. Therefore, we decided to implement this module in
C. Due to the integration concept of service modules written in different languages, the
described modules can interact seamlessly.

5 Some Performance Considerations

In order to get a feeling for the overhead associated with service modules written in dif-
ferent programming languages, we conducted a number of measurement experiments.
For example, the overhead introduced by using Java was of some interest. The exper-
iments were performed on a Pentium III 800MHz Linux (2.4.19) Router with 256MB
memory. Client and server were both directly connected to this router via a 100Mbit
Ethernet network.

Multiple Language Family Support for Programmable Network Systems 187

5.1 Overhead of Java Service Modules

To measure the overhead introduced by Java several experiments were conducted. First
measurements were taken on a router that was not running a FlexiNet execution envi-
ronment at all. Then, first a C module and second a Java module was added to that router.
Both service modules simply decremented the IP TTL field. We used the ping program
to measure the round trip time of packets. Every test was run with 100000 packets. The
results are summarized in table 1.

Table 1. Overhead measurements

Module Min/ms Avg/ms Max/ms

no module 0.083 0.085 0.177
C NOP module 0.101 0.106 2.259

Java NOP module 0.111 0.118 2.776
Java NOP module (cold) 0.111 0.120 14.801

As table 1 shows, a small overhead can be noticed by the Java service module
compared to the C module. Mainly, the additional copy operation of the IP packet from
the wrapper to the Jave service module is responsible for that.

The last line of table 1 reflects the effect of just-in-time compilation. The Java service
module is compiled at its initial execution. As a result, the maximum value is drastically
higher than all other measured times for the Java service module were just-in-time
compilation did not take place.

5.2 Initial Performance Tests

For the performance measurements reported here, the network tool iperf with packet
size of 1470 byte and UDP as transport protocol was used. The test setup consisted of
3 machines. One machine acts as client, one as server and the other as a programmable
node between both. The network traffic generated by the client was varied from 10Mbit/s
up to the theoretical maximum of the network (100Mbit/s) and the incoming bandwidth
at the server was measured.

The measurement results are summarized in figure 7. The practical achievable
throughput was measured without any processing of IP packets inside the FlexiNet exe-
cution environment. Further measurements were conducted with simple service modules,
that implement UDP checksum calculation in C and Java.

As long as the programmable node can keep up with the received load, no packet
loss and, thus, no performance degradation can be observed. As soon as the node is
overloaded packets must be dropped and, as a result, the bandwidth of the incoming
data stream at the server degrades accordingly as shown in figure 7. Alltogether, the
experiments show that the performance of the Java service modules is lower than the
one of the service modules written in C. This, however, is not surprising. Furthermore,
the Java modules consume more resources since they require JVM to be installed.

188 M. Conrad et al.

Relating the measurements to the above described example of an RTSP/RTP im-
plementation with heterogeneous service modules, it can be stated that the application
of Java for text parsing makes sense. This service module is part of the control plane
and, thus, is not as performance critical as those modules of the data plane. Using Java
to implement such a service module is perfectly suitable. On the other side, it is also
advisable to write performance critical service modules, for example, in C.

 75

 80

 85

 90

 95

 100

 75 80 85 90 95 100

B
an

dw
id

th
 (

M
B

it/
s)

Bandwidth (MBit/s)

Flexinet performance measurement C versus Java

theoretical
pratical

UDP 1x (C)
UDP 1x (Java)

UDP 2x (C)
UDP 2x (Java)

Fig. 7. Performance measurements

6 Summary

Programmable networks still lack readily available services. Among many issues that
are responsible for that situation, an important aspect can be seen in the possibility of
using service modules that are written in different implementation languages, dependent
on the implementers preference. On the one hand service designers and programmers
have varying experience in different programming paradigms or even programming
languages. On the other hand programming languages have different fortes. The support
of multiple programming languages eases the work of service module designing and
programming and may very well raise the productivity with respect to service module
implementations.

Motivated by this idea, FlexiNet was enhanced in order to simultaneously support
multiple programming languages even for service modules being part of the same service
module chain.

Multiple Language Family Support for Programmable Network Systems 189

The integration of C, Java, and Happlets in FlexiNet is seamless and transparent in
view to programming interfaces and configuration. In order to get a close idea on the
overheads involved in the different programming languages, particularly C and Java,
various measurement experiments were conducted. The higher overhead of Java could
be clearly seen. However, the performance is by far good enough to apply Java service
modules, for example, in the control plane as demonstrated in the RTSP/RTP example.

References

1. Andy Bavier, Thiemo Voigt, Mike Wawrzoniak, Larry Peterson, and Per Gunningberg. SILK:
Scout paths in the Linux kernel. Technical Report 2002-009, Uppsala Universitet, February
2002.

2. Kenneth L. Calvert, Samrat Bhattacharjee, Ellen Zegura, and James Sterbenz. Directions in
active networks. IEEE Communications Magazine, 36(10):72–78, October 1998.

3. Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho Miki, John B.
Vicente, and DanielVillela. A survey of programmable networks. ACM SIGCOMM Computer
Communication Review, 29(2), April 1999.

4. Thomas Fuhrmann,Till Harbaum, Panos Kassianidis, Marcus Schöller, and Martina Zitterbart.
Results on the practical feasibility of programmable network services. In 2nd International
Workshop on Active Network Technologies and Applications (ANTA 2003), 2003.

5. Thomas Fuhrmann, Till Harbaum, Marcus Schöller, and Martina Zitterbart. AMnet 3.0 source
code distribution. Available from http://www.flexinet.de.

6. Till Harbaum,Anke Speer, Ralph Wittmann, and Martina Zitterbart. Providing Heterogeneous
Multicast Services withAMnet. Journal of Communications and Networks, 3(1), March 2001.

7. A. Hess, M. Schöller, G. Schäfer, A. Wolisz, and M. Zitterbart. A dynamic and flexible access
control and resource monitoring mechanism for active nodes. In Proceedings of the 5th
International Conference on Open Architectures and Network Programming (OPENARCH)
(Short Paper Session), 2002.

8. Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The click
modular router. ACM Transactions on Computer Systems, 18(3):263–297, August 2000.

9. David Mosberger. Scout: A Path-based Operating System. PhD thesis, Department of Com-
puter Science, University of Arizona, July 1997.

10. M. Schlaeger, B. Rathke, S. Bodenstein, and A. Wolisz, editors. Advocating a Remote Socket
Architecture for Internet Access using Wireless LANs, volume 6 no. 1 pp. 23-42. Mobile
Networks and Applications (Special Issue on Wireless Internet and Intranet Access), January
2001.

	Introduction
	Related Work

	Brief Introduction into FlexiNet Framework
	Integration of Multiple Language Support
	General Integration Concept
	Integration of Java-Based Service Modules
	Startup Script for FlexiNet Modules
	Structuring the Service Modules

	Cooperation among Heterogeneous Service Modules
	Some Performance Considerations
	Overhead of Java Service Modules
	Initial Performance Tests

	Summary

