
N. Wakamiya et al. (Eds.): IWAN 2003, LNCS 2982, pp. 115-126, 2004.
© IFIP International Federation for Information Processing 2004

DataRouter: A Network-Layer Service
for Application-Layer Forwarding

Joseph D. Touch and Venkata K. Pingali

USC/Information Sciences Institute, 4676 Admiralty Way
Marina del Rey, CA 90292

{touch,pingali}@isi.edu
www.isi.edu/{touch,pingali}

Abstract. DataRouter forwards network layer packets using application layer
tags, without requiring per-hop termination of transport protocols and the
consequent reimplementation of transport services in the application.
DataRouter provides network delivery based on pattern matching and string
replacement. It combines a byte string as a loose source route IP option tag and
regular expression routing entries to provide a new network service. DataRouter
tags have a variety of forms, including fixed-length with exact matches for
distributed hash tables and variable-length with regular expression matches for
URL redirection. Tagged IPv6 packets traverse non-DataRouter routers
transparently. On a platform forwarding IPv4 packets at 310K packets/sec., an
unoptimized FreeBSD IPv4 DataRouter forwards hash-match packets at up to
270K packets/sec. (87% of max.) and pattern-match packets 155K packets/sec.
(50% of max.). DataRouter thus provides a viable, higher-performance
alternative to application-layer implementation of forwarding, in a generic
service more interoperable with existing network and transport protocols.

1 Introduction

DataRouter is an open, generic string match and rewriting facility for Internet packets.
It augments the traditional, numeric address in an IPv4 or IPv6 header with an
application-provided string used as a variant of loose source routing. The result
provides an integrated facility for content delivery networks (CDNs), resource
discovery, and advanced overlay network architectures.

The difference between a conventional IP packet and a DataRouter IP packet is
shown in Figure 1 (only the relevant fields of the headers are shown). The DataRouter
packet includes an option field, akin to the existing loose source route (LSR) option in
IPv4 or the router header option in IPv6 [11][18]. The option contains a byte string
(or multiple byte strings) with tag information. As with LSR, the packet is forwarded
using existing IP routing tables towards the destination IP address; once there, the
string is extracted, matched, indexed, and the packet header rewritten to indicate the
IP address of the next hop router in the DataRouter topology.

116 J.D. Touch and V.K. Pingali

1.1 Background

The Internet forwards packets based on fixed endpoint identifiers, i.e., IP addresses.
Routing uses these addresses to direct packets toward their destination, using longest-
prefix match in forwarding tables, on tables that have been loaded either manually or
by a routing protocol. The Internet currently supports a single, global address space,
and a single, global set of forwarding tables.

Existing techniques to support additional matching schemes require separate
distributed systems. Conventional Internet resource discovery uses an external table,
specifically the DNS, to resolve names to IP addresses. As another example, Google
is a central database that resolves text phrases to URLs, which include DNS names or
IP addresses directly. More recent peer-to-peer architectures forward requests over
application-layer tunnels (e.g., TCP connections) and use a distributed application to
direct queries to a table [17].

Such services enable interesting and useful content-directed forwarding at the
expense of violating the “end-to-end principle” [21]. In the Internet architecture, the
network layer forwards packets, the transport layer maintains ordering and reliability
(if desired, as well as congestion control), and only the application deals directly with
the payload data. In a CDN, data-layer information is used for forwarding, e.g.,
peeking at the URL inside an HTTP request to route HTML requests over a slow pipe
and JPG (image) requests over a fast pipe. CDNs can direct requests for bandwidth,
cache aggregation, or policy-based routing.

However, in all cases the TCP connection must be terminated per-hop, in order to
reassemble the packets sufficiently to recover the data stream; this necessitates
application-layer mechanisms to ensure end-to-end reliability and resequencing. An
alternative is to peek into packets and try to recover the data without terminating the
connection, which can be challenging when packets take diverse paths or when the
data is encrypted. Either case violates (or badly strains) the “end-to-end” principle.

DataRouter replaces CDN’s external, application-layer mechanisms with an open,
network-layer matching and rewriting service. End host applications can add a byte
string to the network (IP) header as a new type of IP option, and that header is looked
up and/or rewritten at intermediate hops, using a separate set of loadable tables. The
result achieves integrated routing based on application data utilizing a unified network
layer service, without requiring per-hop TCP termination or peeking at packet data.

Fig. 1. IPv4 Loose Source Route (top) vs. DataRouter (bottom) options

Current Internet routing supports “loose source routing” in IPv4 and IPv6, in which
packets are forwarded to a chain of explicitly-selected routers using an IP header
option [11][18]. The packet contains a conventional source IP address, the IP address

D2PTR D3 D4SRC D1

isi.eduSRC D1 #55feaPTR bird

DataRouter: A Network-Layer Service for Application-Layer Forwarding 117

of a destination where LSR is performed, and the header option with a list of
subsequent destination IP addresses. At each intermediate destination, the header IP
destination field is exchanged with the address at the option’s pointer, which is then
incremented (Figure 2, left). The process stops when the pointer exceeds the option
length.

Fig. 2. IPv4 Loose Source Routing (left) and processing step in DataRouter (right)

DataRouter extends LSR so that the chain can contain arbitrary application-
configured strings such as DNS names, URLs, etc. DataRouters lookup these strings
to entries in a table that indicates the IP address of the next rewriting-router and rules
for rewriting the string (if desired) (Figure 2, right).

DataRouter’s LSR-like forwarding allows overlay networks to be incorporated in
the base Internet architecture. This facilitates multi-overlay paths without the need for
inter-overlay gateways. The string labels allow application-layer content-based
routing without requiring connection termination at each hop, avoiding complications
with end-to-end reliability and further facilitating the integrated use of various content
delivery (a.k.a. distribution) systems (CDNs). The key reason for per-hop connection
termination is to allow the forwarder to access packet data [17]. DataRouter places
that information in the IP packet header, making it accessible to the forwarder and
thus avoiding the need for separate, hop-by-hop connections

The result is more consistent with conventional network architectures, where
forwarding uses packet header as context, and transport (TCP) connections provide
end-to-end reliability. DataRouter thus provides content-based routing without
violating the “end-to-end argument,” or requiring separate, application-layer
reliability mechanisms [21]. It can also be used to integrate DNS resolution and TCP
connection establishment (SYN) phases, reducing connection latency and improving
performance for short connections or anycast services [13][15].

Although there have been a number of new recent network architectures, both at
the peer-to-peer and network overlay levels, incremental deployment and
management of these systems has been examined in a limited way. Most systems
assume that new capabilities are deployed at specific routers connected by tunnels at
the application or network layer. DataRouter provides an alternative deployment
environment in which new routing tables are loaded, but no new tunnels need to be
created. This provides new opportunity, but also represents a paradigm shift for
application-layer network architects; they focus on being routing protocol designers
more than tunnel engineers.

D3 D4

D1 D4

D1 D2 D3

S D1

S D2

S D3 D1 D2

S D4

D1

D2

D3

D2 P

P D4

P D3

P

P isi.eduS D1 bird #55fe
3

#55fe
3

P isi.eduS D2 D1

D

118 J.D. Touch and V.K. Pingali

Current inter-peer and inter-overlay communication requires gateways, explicitly
deployed at key points in the architecture. DataRouter allows composition of inter-
overlay paths by concatenating data tags in the IP option, providing new opportunity
for more pervasive, flexible, and dynamic creation of heterogeneous routing paths.

Finally, DataRouter also supports both anycast and late-binding TCP [13][15].
Both capabilities merge address lookup with packet delivery. For anycast, the service
(e.g., “printer”) is the string in the anycast IP packet, and the initial destination is the
first lookup node of an anycast database. A type of late-binding TCP can place the
DNS name is the string in the SYN packet, and set the base IP destination address to
the DNS server. This variant of TCP is related to dispatching HTTP requests within
web server farms, as well as to reduce TCP connection establishment over fast links.
Other support is required, e.g., to allow late resolution of port numbers, but the
DataRouter provides a key component of a solution.

2 DataRouter

DataRouter is a generic string match and rewriting capability at selected routers. It
consists of the following components: (1) an IP option structure, (2) forwarding and
rewriting tables at selected routers, (3) a fixed set of matching algorithms, (4) an API
for applications to write/read the IP option, and (5) an API for routing algorithms to
load the tables. The combination of these components provides a string match and
string replacement corollary to the current IP forwarding and routing mechanism.

2.1 IP Option Structure

The current IPv4 Loose Source Routing (LSR) option (also called Loose Source
Route and Record) consists of a tagged option entry with a pointer and length fields,
followed by a sequence of IPv4 addresses; a similar option called a routing header
(RH) exists for IPv6 [11][18]. In IPv4, the LSR option uses 3 octets for the LSR tag
(0x83), the option length, and an octet pointer used to step through the addresses
(Figure 3, left).

Fig. 3. IPv4 and IPv6 LSR Options

In IPv6 (Figure 3, right), the RH option is indicated by a field in the previous

option or base IP header, and the option consists of 4 octets of control information –
the type of the next header (NH), the length of the option in 8-octet units (excluding
the first 8 octets), the type of routing (e.g., 0 indicates LSR), and a counter indicating
the number of unprocessed segments left (effectively a pointer), followed by the

20. 0. 0x83 LEN PTR 10.

 LEN TYP PTR NH

IP Header NH field 43

DataRouter: A Network-Layer Service for Application-Layer Forwarding 119

address list. Overall, the two options are essentially the same, except that in IPv4 the
space for all options is limited to 40 octets, whereas in IPv6 there is no limit per se to
option space.

DataRouter uses a chain of labeled strings rather than numeric addresses as the
source route. As with LSR, the DataRouter option contains a length and a pointer
indicating the string to be manipulated at the next destination hop, in addition to the
option tag itself (Figure 3, left). A list of string structures follow, where each string is
tagged with a routing class, a matching and lookup algorithm, and the string’s length
(Figure 4, bold; string shown in shaded area). The routing class indicates which
tables are used for matching and translation, enabling concurrent use by multiple
routing systems.

The structure shown in Figure 4 is for an IPv4 DataRouter option. In IPv6, the
option is a variant of the existing routing header option (Figure 4, where the type
(TYP) is DRO (DataRouter option). IP addresses resolved by patterns match the IP
version of the base header, a requirement enforced by the routing protocol.

Fig. 4. DataRouter Option

The fixed set of lookup algorithms include (1) longest pattern match (2) exact
match, (3) range match, (4) longest prefix/suffix, and (5) “closest” match (fuzzy
match).The first three have been implemented and tested, as discussed in Section 3.
The addition of a cost function (for (5)) both increases the complexity of the
implementation (and thus lowers its performance) and increases the potential for
ambiguity. Note that (2) and (3) are special cases of (1), e.g., where all patterns are
exact matches, and would be provided as specially-tuned alternatives.

The use of a set of predefined classes enables concise descriptions of various
anticipated configurations. The following examples define sample forwarding
methods, including a tag string, and a string-based routing class for each method:

− DNS: lookup=#long_sufx class=#DNS string=joe.com
− URL redirection: lookup=#exact class=#URL tag=joe.com/apple
− Napster/Chord/CAN: lookup=#exact class=#MP3 tag=hash(song name)
− Google: lookup=#closest class=#WEB string=“Potter movie”

The use of different routing classes allows two schemes with the same lookup
algorithm to utilize separate tables, even at the same router, e.g., b) and c) above.
Lookup algorithms and classes are shown as constants (#), but are represented by
numeric indices. Current IPv4 LSR capabilities can be shown in this generic scheme:

− IPv4 LSR: lookup=#long_prfx class=#IPv4 string=10.0.0.2

IPv4 has limited capability for such options, with only 37 octets of total
DataRouter option payload possible (40 max., less 3 for the option tag), where each
string requires an additional 3 octets of overhead. Optimizations may be possible, e.g.,
merging the string Class and Algorithm fields, to reduce this overhead, but it is clear
that IPv4 DataRouting is constrained.

Class Alg SlenLEN PTR DRO

120 J.D. Touch and V.K. Pingali

An IPv6 DataRouter option can be much larger. The existing RH option, which can
be used for DataRouter (e.g., using Type=1), can be up to 2K octets per instance, and
appears to be no limit to the number of RH options in a single packet. The total IPv6
option space can consume as much of the overall packet size as desired (64K
conventionally, or 4G using jumbograms) [3].

2.2 Forwarding and Rewriting Tables

All DataRouter-capable routers include a separate set of forwarding/rewriting tables,
to be matched by the strings in the DataRouter option. The set of tables for each class
used by a particular option is indexed by the class identifier. Each class table entry
consists of:

• match field: the field against which the string is matched.

• rewriting rules field: a set of rules for rewriting this, or perhaps subsequent (but
not antecedent) DataRouter option strings. In most of the examples shown above,
the rule is “replace with the current router’s IP address”.

• IP address: the address of the next DataRouter in the path for this entry.

This set of rules provides a generic capability; the rewriting rules in particular
augment the indexing capability to allow on-the-fly revision of subsequent
DataRouter options.

2.3 Lookup Algorithms

DataRouter includes a small set of fixed lookup algorithms. The objective is to
provide a flexible and generic capability, not a complete programming environment.
Perl-like patterns represent some of the more powerful descriptions, because they can
find repeated strings, or context-based matches. More common usage will be
dominated by the string structure: (a) exact match for hashes, (b) longest prefix for IP
addresses, and (c) longest suffix for DNS names

URLs represent a special case, one where the rewriting rules may be especially
useful. Consider http://www.isi.edu/touch/index.html, which benefits from successive
DataRouter resolution: longest suffix anchored at the first single “/” – once there,
remove http://www.isi.edu/ , and longest prefix thereafter. In this case, DataRouter
would rewrite the current option or insert a copy before the next string to be
processed. Alternately, component operations may be decomposed by the application.

2.4 IP Option API

Applications need a mechanism by which to set the IP DataRouter option, and a way
to read the option contents upon delivery. Unix sockopts provide this capability. For
DataRouter, the options can be set per-packet, or per socket (per-association for UDP
or per-connection for TCP). There may be further implications on the requirements
for Internet hosts, as well as for the routing table values [4].

DataRouter: A Network-Layer Service for Application-Layer Forwarding 121

The DataRouter requires additional transport layer support for late binding [13].
Incrementally resolving strings into IP addresses is consistent with existing IP, but
UDP and TCP include the final endpoint address in a loose source route list in the
transport protocol processing. For TCP and optionally UDP, this affects the
calculation of the transport checksum. For TCP, it also affects connection processing,
because TCP expects to match returning SYN/ACKs with the emitted SYNs, based on
addresses and ports. Existing solutions that support host mobility can be applied,
notably the Host Identity Payload (HIP) protocol, which uses an intermediate header
between the IP and transport protocol, providing exactly the decoupling required [16].

2.4 Table Loader API

The tables of a DataRouter-capable router need to be loaded by a routing protocol.
This proposal does not address the routing protocol, as there are many to choose from,
and it focuses instead on enabling the development of these protocols. The API for
loading forwarding tables is a variant of the Unix route command called droute:

droute class class_id add pat dest [alg (long|exact…)]

The default algorithm is “longest”. “Dest” indicates the IP address of the next hop
to use when this pattern matches. The current implementation supports regexp
patterns [20]. Further details of the pattern are under development, including how best
to indicate the following: (a) match only & delete current string, (b) match &
substitute on current string, and (c) if matching current string, then substitute on all
subsequent strings.

The table loader API is intended to be used by either static routing commands or a
dynamic routing protocol. Such a protocol could support Chord-style forwarding at
the network layer, by having a Chord application insert DataRoutes into the
forwarding table. The purpose of DataRouter is to support this and other kinds of
forwarding in a generic service.

3 Preliminary Results

A preliminary implementation of the DataRouter has already been completed in
FreeBSD 5.0, using a new IPv4 option and UDP data packets [14]. It includes a
preliminary API for inserting and reading options and configuring tables. It supports
exact and longest suffix match, and was tested for the classes of MP3 hashes and
DNS names. This implementation consists of ~700 lines of kernel code and ~1,000
lines of application code for testing. This version consists of longest-pattern match
lookup only, to indicate the upper-bound performance of an unoptimized system.

The results of preliminary tests indicate the utility of this mechanism. Both
conventional DNS and peer-to-peer style MP3 hash lookups are supported using a
single interface. The system avoids per-hop transport-layer tunnels and works as an
intermediate step in a global Internet path. The data are summarized in Figure 5.

On a dual-processor 2.4 GHz Xeon PC running the existing FreeBSD 5.0, IPv4
packets are forwarded around 310K packets/sec, indicated as “IP/reg” in Figure 5
(leftmost bar). Forwarding the same packets on a kernel with DataRouter extension

122 J.D. Touch and V.K. Pingali

support (IP/RER), i.e., data routing capability is present but not used, does not affect
performance measurably. DataRouted packets forwarded based on an exact match of
a 32-bit hash decreases performance to around 270K packets/sec (Hash/RER, striped),
and forwarding based on a regular expression (in this case, “*.(isi|usc).edu”) results in
155K packets/sec. (dark bar). The graph shows averages of 10 1-minute runs over 64-
bit/66 MHz PCI gigabit Ethernet connecting three machines (source, router, sink),
with error bars indicating +/- 1 standard deviation. These are simple baseline
experiments, in which all packets for a test have the same header, and the forwarding
tables have only one entry of each type (regular longest-prefix, hash, and regular
expression). The results are promising, and more experimentation is planned to study
the performance aspects of the DataRouter and design optimizations.

0

100

200

300

400

IP/reg IP/RER Hash/RER RE/RER UDP TCP

K packets/sec

Fig. 5. Comparative IPv4 forwarding performance (in K packets/sec)

Compare these results to application layer forwarding, also shown in Figure 5
(right two bars). Trivial application-layer UDP forwarding, using a single, default
output route, runs at 40K packets/sec. on the same PCs. TCP forwarding is limited to
the number of new connections per second, 15K connections/sec. when TCP
TIME_WAIT states are discarded on close. Moving forwarding into the kernel avoids
data copying across kernel-user boundaries, as well as reducing interrupt processing
overheads. Although these rates could be increased with tuning, application
forwarding still complicates end-to-end semantics for TCP connections.

These tests measured an IPv4 option; the ultimate goal is an IPv6 implementation.
IPv6 provides additional option space and provides a safer environment in which to
experiment with new options. IPv4 options should be ignored at intermediate hops,
notably at routers forwarding DataRouter packets toward their next hop.

IPv4 packets with new, unrecognized options should be ignored (i.e., forward
normally) at intermediate routers on paths between DataRouters [2]. Past experience
in the Internet community deploying new options suggests caution, however, notably
because options not already supported often divert packets from hardware ‘fast-path’
processing to outboard ‘slow-path’ software. We suggest a technique to overcome this
potential pitfall elsewhere [26].

The code can be transitioned to the core of the Internet if desired, using either PCs
as buddy-routers or by integration into native routers. Because DataRouter provides
CDN-like redirection, implementation in the Internet core is not necessary, and it may
be more convenient to rely on edge-based DataRouter services for directing initial
requests, where subsequent data connections can utilize conventional IP packets.

DataRouter: A Network-Layer Service for Application-Layer Forwarding 123

4 Related Work

DataRouter extends the concepts of a number of peer, overlay, and alternative
network architectures, unifying the generic capability believed to support many of
these systems. It is a very specific capability, and though it could be deployed using
programmable (Active) networks, it is more consistent with a static capability with
dynamic configuration than a truly programmable system [24]. Further, it is distinct
from most of these related architectures in being integrated (and relying upon) the
underlying IP forwarding infrastructure. DataRouter augments IP routing with data
routing, but does not replace it.

Data routing trades space within the header and slightly increased node complexity
to reduce protocol complexity and application participation in network layer
forwading. Trading header space for computational complexity has been explored
earlier [9]. for improving route lookup performance. DataRouter uses a language
similar to Data Manipulation Language [9] to encode routing instructions.

DataRouter is inspired by the use of application data for content-directed routing in
peer networks [17]. Whether accessing URLs in an HTTP connection in a TCP
stream, or hashes as used in CAN or Chord, these systems forward using packet data,
rather than packet headers [19][23]. In some cases the data is extracted en-route, in
other cases the hash is performed a-priori to provide a header destination address. The
use of data for forwarding distinguishes them from VPN or overlay networks, which
rely on conventional endpoint addresses.

The cost of forwarding using packet data is large – either an entire, separate
topology must be deployed (CAN/Chord) or each hop must terminate the data (TCP)
connection (to access the packet data properly). The former is cumbersome and
prohibitive, and the latter violates the end-to-end argument, requiring separate
application-layer reliability mechanisms on top of conventional transport protocols
[21]. A recent approach uses data expressed as selection predicates [7]. that are
constraints over a set of attribute value pairs. DataRouting supports regular
expressions that are strictly more general than selection predicates. However, the
constrained language of selection predicates allowed for efficient matching algorithms
to be designed. DataRouter could be easily extended to incorporate the special case of
selection predicates. Further, DataRouter supports string rewriting, which is not
included in [7].

There are more recent systems which focus on the naming structure of CDNs (e.g.,
INS) or use CDNs for rendezvous-based communication (e.g., III, or i3) [1][22]. In
both cases, as well as with other CDN systems (hash or string-based), DataRouter can
provide a platform in which INS, i3, or other architectures can load the rewriting
tables, allowing network-layer processing based on application-layer data, and
avoiding the need for each of these (and other emerging) architectures to reimplement
a network layer processing capability.

Overlay networks are deployments of virtual infrastructure, using separate
endpoint addresses, tunnels, and routes. They too are cumbersome to deploy, and
require separate name-to-address mapping mechanisms to be useful. DataRouter
builds on virtual networking systems such as the X-Bone [25] to provide an integrated
system with overlay-like capabilities using the core Internet, replacing tunnels with
data-directed loose source routing. LSR was abandoned as a mechanism to deploy
new protocols in the early days of the M-Bone, because LSR-tagged IPv4 packets are

124 J.D. Touch and V.K. Pingali

processed inefficiently at every router hop [12]. IPv6 removes this impediment, such
that LSR-tagged packets are handled differently (from non-tagged packets) only at
hops where the LSR header is manipulated [11].

DataRouter allows the deployment of alternate network architectures, notably those
that benefit from an index-based forwarding. It thus enables tests and incremental
deployment of IPNL, TRIAD, Heaps, and Network Pointer architectures. It is
fundamentally based on the Linda [6] system’s tuple-style message delivery,
integrated with existing IP forwarding and extended with rewriting capability.

IPNL is a multi-level routing hierarchy, utilizing different forwarding tags at
various routing levels [13]. DataRouter can be used as a platform for developing
IPNL concepts, using sequences of DataRouter strings for the various IPNL
forwarding tags. TRIAD similarly uses an alternate tag architecture, preferring DNS
names to IP destination addresses; here again DataRouter option strings can be used
to provide TRIAD-like service [10]. Similar multilayer forwarding in Network
Pointers, and Catanet can be supported [7][23][27].

Catanet first described the use of source routes and addresses having additional
structure, albeit using different classes of more conventional IP addresses [8]. This
concept is augmented to use pointers (Network Pointers) or heaps in newer proposals
[5][27]. DataRouter is a more general variant of the use of multiple addresses,
although currently assuming a linear structure. Instead of focusing on the semantics of
the addresses (pointers are a form thereof), it focuses on generalizing the indexing and
rewriting capability present in various forms in all these earlier or alternate proposals,
specifically allowing the indexing to occur in the network on the path.

5 Related Issues

Preliminary implementation of the DataRouter option in IPv4 suggests that string
matching can be done at reasonable rates. Ultimately, its use by application and
protocol designers will determine its impact. There are a number of open issues in the
current DataRouter research which are largely a matter of development. We identify
several of them here but discuss only the end-to-end issues in some detail. Discussion
on the rest of the issues can be found elsewhere [26].

Major issues include IPv4 transparency, optimization, late binding, and end-to-end
issues. DataRouter functions can be transparently added to the network layer via a
modified IP option format. Integration of the DataRouter option with existing routing
protocols requires similar extensions to those protocols. The current implementation
does not include any optimizations, though caching and precomputation of pattern
machines may increase throughput substantially. DataRouter can support late binding,
given dynamic endpoint identification negotiation, similar to emerging standards,
with interesting additional requirements [13][16]. Even given those potential issues,
the benefit to application protocol designers, notably avoiding the need to
reimplement transport layer services in the application layer, is substantial. Finally,
the DataRouter does not require application protocols that reinvent transport services,
as would violate the end-to-end principle.

As noted earlier, application layer forwarding has a negative effect on end-to-end
protocols [21]. Connectionless (e.g., UDP) fragmented packets must be reassembled
at the forwarding routers, and connections (e.g., TCP) must either be terminated at

DataRouter: A Network-Layer Service for Application-Layer Forwarding 125

each hop or snooped and spoofed to reconstitute their internal data. Encrypted data
connections prohibit application layer forwarding, unless keys are distributed to all
intermediate routers, destroying end-to-end security. When connections are
terminated at intermediate hops, error detection and correction must be
reimplemented at the application layer, to ensure end-to-end reliability. DataRouter
avoids this complexity, allowing the application to place forwarding data directly in
the network-layer header. That data is then accessible by DataRouters, copied into
fragmented packets, and not subject to data encryption.

6 Conclusions

DataRouter provides a generic string matching and rewriting capability, enabling
application-directed forwarding with network layer efficiency, yet without requiring
extraordinary measures at the application layer. A preliminary IPv4 implementation
demonstrates that DataRouting can operate at 50% of IP forwarding rates, 4 times
faster than is possible at the application layer.

The DataRouter enables deployment of new forwarding services incrementally,
forwarded like loose source routed packets over existing legacy Internet
infrastructure. These new capabilities require modest extensions to existing transport
protocol processing, akin to those already required for IP mobility and anycast. By
providing an integrated, network-layer capability, DataRouter enables application and
protocol designers to focus on the specific features of the system, rather than the
details of the mechanism that provides it.

References

1. Adjie-Winoto, W., et al., “The Design and Implementation of an Intentional Naming
System,” Proc. ACM SOSP (OS Review, V34 N5), Dec. 1999, pp. 186-201.

2. Baker, F., “Requirements for IP Version 4 Routers,” RFC1812, June 1995.
3. Borman, D., Hinden, R., Deering, S., “IPv6 Jumbograms,” RFC 2675, Aug. 1999.
4. Braden, R., ed. “Requirements for Internet Hosts -- Application and Support,” RFC 1123,

Oct. 1989.
5. Braden, R., Faber, T., Handley, M., “From Protocol Stack to Protocol Heap – Role-Based

Architecture,” Proc. HotNets-I, Oct. 2002, in ACM CCR, Jan. 2003, pp. 17-22.
6. Carriero, N., Gelernter, D., “The S/Net's Linda Kernel,” ACM Transactions on Computer

Systems (TOCS), V4 N2, Nov. 1986, pp. 110-129.
7. Carzaniga, A., Wolf, A. L., “Forwarding in a Content-Based Network,” Proc. Sigcomm

2003, Aug. 2003, pp. 163-174.
8. Cerf, V., “The Catanet Model for Internetworking,” IEN 48, July 1978.
9. Chandranmenon, G. P., Varghese, G., “Trading packet headers for packet processing,”

Proc.Sigcomm, Aug. 1995, pp. 162-173.
10. Cheriton, D., Gritter, M., “TRIAD: A Scalable Deployable NAT-based Internet

Architecture", Stanford Computer Science Technical Report, Jan. 2000.
11. Deering, S., Hinden, R, “Internet Protocol, Version 6 (IPv6),” RFC 2460, Dec. 1998.
12. Eriksson, H., “MBone: The Multicast Backbone,” Communications of the ACM, Vol.37,

Aug. 1994, pp.54-60.

126 J.D. Touch and V.K. Pingali

13. Francis, P., Gummadi, R., “IPNL: A NAT-Extended Internet Architecture,” Proc.
Sigcomm 2001, Aug. 2001, pp. 69-80.

14. FreeBSD man pages, e.g., http://www.freebsd.org/
15. Johnson, D., Deering, S., “Reserved IPv6 Subnet Anycast Addresses,” RFC 2526, March

1999.
16. Moskowitz, R., Nikander, P.,“Host Identity Payload Architecture,” (work in progress),

April 2003..
17. Oram A., (ed.): Peer-To-Peer: Harnessing the Power of Disruptive Technologies, O’Reilly

& Associates, Sebastopol, U.S.A., 2001.
18. Postel, J., (ed.) “Internet Protocol,” RFC 971, Sept. 1981.
19. Ratnasamy, S., Karp, R., Francis, P., Handley, M., Shenker, S., “A Scalable Content-

Addressable Network,” Proc. Sigcomm 2001, Aug. 2001, pp. 161-172.
20. Regexp Unix Manual Pages, June 1993.
21. Saltzer, J., Reed, D., Clark, D., “End-To-End Arguments in System Design,” ACM

Transactions on Computer Systems, V2 N4, Nov. 1984, pp. 277-288.
22. Stoica, I., Adkins, D., Zhuang, S., Shener, S., Surana, S., “Internet Indirection

Infrastructure,” Proc. Sigcomm, Aug. 2002, pp. 73-86.
23. Stoica, I., et al., “Chord: A Scalable Peer-to-Peer Lookup Service for Internet

Applications,” Proc. Sigcomm, Aug. 2001, pp. 149-160.
24. Tennenhouse, D., Smith, J., Sincoskie, W., Wetherall, D., Minden, G., “A Survey of

Active Network Research,” IEEE Comm. Magazine, Vol. 35, No. 1, Jan.1997, pp. 80-86.
25. Touch, J., “Dynamic Internet Overlay Deployment and Management Using the X-Bone,”

Computer Networks, July 2001, pp. 117-135.
26. Touch, J., Pingali, V., “DataRouter: A Network-Layer Service for Application-Layer

Forwarding,” ISI Technical Report ISI-TR-2003-578, May 2003.
27. Tschudin, C., Gold, R., “Network Pointers,” Proc. ACM HotNets-I, Oct. 2002, in ACM

CCR, Jan. 2003, pp. 23-28.

	1 Introduction
	1.1 Background

	2 DataRouter
	2.1 IP Option Structure
	2.2 Forwarding and Rewriting Tables
	2.3 Lookup Algorithms
	2.4 IP Option API
	2.4 Table Loader API

	3 Preliminary Results
	4 Related Work
	5 Related Issues
	6 Conclusions

