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Abstract. This paper investigates an approach to improving the scalability and 
feasibility of probabilistic fault localization in communication systems by exploit­
ing the domain semantics of computer networks. The proposed technique divides 
the computational effort and system knowledge among multiple, hierarchically 
organized managers. Each manager performs fault localization in the domain 
it manages and requires only the knowledge of its own domain. Since failures 
propagate among domains, domain managers cooperate with each other to find a 
consensus explanation of the observed disorder. We show through simulation that 
the proposed approach increases the effectiveness of probabilistic diagnosis and 
makes it feasible in networks of considerable size 1• 

1 lntroduction 

End-to-end connectivity in a given protocol layer is provided through a sequence of 
intermediate nodes. Communication problems between a pair of these nodes, e.g., a 
malfunctioning interface, intermittent connectivity, etc., may disorder one or more end­
to-end paths containing the failing link. These end-to-end problems propagate to higher 
system layers causing various application-level events, such as aborted transactions, 
session timeouts, or abnormal delays. The diagnosis of end-to-end network service fail­
ures [1,2] is a sub-task of fault localization [3,4,5] that isolates node-to-node services 
responsible for availability or performance problems experienced by end-to-end services. 
In the previous work [1,2], we investigated an application of probabilistic reasoning to 
end-to-end service failure diagnosis. The proposed approaches rely on a probabilistic 
fault propagation model (FPM), which represents causal relationships between end-ta­
end and node-to-node service failures. To solve the fault localization problem, in [1], an 
adaptation of Pearl's belief updating in belief networks [6] was used, andin [2], a novel 
algorithm was proposed, which is based on incremental hypothesis updating. The algo­
rithms were shown effective in the diagnosis of end-to-end service failures in networks 
composed of tens of nodes. 

1 Prepared through collaborative participation in the Communications and Networks Consortium 
sponsored by the U. S. Army Research Laboratory under the Collaborative Technology Alliance 
Program, Cooperative Agreement DAAD19-01-2-0011. The U. S. Govemment is authorized 
to reproduce and distribute reprints for Govemment purposes notwithstanding any copyright 
notation thereon. 

N. Mitrou et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 1036-1046, 2004. 
© IFIP International Federation for Information Processing 2004 
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This paper introduces a distributed fault -localization technique [ 4,7], which increases 
the adrnissible network size by an order of magnitude by taking advantage of the do­
main semantics of communication systems. The technique divides the computational 
effort and system knowledge among hierarchically organized managers. Each manager 
is responsible for fault localization within the domain it governs, and reports to a higher­
level manager that oversees and coordinates the fault-localization process of multiple 
domains. The technique is suitable for distributed diagnosis of end-to-end service fail­
ures in hierarchically routed networks such as the Internet. Although the technique is 
not expected to apply to the management of the entire Internet, we consider it applicable 
to failure diagnosis across a small subset of network domains that are used to provide a 
distributed service we want to manage. 

The paper is structured as follows. Section 2 defines the problern of probabilistic 
end-to-end service failure diagnosis. In Section 3, an outline of a multi-domain fault 
localization technique for hierarchically routed networks is proposed. A distributed fault 
propagation model is proposed in Section 4, and a multi-domain fault localization al­
gorithm is presented in Section 5. Section 6 evaluates the effectiveness of the proposed 
multi-domain techniques. 

2 Probabilistic Diagnosis of End-to-End Service Failures 

This paper adopts a service-oriented view of the network [8], in which end-to-end or 
node-to-node connectivity in a given protocollayer is considered a service provided by 
this layer to higher layers. The fault propagation model (FPM) for end-to-end service 
failure diagnosis is a bipartite causality graph in which parentless nodes (called link 
nodes) represent node-to-node service failures (faults) and childless nodes (called path 
nodes) represent end-to-end service failures (symptoms ). Multiple link or path nodes may 
exist for every node-to-node or end-to-end service that correspond to different types of 
failures that may be experienced by the service. Since causal relationships between node­
to-node and end-to-end service failures are difficult to determine due to their dynamic 
and unpredictable nature, the FPM is a probabilistic one, in which each link node is 
labeled with the probability of the corresponding fault's independent occurrence, and 
causal edges between link nodes and path nodes are weighted with the probability of the 
causal implication. 

In our previous work, two approaches to solving this problern have been proposed. 
The first technique (referred to as Alg. 1) [1] adapts Pearl's belief updating [6] for 
polytrees to calculating the most probable explanation (MPE) of observed symptoms. 
The second approach (Alg. 2) [2, 1] obtains the MPE by incrementally updating a set of 
alternative explanation hypotheses. Due to space lirnitations, we will not present these 
algorithms in this paper. Instead, we ask the reader to refer to the respective previous 
publications. We only state that both algorithms include an event-driven procedure called 
inference that analyzes an observed symptom and includes the results of this analysis in 
the fault-localization state. Also, both algorithms are capable of producing a conditional 
probability of a given fault's existence, Prob{!}, or non-existence, Prob{ •!} at any 
time in the process of fault localization. 
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Table 1. Basic notation 

A directed link from nk to n1, where nk and n 1 are node identifiers that are unique 
network-wide, e.g., IP addresses 

np1 ~ nPm A directed, possibly multi-hop path from np1 to nPm consisting oflinks np1 -t np2 , 

· · ., nPm- 1 -+ npm· 

s : nk ~ n1 A symptom indicating a failure of path nk ~ n 1 

f : nk -+ n1 A fault associated with link nk -+ n1 

i ~ j The set of all paths that begin in domain 'D; and end in domain 'Di, i.e., i ~ j = 
{ nk ~ n1 / nk E 'D; and n1 E 'Dj }, where i and j are unique domain identifiers, 
e.g., IP subnet masks. 

s : i ~ j A symptom associated with the set of paths i ~ j . We say that symptom s : i ~ j 
occurred when at least one s : nk ~ n1 occurred such that nk E 'D; and n1 E 'D i . 

Fig.l. Definition of a path segment, and ingress and egress gateways. 

3 Multi-domain Approach to End-to-End Service Failure 
Diagnosis 

The multi-domain approach to fault localization in hierarchically routed networks takes 
advantage of the domain semanti es of communication systems. A management domain 
corresponds to a routing domain and may be identified, for example, by a subnet address. 
The technique proposed in this paper may be applied in networks with multiple Ievels of 
the routing hierarchy. However, for simplicity, we focus on a two-level architecture and 
use N and Vi to denote the entire network and its sub-domain, respectively. Domain Vi 
is managed by aseparate manager, DMi. At the root of the management hierarchy we 
place a network manager, NM, which coordinates the operation of managers DMi. 

We introduce the notation presented in Table 1. For an end-to-end path np1 ~ n Pm 

consisting of links np1 -+ np2 , ... , nPm-1 --+ nPm we define the following concepts. 

Definition 1. Path nP1 ~ nPm traverses vi iff 3 nPj 11 ::; j ::; m , npj E v i. Path 

nP1 ~ nPm is an intra-domain path in vi ifVnPi 11 ::; j ::; m, nPj E vi. lf n P1 ~ nPm 

that traverses V i is not an intra-domain path in Vi, it is an inter-domain path with 
respect to v i. 

Definition 2. Let n P1 ~ nPm be an inter-domain path with respect to V z. Let nP1 E v i 
and n Pm E V j. Node n Pk suchthat 1 < k ::; m, n Pk E V z, and nPk-I tt V 1 is an 
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Fig. 2. Transformation of an end-to-end path into a sequence of inter-domain links and intra­
domain path segments. 

ingress gateway from V; to V1 in Vz and is denoted by l~,j· Similarly, nPn suchthat 
1 :::; n < m, nPn E Vz, and nPn+I (j:. Vz is an egress gateway from V; to vj in Vz and 
is denoted by ~.j (Fig. 1). 

Consequently, if a node in Vz is an ingress/egress gateway both from V ; to V 1 and 
from V;' to vj'' then it is denoted by both li,iEL and /~, ,j'/E~, ,j'. 

Definition 3. Let nPl ~ np". such that nPl E V; and np". E vj be inter-domain with 
respect to Vz. Path IL ~ ~,j is called an intra-V! segment o/np1 ~ np". (Fig. 1). 

The solution proposed in this paper is based on the following assumptions, which are 
reasonable to make in hierarchically routed networks: (1) domains are disjoint, (2) no 
path enters the same domain more than once. In addition, to simplify the presentation of 
the methodology, we consider the case where, at a given point in time, allrelevant traffic 
between two nodes is transfered using the same route (which is equivalent to single-path 
routing). 

Each DM has the minimum knowledge necessary for fault diagnosis, i.e., it is aware 
of logical topology only in the domain it directly manages. DMi is aware of link nk -t n1 

iff both nk and nz belang to V i, whereas NM is aware of link nk -t n z iff nk -t nz 
isalink between Vi and V 1, and n k and nz are egress and ingress gateways in V; and 

V 1, respectively. Consequently, NM is able to transform path np1 ~ np". that traverses 

V 11' .. . , V 1k into a sequence of intra-domain path segmentsandlinks np1 ~ Ei~,lk' 
Ell i 2 f.2 * El2 E,k-1 ik i k * (F' 2) DM . bl 

h ,lk 4 l1 ,lk' h ,lk 4 l1 ,lk ' · · ., l1,lk 4 l 1,lk' l 1,lk 4 nPm Ig. · i IS a e 
to obtain a route for each path nk ~ nz suchthat nk , n z E V ;, but it cannot obtain the 
topology and routing information for any parts of the network located outside of V;. 

4 Distributed Fault Propagation Model 

In the multi-domain solution, the FPM of the entire network is distributed among DMs. 
Each manager maintains a part of the distributed FPM that represents the manager's 
knowledge ofthe system structure, i .e., it includes only faults oflinks that are located in 
its domain. Faults located in other domains that may propagate to the manager 's domain 
are represented by proxy nodes, called P -nodes. 
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4.1 Fault Propagation Model of the NM 

Let us consider path np1 ~ nPrn that traverses domains V zl' ... , Vzk . Recall that NM 
transforms this path into a sequence of intra-domain path segments and links (Fig. 2). 
When only one path exists between Vz 1 and Vzk then all paths that begin in Vz 1 and end 
in Vzk are transformed into the same sequence of intra-domain path segments and links 
with the exception of the first and last segments. In this case, the FPM includes a single 
symptom node labeled s : ll ~ lk that represents all paths that begin in vh and end in 
Vzk. 

In the FPM ofNM, two types offault nodes exist: (1) ordinary fault nodes, like ones 
in the centralized case, which represent failures of inter-domain links; these faults are 
directly isolated by NM, and (2) proxy fault nodes that represent path-segment failures, 
which cannot be isolated by NM alone because they are located in domains that are not 
directly managed by NM. For every V;, one or more P-nodes are created as follows. 

1. For every ingress gateway in V;, Jt i• we create P : Jt i ~ * that represents all ' , 
intra-V; paths that begin in Jt ;· , 
2. For every egress gateway in V;, ~,k• we create P : * ~ ~,k that represents all 

intra-V ; paths that end in ~,k· 
3. Foreach pair of gateways Jt k and Ef k• we create P : Jt k ~ Ef k that represents 

l , ' ' 

intra-V; path Jt k ~ Ef k· , , 
In the FPM ofNM, s: h ~ lk is connected toP: * ~ E1h 1 , f: E11 1 --+ f.12 1 , 

},k bk l,k 

P : /:2 1 ~ E;2 1 , ... , f : E1k -11 --+ ~k 1 , P : f.1k 1 ~ *· The FPM of NM contains 
bk ltk I,k l t k } , k 

multiple such symptom nodes for all pairs of domains in N. 
The approach chosen in this paper assigns all conditional probabilities between P­

nodes and symptom nodes to 1. Prior failure probabilities associated with P-nodes must 
be calculated by the multi-domain technique based on the state of the fault localization 
process in domains they represent. 

4.2 Fault Propagation Model of DM 

As it was stated at the beginning of this section, the FPM built by DM; includes all 
intra-V; paths and links, i.e., all the information contained in the centralized model of 
V;. Suchmodel is sufficient for the diagnosis of symptoms observed in V ; but is not 
sufficient for the diagnosis of symptoms DM; receives from NM. In particular, NM may 
delegate to DM; a part of a task involved in the diagnosis of path np1 ~ n Prn that 
traverses V ;. In this case, DM; will be notified about a failure of its intra-domain path 
that constitutes the intra-V ; segment of np1 ~ n Pm . This notification only indicates a 

possibility of the segment's failure, since the failure of np1 ~ nPm could have been 
caused by its path-segment or linkthat is not located in domain V;. Thus, symptoms 
received by DM from NM are typically associated with a high degree of uncertainty, 
i.e., they are likely to be spurious. To deal with spurious symptoms, we use ideas from 
previous work [1] as follows. 

Lets : nr ~ nt be an intra-V ; symptom received by DM; from NM in the process 
of diagnosing a failure of inter-domain path np1 ~ nPm. To model the possibility that 
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s : nr ~ nt is spurious in the FPM of DMi, we create a P-node that represents all 
possible causes of s : nr ~ nt that arenot located in V i . Observe that, since nr ~ nt 
constitutes a segment of an inter-domain path, at least one of nr. nt is a gateway in 
Vi. Let l and k be identifiers of domains that contain np1 and nPm, respectively. Let us 
consider three cases. 
1. i = l; We create P : * ~ El,k and connect it tos : nr ~ nt. 

2. i = k; We create P : Jt,i ~ * and connect it tos : nr ~ nt. 

3. i =f. l and i =f. k; We create P : Jf,k ~ Ez,k and connect it tos : nr ~ nt. 

Sirnilar to the FPM ofNM, conditional probabilities on edges between P-nodes and 
symytom nodes in the FPM ofDMi are set to 1, while prior failure probabilities assigned 
to P-nodes in the FPM of DMi are calculated by NM and sent to DMi tagether with 
reported symptoms. 

5 Multi-domain Fault Localization Algorithm 

In this section, we present an outline of a multi-domain fault localization algorithm 
(Alg. 3) based on the distributed FPM described in Section 4, which may be refined 
to create multi-domain versions of Algs. 1 and 2. In the pseudo-code of Alg. 3, which 
is presented on page 1043, sections of the algorithm that are specialized for different 
probabilistic reasoning mechanisms are underlined. The multi-domain fault localiza­
tion algorithm proceeds in two phases performed by every DM and NM: (1) symptom 
analysis and (2) fault selection. Initially, the model is reset by assigning prior failure 
probabilities to proxy nodes. In our implementation, these probabilities are set to 0 in 
the FPM of NM. In the FPM of DM, no P-nodes exist at the beginning, and there­
fore no assignment is needed. Symptom-analysis and fault-selection phases progress by 
traversing the hierarchy of managers in a bottom-up or top-down manner. 

5.1 Symptom Analysis Phase 

The symptom analysis phase is executed for every received alarm that indicates a failure 
of an end-to-end path. This alarm can be received either by the NM or a DM. A DM can 
start symptom analysis only if the entire failed path belongs to its domain. If the DM is 
not able to diagnose the symptom it forwards it to the NM, which initiates the symptom 
diagnosis (function analyze_intemal). 

Symptom Processing by NM: In the process of diagnosing s : np1 ~ nPm (see 
function analyze_intemal in the pseudo-code of Alg. 3), the NM first maps it into node 

s : h ~ lk in its FPM, such that np1 E 'Dz1 and nPm E 'Dzk. Then, it splits np1 ~ nPm 
into path segments and links. Failures of path segments are then interpreted as symptoms 
s1, s2, ... , sk that will be reported to DM~t, DMz2 , •• • , DMzk, respectively. Note that in 
the FPM ofDM1i, all causes of s1 that arenot located in 'Dzi are represented by a P-node 
that is attached to node s 1. To indicate that s 1 may be spurious in 'Dz i, NM calculates 
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the prior probability associated with this P-node in the FPM of DMzj. Suppose that 

s1 = s : nr ~ nt. Then the probability that s1 is spurious is obtained as follows: 

Pspurious ( s : nt ~ nr) = II Prob{-,P} (1) 

{ 

{P: nr ~ nt , P: * ~ nt, P: nr ~ *} 

P( • ) _ if nr and nt are ingress and egress gateways 
nt -+ nr - {P * } "f . . : * -+ nt 1 nr IS an mgress gateway 

{P : nr ~ *} if nt is an egress gateway 

After calculating Pspurious(sj), NM delegates the diagnosis of Sj to DMzj , for j = 
1 ... k by invoking analyze_external. As a result of the diagnosis performed by DM1, 
the NM obtains p(P1 ), where P1 is the P-node representing Vi that is connected to 

s : h ~ lk in the FPM of NM. Then NM updates its FPM. Finally, NM analyzes 
s : Zr ~ lk using the symptom-analysis procedure of either Alg. 1 or 2 (function 
inference). 

To Iimit duplicate delegations of the same symptom to DMzj, NM marks nodes as 

either UNOBSERVED or OBSERVED_INTERNAL. While analyzing s : np1 ~ np".., when 

s : l1 ~ lk is marked OBSERVED_INTERNAL, the NM does not delegate symptoms to 
DMzi s for j = 2 ... k - 1. lt does, however, delegate the analysis to DMz1 and DMzk, 

since paths represented by s : Zr ~ lk differ in their segments located in Dz1 and Vzk. 

Symptom processing by DM: DMi may start the processing of Sr = s : np1 ~ np".. 

when (1) it observes a failure of intra-Vi path np1 ~ np", or (2) Sr is delegated to 
DMi by NM. In the former case, Sr is an internal symptom; in the latter case it is 
called an external symptom. To distinguish between different observations of the same 
symptom, DMi marks symptom nodes as either UNOBSERVED, OBSERVED_INTERNAL, 
and OBSERVED__EXTERNAL when they arenot processed, processed as a result of internal 
observation, and processed as a result of a delegation by NM, respectively. 

Internat symptoms are processed by function analyze_internal. First, the association 
between the observed symptom and its P-node (if one exists) is removed, as the symptom 
can no Ionger be explained by external causes. Then, a symptom-analysis procedure is 
executed. 

The processing of external symptoms is done by function analyze_external. Assurne 
that Sr = s : np1 ~ np".. has been delegated to DMi as a result of a failure of a path 
between domains Dz and Vk. DMi also receives two parameters from NM: Pf,k and 

Pspurious• where Pf k is a description of a P-node that is connected to node s : l ~ k 
in the FPM of NM, 'and Pspurious is the probability that Sr is spurious. DMi first updates 
its FPM by assigning P s purious as the prior probability to the P-node connected to 
symptom Sr. If the symptom has been previously analyzed, DMi returns the stored 
value of p(Pf,k). Otherwise, it updates the FPM by connecting Sr to its corresponding 

P-node, and updates the state of fault localization to reftect the modified value of its 
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prior failure probability. Then, a probabilistic reasoning mechanism is used to analyze 
the symptom. Finally, p(P{,k) is calculated as follows: 

(2) 

(3) 

b l { 1 if s; is DBSERVED_INTERNAL 
e s· -( ,) - 1- TI11a(1 - p(s;lfi)Prob{fi}) otherwise (4) 

5.2 Fault Selection Phase 

In the fault selection phase, DMs and NM have to synchronize their FPMs by updating 
prior failure probabilities associated with their proxy nodes. Afterward, DMs and NM 
choose the most likely hypotheses. 

Algorithm 3: Multi-domain algorithm 

Symptom analysis phase: 
DM: FOR every observed symptom s : np1 ~ nPm DO 

IF intemal symptom analyzeJntemal(s: np1 ~ np"' ) 
ELSE NM---tanalyzeJntemal(s : np1 ~ np"') 

NM: FOR every observed symptom s : np1 ~ np". DO analyzeJntemal(s: np1 ~ np"') 
DM;: FUNCTION analyze_internal(sr) 

IF Sr is not ITUlrked OBSERVED_INTERNAL THEN update the modelAND run inference( Sr) 
NM: FUNCTION analyze_internal(s : np1 ~ np.,.) 

map s: np1 ~ nPm tos: li ~ lk such thatnp1 ~ np". Eh~ lk 
transform nPl ~ nPm into nP1 ~ Elll l , Elll l ---+ f.t • l ,il2 l ~ Ell2 t ' . . . ,l.lk l ~ nPm 

lJk l l k bk bk l lk bk 

set SI = s : np1 ~ E111 l , s2 = s : 1.12 1 ~ E112 l , .. . ,Sk = s : f.1k 1 ~ nPm 
bk bk bk bk 

find P-nodes connected tos : li ~ lk: PI = P : * ~ E111 1 , ••. , Pk = P : f.1k 1 ~ * } , k }, k 

FüR 1 S: j S: k Dü 

IF s : h ~ lk is marked UNOBSERVED OR j = 1 OR j = k THEN 

p(Pj) = DMt1 ---+analyze_extemal(sj, Pj,Pspurious(Sj)) 

IF s : li ~ lk is not marked OBSERVED_INTERNAL THEN 

update the modelAND run inference( s : li ~ lk) 
DM;: FUNCTiüN analyze_external(sr, Pf,k> Pspurious) 

IF Sr is not marked UNOBSERVED THEN return p(Pt,k) 
ELSE update the model, run inference(sr), ANDRETURN p(Pf,k) 

Fault selection phase: 
NM: FüR every Pf,k DO obtain p(Pf,k) from DMi AND update the model 

FOR every Pf,k DOsend Prob{ •Pf,k} to DMi 
FüR every DMi Dü obtain the most likely set offaults from DM; 
obtain the most likely set offaults in NM 
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lt is not difficult to refineAlg. 3 to create multi-domain versions of Algs. 1 and 2. The 
resultant multi-domain versions of Algorithms 1 and 2 are labeled Alg. 3A and Alg. 3B, 
respectively [9]. The computational complexities of fault localization performed by a 
single manager using Algs. 3A and 3B in a network domain composed of n nodes or 
domains are O(n5 ) and O(n4 ), respectively. 

In the entire algorithm, the messaging overhead is O(max(ISol, n3 )) per domain, 
where n is a number of nodes or sub-domains in the domain. 

6 Simulation Study 

We evaluate the performance of Algs. 3A and 3B through simulation. The study uses 
sets of fault localization seenarios in which faults and symptoms are randomly generated 
based on the conditional probability distribution that describes non-deterministic causal 
relationships between faults and symptoms. 

The simulation study uses network topologies similar to those of the Internet. The 
generation of random graphs resembling the topology of real-life networks has been 
a widely studied research area [10,11,12,13]. This study uses a generator based on 
Barabasi-Albert power-law model [11], because its implementation (BRITE [14]) is 
available in public domain, and because topologies built based on this model are repre­
sentative of the Internet topology [15]. 

Using the topology generator we create a random network composed of N = 10 
domains and n nodes in each domain, where n varies between 5 and 70. We determine 
routes between any source and destination using the shortest-path policy for intra-domain 
routes. We choose inter-domain routes suchthat the number of visited domains is mini­
mized. Then, we generate prior failure probabilities for inter-domain and intra-domain 
links, which are uniformly distributed over the range [0.0001,0.001]. Foreach intra­
domain link l and path p, we randomly choose the probability that p fails if l fails from 
set {0.25, 0.5, 0.75}. In the FPM of the NM, the conditional probabilities are all equal 
to 1. We randornly generate a subset of symptoms observable in every domain to include 
50% of all intra-domain paths. The observability ratio [1,2] for inter-domain paths is 
2%. 

We distinguish three types of experiments: those involving only intra-domain link 
failures,inter-domain link failures, and both types of failures. In every study, two per­
formance metrics are calculated: detection rate, DR, defined as a percentage of faults 
occurring in the network which are isolated by the technique, and false positive rate, 
FPR, defined as a percentage of faults reported by the technique that are not occurring 
in the network [ 1]. 

In Figs. 3a-3(b ), we show the accuracy of Alg. 3A in a ten-domain network, in which 
each domain is composed of up to 70 nodes. Thus the entire network consists of up to 
700 nodes. Figs. 4(a)-4(b) present the results of the same experiment executed using 
Alg. 3B. 

The figures compare the accuracy achievable in seenarios involving only inter­
domain, only intra-domain, and both types offaults. Clearly, the mixed-failure seenarios 
are the most difficult to diagnose since they always involve at least two concurrent faults 
located in different network domains. The interpretation ofthe faults ' symptoms, which 
may overlap, Ieads to ambiguity. This results in a lower fault-localization accuracy of 
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mixed-fault seenarios compared tothat of other types of scenarios, which is conspic­
uous in networks of small size. Scenarios involving only inter-domain symptoms are 
the easiest to solve as the number of suspect faults is usually small compared to the 
amount of available evidence. In intra-domain- and mixed-fault scenarios, increasing 
the domain size also increases the frequency of multi-fault scenarios. For example, in 
mixedseenarios the number of simultaneaus faults exceeds 3 in a 700-node network. In 
inter-domain scenarios, the number of faults is equal to 1.02 on average, and does not 
change when the network size increases, while the number of received symptoms grows 
with the increasing network size. 

We repeated the same set of experiments using networks composed of 50 domains. 
The results, which are not shown in this paper, confirm the results obtained using ten­
domain networks (see [1] for details). 

7 Conclusion 

The paper identifies two main difficulties offault management in multi-domain networks: 
failure propagation among domains and a Iack of global information about the system 
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structure and state. To address these challenges, the paper proposes a multi-domain 
algorithm, which is shown to provide high accuracy while increasing the admissible 
network size by an order of magnitude. Clearly, the biggest challenge in applying the 
fault localization technique proposed in this paper to real-life problems is obtaining the 
probabilistic FPM. To build an FPM for end-to-end service failure diagnosis a knowledge 
of network logical topology and communication protocols is needed. The problern of 
building FPMs is beyond the scope of this paper. Our previous publications in this subject 
survey some of the techniques that can be used to build an FPM for end-ta-end service 
failure diagnosis [9]. 2 
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