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Abstract. It has been proven that a catadioptric projection can be
modeled by an equivalent spherical projection. In this paper we present
an extension and improvement of those ideas using the conformal geo-
metric algebra, a modern framework for the projective space of hyper-
spheres. Using this mathematical system, the analysis of diverse cata-
dioptric mirrors becomes transparent and computationally simpler. As
a result, the algebraic burden is reduced, allowing the user to work in
a much more effective framework for the development of algorithms for
omnidirectional vision. This paper includes complementary experimental
analysis related to omnidirectional vision guided robot navigation.

1 Introduction

Living beings inhabit complex environments. In order to survive in these envi-
ronments, they should be able to perceive the surrounding objects. One of the
most important senses for object perception is vision. This sense is characterized
by the ability to focus in a particular object with high precision, but it is also
capable of simultaneously observing most of the changing surrounding medium.

In the case of robotic navigation it would be convenient if the robot could
have a wide field of vision; but the traditional cameras are limited since they
have a narrow field of view. This is a problem that has to be overcome to ease
robotic navigation.

An effective way to increase the visual field is the use of a catadioptric sensor
which consists of a conventional camera and a convex mirror. In order to be able
to model the catadioptric sensor geometrically, it must satisfy the restriction that
all the measurements of light intensity pass through only one point in the space
(fixed view-point). The complete class of mirrors that satisfy this restriction
where analyzed by Baker and Nayar [I].

To model the catadioptric sensor we can use an equivalent spherical pro-
jection defined by Geyer and Daniilidis [3]. In this paper, we present a new
proposal of the spherical projection using conformal geometric algebra. The ad-
vantage of this algebra is that this system has the sphere as the basis geometric
object and all the other objects are defined in terms of it (e.g., the intersections
between entities can be computed using the meet operator). Hence we obtain
a more transparent and compact representation due to the high-level symbolic
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language of geometric algebra. In this new representation the user can compute
and derive conclusion much easier. As a result the development of algorithms
for omnidirectional vision becomes simpler and effective.

2 Unified Model

Recently, Geyer and Daniilidis [3] presented a unified theory for all the catadiop-
tric systems with an effective viewpoint. They show nicely that these systems
(parabolic, hyperbolic, elliptic) can be modeled with a projection through the
sphere. In their paper they define a new notation where A V B denotes the line
joining the points A and B, and | A m denotes the intersection of the lines [ and
m. Also, this operator is used to denote the intersection of the line [ and the
conic ¢ in the form [ A m (note that this can result in a point pair). When the
intersection is a point pair they distribute over the V, A; for example A V (I A ¢)
is the pair (AV Py, AV P,), where P 5 are points obtained from the intersection
of [ and c.

Definition of a quadratic projection. Let ¢ be a conic, A and B two arbitrary
points, £ any line not containing B and P a point in the space. The intersection
of the line and the conic is a point pair R; and Ry (possibly imaginary). The
quadratic projection is defined as

PaeAB _ (PVA)YAe)VB)AL. (1)

Definition of a catadioptric projection. This projection is defined in terms of
a quadratic projection where the points A and B are the focus Fy, F5 of the
conic ¢ respectively, and £ is a line perpendicular to F; V F5. The catadioptric
projection is defined as

pieFLEnl L (PVF) Ac)V F) AL (2)

The important question now is: given a catadioptric projection with parameters
(¢, F1, Fy,£), which are the parameters (¢, A, B, ¢’) that result in an equivalent
quadratic projection? This is not answered in general, but in a more restricted
form we can ask ourselves: are there any parameters (¢, A, B, '), where ¢’ is a
circle with a unit radius and center in A, B is some point and ¢ || ¢, that produce
an equivalent projection? To obtain equivalent projections they must have the
same effective viewpoint and therefore A = F}. Thus it is required to find ¢ and
B such that

q=(c,F1,Fy,0) =q(c,F1,B,l') . (3)

Derivation of ¢(c¢, Fy, F», £). The quadratic form of ¢ in terms of its eccentric-
ity € and a scaling parameter A > 0 is given by the equation

4 0 0
Qer=|[0 4—-4¢ —dex | . (4)
0 —4e\ —4)\
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Hence F; = (0,0,1) and 5 = (0, —2¢, A\~ 1(e2 — 1)) are the foci of ¢ with latus
rectum 2\, assuming that the intersection of the line ¢ and the y-axis is yu, so the
line has the coordinates [0, 1, —u]. The first part of the catadioptric projection
of a point P is (P V F1) A ¢, and can be expressed as

R, =F, +0;P, (5)
where 6; are the roots of the quadratic equation
0=RiQe Rl = FiQ\FI +20,F1Qc \PT + 07 PQ. P, (6)

0 = ! ™)
’ (=122 + 2 —ey — Mw
Later, the projection of the points R; to the line ¢ = [0, 1, —u] from the point
FQ is

—2eA+pu(l—€?) 0
Toap = 0 1—e | . (8)
0 —2€e

Finally the projected points Q; are

Qi = RiToyu = (2(26A = (1 = ), ~(1+ )y = 2= ey/a? +7) . (9)

Now, the projection ¢(¢’, A, B,¢") is the spherical projection — or in the
transversal section, the projection to the circle. Let ¢ be a unit circle centered
in F. The points R} are the intersections of the line F; V P with this circle, and

can be found by
R = ()W, (10)
the projection of the points R, to the line ¢ is
l—m O

Um=| 0 -1], (11)
0 1

and finally the projected points are

Qi = RiUpm = (1 = m)ax, —y + [(=1)"Va? + y?) . (12)

Once the catadioptric and spherical projections have been calculated, the
question it arises is for which B and ¢ are q(c, Fy, F», ') = q(c, Fy1, Fo, )7 If
[ and m can be chosen freely, independent of x,y,w then ([@) and ([I2)) are the
same up to scale factor. The projections are equivalent if we choose

2e
- = 1
l 1+e2’ (13)
m:u—e(eu+2/\—2). (14)

1+ €2
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Interesting enough with and (I4) we can model any catadioptric projec-
tion through the spherical projection, it is just a matter of calculating the param-
eters [ and m according to the eccentricity and scaling parameters of the mirror.
Next section outlines a brief introduction into the mathematical system which
will help us to handle effectively omnidirectional vision in a new framework.

3 Geometric Algebra

The mathematical model used in this work is the geometric algebra (GA). This
algebra is based on the Clifford and Grassmann algebras and the form used is
the one developed by David Hestenes since late sixties [5].

In the n-dimensional geometric algebra we have the standard interior product
which takes two vectors and produces a scalar, furthermore we have the wedge
(exterior) product which takes two vectors and produces a new quantity that
we call bivector or oriented area. Similarly, the wedge product of three vectors
produces a trivector or oriented volume. Thus, the algebra has basic elements
that are geometric oriented objects of different grade. The object with highest
grade is called pseudo-scalar with the unit pseudo-scalar denoted by I (e.g. in
3D the unit pseudo-scalar is ey A ex A e3). The outer product of r vectors is
called an r-blade of grade r. A multivector is a quantity created by a linear
combination of r-blades. Also, we have the geometric product which is defined
for any multivector. The geometric product of two vectors is defined by the inner
and outer product as

ab=a-b+aNb (15)

Where the interior product () and wedge product (A) of two vectors
a,b € (Gpq)1 = RPT? can be expressed as

1

a-b= i(ab +ba) and (16)
1

a/\sz(ab—ba). (17)

As an extension, the interior product of an r-blade aj A... Aa, with an s-blade
b1 A ... A bg can be expressed as

(ar Ao Nap) - (b1 Ao ADs) =
((ax Ao ANap) - b1) - (ba Ao Abg) (ifr > s) (18)
{(al/\.../\ar_l)'(ar~(b1/\.../\bs)) (ifr < s)

with
(a1 Ao Aay) by =3 (=) far Ao Aai—1 A(a; b)) Aaigr Ao Aay
ay - (bT VANRTVAN bé) = Z:Zl(—l)i_lbl Ao ANbi—1 A (CL,- . bz) AN bi+1 A ... Nbg .

(19)
The dual X* of an r-blade X is

X =Xx1". (20)
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The shuffle product A V B satisfies the “DeMorgan rule”
(AVB)"=A"ANB". (21)

3.1 Conformal Geometric Algebra

For a long time it has been known that using a projective description of the Eu-
clidean 3D space in 4D has many advantages, particularly when the intersection
of lines and planes are needed. Recently, these ideas where re-taken mainly by
Hestenes [5], where he represents the Euclidean 3D space by a conformal space of
5D. In this conformal space the projective geometry is included, but in addition
it can be extended to circles and spheres.

The real vector space R™! or R is called the Minkowski space, after the
introduction of Minkowski’s space-time model in R*'. The Minkowski plane R!:!
has the orthonormal basis {e;,e_} defined by the properties

et =1 e =-1, e;-e_=0. (22)
Furthermore, the basis null vectors are
€ = %(e_—e+), and e=e_ +ey, (23)
with properties
ed=e=0, e-eg=—1. (24)
We will be working in the R"*!:! space, which can be decomposed in
R"U = Rr g RV (25)

This decomposition is known as the conformal split. Therefore any vector
a € R"11 admits the split

a=a+ aey+ Pe. (26)

The conformal vector space derived from R? is denoted as R*!, its bases are
{e1,€2,e3,e4,e_}. The unit conformal pseudo-scalar is denoted as

I.=e;_1923. (27)

In the conformal space the basis entities are spheres

1
S:p+§(p2—p2)e+eo. (28)

A point z is nothing more than a sphere with radius p = 0, yielding
1
$:X+§X26+60. (29)

The dual form s* of a sphere s has the advantage that it can be calculated with
four point in the sphere
s*=aANbAcAd. (30)

The definition of the entities, its dual representation and its grade is shown in
the Table 3.1.



Omnidirectional Vision: Unified Model Using Conformal Geometry 541

Table 1. Entities in conformal geometric algebra

Entity Representation Grade| Dual Representation Grade

Sphere s:p—l—%(pz—pz)e—i—eo 1 s =aANbAcNd 4

Point r=x-+ %xQe +eo 1 |2"=(—FEz— %x2e +eo)lp| 4
P =nlg —de

Plane n=(a—>b)A(a—rc) 1 P*=eANaANbAc 4

d=(aNbAC)IE
L=rlg—emlg

Line r=(a—>b) 2 L*=eANaAd 3
d=(aNb)

Circle z =51/ S 2 zZ"=aANbAc 3

Point Pair PP =51 AsyAs3 3 PP* =aANb, X*"=cAz 2

3.2 Rigid Motion in the Conformal Geometric Algebra

In G4 the rotations are represented by rotors R = exp(gl). Where the bivector
[ is the screw of rotation axis and the amount of rotation is given by the angle
6. An entity can be rotated by multiplying from the left with the rotor R and
from the right with its reverse R (e.g., ' = RxR).

One entity can be translated with respect to a translation vector ¢ using the
translator 7' = 1+ %t = exp(%t). The translation takes place by multiplying from

the left with the translator T and from the right with T (e.g., T2T).

To express the rigid motion of an object we can apply a rotor and a translator
simultaneously, this composition is equals to a motor M = T'R. We apply the
motor similarly as the rotor and the translator (e.g. x = MxM). Surprisingly
this formulation of the rigid motion can be applied not only to lines and points
but also to all the entities of Table 3.1.

4 Omnidirectional Vision Using Conformal Geometric
Algebra

The model defined by Geyer and Daniilidis [3] is used to find an equivalent
spherical projection of a catadioptric projection. This model is very useful to
simplify the projections, but the representation is not ideal because it is defined
in a projective geometry context where the basis objects are points and lines and
not the spheres. The computations are still complicated and difficult to follow.

Our proposal is based in the conformal geometric algebra where the basic
element is the sphere. This is, all the entities (point, point pair, circle, plane)
are defined in terms of the sphere (e.g., a point can be defined as sphere of zero
radius). This framework also has the advantage that the intersection operation
between entities is mathematically well defined (e.g. the intersection of a sphere
with a line can be defined as L A S). In short, the unified model is more natural
and concise in the context of the conformal geometric algebra (of spheres) than
the projective algebra (of points and lines). However the work of Geyer and
Daniilidis [3] was extremely useful to accomplish the contribution of this paper.
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4.1 Conformal Unified Model

We assume that the optical axis of the mirror is parallel to the e axis, then let
f be a point in the Euclidean space (which represents the focus of the mirror
which lies in such optical axis) defined by

f= a1€1 + Qipeg + (izes (31)

with conformal representation given by
Lo
F:f+§fe+eo. (32)

Using the point F as the center, we can define a unit sphere S (see Fig. [l) as

follows 1
S=I— 56 . (33)

Now let N be the point of projection (that also lies on the optical axis) at a
distance [ of the point F', this point can be found using a translator

l
T=1+ % (34)
and then N
N=TFT . (35)

Finally, the image plane is perpendicular to the optical axis at a distance —m
from the point F' and its equation is

II=ey+ (f-ea—me. (36)

S

n” Q

€,

Fig. 1. Conformal Unify Model.
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4.2 Point Projection
Let p be a point in the Euclidean space, the corresponding homogeneous point
in the conformal space is

1
P:p+§p2€+€0. (37)

Now, for the projection of the point P we trace a line joining the points F' and
P, using the definition of the line in dual form we get

1=FAPAe. (38)

Then, we calculate the intersections of the line L; and the sphere S which result
in the point pair
PP* = (L1 ANS)*. (39)

From the point pair we choose the point P; which is the closest point to P, and
then we find the line passing through the points P; and N

L;=P AN Ae (40)
Finally we find the intersection of the line Ly with the plane IT
Q= (LaANIT)" . (41)

The point @ is the projection in the image plane of the point P of the space.
Notice that we can project any point in the space into any type of mirror (chang-
ing [ and m) using the previous procedure (see Fig. 2)). The reader can now see
how simple and elegant is the treatment of the unified model in the conformal
geometric algebra.

a) b)

Fig. 2. a) Unified Model and points in the space. b) Projection in the image plane.

4.3 Inverse Point Projection

We have already seen how to project a point in the space to the image plane
through the sphere. But now we want to back-project a point in the image plane
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into 3D space. First, let @ be a point in such image plane, the equation of the
line passing through the points @ and N is

Li=QANAe, (42)
and the intersection of the line Ly and the sphere S is
PP* = (LaNS)*. (43)

From the point pair we choose the point P; which is the closest point to Q, and
then we find the equation of the line from the point P; and the focus F

*=P AFAe. (44)

The point P lies on the line Lj, but it can not be calculated exactly because
a coordinate has been lost when the point was projected to the image plane
(a single view does not allow to know the projective depth). However, we can
project this point to some plane and say that it is equivalent to the original
point up to a scale factor (see Fig.[3)).

LBy
"::::cﬂ:::::ﬂ++
L T 44 4.0 N
. :::s.“_::uf."'_:i
'Hl:“““"‘l +4
"‘r”:'i‘
.. ey

Fig. 3. Inverse point projection (from the image to the space). The crosses are the
projected points and the dots are the original points.

4.4 Line Projection

Suppose that L is a line in the space and we want to find its projection in the
image plane (see Fig.Mla). First we find the plane were L and F lies, its equation
is

P*=L*NF. (45)

The intersection of the plane and the sphere is the great circle defined as
C*=(PAS). (46)

The line that passes through the center of the circle and is perpendicular to the
plane P is
U= (CAe). (47)
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Using U as an axis we make a rotor

R= ez:p(gU) . (48)

We find a point pair PP* that lies on the circle with
PP*=(CANeg)*. (49)

We choose any point from the point pair, say P, and using the rotor R we can
find the points in the circle _
P/ = RP\R , (50)

for each point P; we find the line that passes through the points P; and N
defined as
y=P/ANAe. (51)

Finally for each line Lo we find the intersection with the plane IT
Py = (La ANT)* (52)

which is the projection of the line in the space to the image plane (see Fig. @lb).

a) b)

Fig. 4. a) Line projection to the sphere. b) Line projection to the image plane (note
that in this case results an ellipse).

5 Experimental Analysis

In this experiment a robot was placed in the corridor and the goal was that the
robot passes trough the corridor using purely the information extracted from
the omnidirectional image of a calibrated parabolic system (see Fig. B). As we
know, parabolic mirror projects lines in the space into circles in the image and
due to the conformal projection angles are preserved. In this experiment we take
advantage of these properties in order to control the robot by means of circles
in the omnidirectional image. With the axes of the circles we can calculate the
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Fig. 5. Robot navigation control using circles in the image plane (dark lines represent

the axes of the circles).

robot heading. If we want the robot in the center of the corridor the radius of
the circles must be the same, and then the distances to the corridor lines will
also be the same. Note that IT is the image plane ([Bf) and Fy7 is the focus F' of

the mirror projected in the plane II.

The next computations are illustrated in figure Bl The first circle C} (dual
representation according to Table 3.1) is defined with the wedge of three points

Cir=X1NXaN X3,
similarly for the second circle C3
Cy=XaNX5NXg .
The center of the each circle (i=1,2) is calculated by
N =(Cyne)-1IT.
The first axis of each circle is defined as
Aj;=NiNFhe,

an the second axis is

A5 ={l((A1iNe)-eo) - L] - (e12)} ANiAe.

The angle in the image is
0 = arccos(Ay 1 - e34—)
The sphere with center and radius of the circle is
S, =C;/IT .
and the radius of the circle is

7“1:;5’151

(53)

(54)
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Fig. 6. a) In this image the robot is not parallel to the corridor nor centered. b) In this
image the robot is parallel to the corridor and centered.

The control strategy for the navigation is based (as we said previously) on
the angles of the circles and its radius. With the angles we correct the parallelism
of the robot with the corridor. Furthermore, we place the robot at the center of
the corridor using the radius of the circles. The position error is defined by

a=(r —ry)m/2. (61)
The heading error angle is calculated as
B=0—m/2. (62)

The robot angular velocity is calculated with the combination of the robot head-
ing error, the position error and the proportional gain s

w=kr(f+a). (63)

6 Conclusions

The major contribution of this paper is the refinement and improvement of the
use of the unified model for omnidirectional vision. To achieve this goal the
authors used the conformal geometric algebra, a modern framework for the pro-
jective space of hyper-spheres. This framework is equipped with homogeneous
representations of points, lines, planes and spheres, operations of incidence alge-
bra and conformal transformations expressed effectively as versors. The authors
show how the analysis of diverse catadioptric mirrors becomes transparent and
computationally simpler. As a result, the algebraic burden is reduced for the
users who can now develop more efficient algorithms for omnidirectional vision.
The paper includes complementary experimental analysis of omnidirectional vi-
sion guided robot navigation.
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