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Abstract. Counting rational points on Jacobian varieties of hyperel-
liptic curves over finite fields is very important for constructing hyper-
elliptic curve cryptosystems (HCC), but known algorithms for general
curves over given large prime fields need very long running time. In this
article, we propose an extremely fast point counting algorithm for hy-
perelliptic curves of type y2 = x5 + ax over given large prime fields Fp,
e.g. 80-bit fields. For these curves, we also determine the necessary con-
dition to be suitable for HCC, that is, to satisfy that the order of the
Jacobian group is of the form l · c where l is a prime number greater
than about 2160 and c is a very small integer. We show some examples of
suitable curves for HCC obtained by using our algorithm. We also treat
curves of type y2 = x5 + a where a is not square in Fp.

1 Introduction

Let C be a hyperelliptic curve of genus 2 over Fq. Let JC be the Jacobian variety
of C and JC(Fq) the group of Fq-rational points of JC . We call the group JC(Fq)
the Jacobian group of C. Since JC(Fq) is a finite abelian group, we can construct
a public-key-cryptosystem with it. This cryptosystem is called a “hyperelliptic
curve cryptosystem (HCC)”. The advantage of HCC to an elliptic curve cryp-
tosystem (ECC) is that we can construct a cryptosystem at the same security
level as an elliptic one by using a defining field in a half size. More precisely,
we need a 160-bit field to construct a secure ECC, but for HCC we only need
an 80-bit field. The order of the Jacobian group of a hyperelliptic curve defined
over an 80-bit field is about 160-bit. It is said that �JC(Fq) = c · l where l is
a prime number greater than about 2160 and c is a very small integer is needed
for a secure HCC. We call a hyperelliptic curve “suitable for HCC” if its Jacobian
group has such a suitable order.

As in the case of ECC, computing the order of the Jacobian group JC(Fq)
is very important for constructing HCC. But it is very difficult for hyperelliptic
curves defined over 80-bit fields and there are very few results on it: Gaudry-
Harley’s algorithm [9, 15] can compute the order for random hyperelliptic curves
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over 80-bit fields but their algorithm needs very long running time, e.g. 1 week
or longer. For a hyperelliptic curve with complex multiplication, there are known
efficient algorithms (we call them “CM-methods”) to construct a curve with its
Jacobian group having a 160-bit prime factor. But CM-methods also need rather
long time and do not give an algorithm to compute the order of the Jacobian
group over a given defining field. There is another way. For special curves, it
is possible to obtain a fast point counting algorithm for given defining fields.
Buhler-Koblitz [2] obtained such algorithm for special curves of type y2 +y = xn

over prime fields Fp where n is an odd prime such that p ≡ 1 (mod n).
In this article, we propose an extremely fast algorithm to compute the order

of the Jacobian group JC(Fp) for hyperelliptic curves C defined by the equa-
tion y2 = x5 + ax over large prime fields Fp. Curves of this type are different
from Buhler-Koblitz’s curves [2]. Though the curves of this type have complex
multiplication, by using our algorithm we can obtain suitable curves for HCC
much faster than by using CM-methods. The expected running time of our al-
gorithm is O(ln4 p). The program based on our algorithm runs instantaneously
on a system with Celeron 600MHz CPU and less than 1GB memory. It only
takes less than 0.1 seconds even for 160-bit prime fields. Moreover we study on
the reducibility of the Jacobian variety over extension fields and the order of the
Jacobian group for the above curves. After these studies, we determine the nec-
essary condition to be suitable for HCC. In Section 5, we describe our algorithm
and give some examples of hyperelliptic curves suitable for HCC obtained by
using it. In the last section of this article, we treat another hyperelliptic curves
of type y2 = x5 + a, a ∈ Fp. When a is square in Fp, it is a kind of Buhler-
Koblitz’s curves [2]. Here we consider the case that a is not square. It is not
appeared in Buhler-Koblitz’s curves. We describe our point counting algorithm
for this type and show the result of search for suitable curves for HCC. In fact,
Jacobian groups with prime order are obtained in a very short time over 80-bit
prime fields.

2 Basic Facts on Jacobian Varieties over Finite Fields

Here we recall basic facts on the order of Jacobian groups of hyperelliptic curves
over finite fields. ( cf. [9, 11] )

2.1 General Theory

Let p be an odd prime number, Fq is a finite field of order q = pl and C
a hyperelliptic curve of genus g defined over Fq. Then the defining equation of C
is given as y2 = f(x) where f(x) is a polynomial in Fq[x] of degree 2g + 1.

Let JC be the Jacobian variety of a hyperelliptic curve C. We denote the
group of Fq-rational points on JC by JC(Fq). Let χq(t) be the characteristic
polynomial of q-th power Frobenius endomorphism of C. Then, the order �JC(Fq)
is given by

�JC(Fq) = χq(1).
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The following ”Hasse-Weil bound” is a famous inequality which bounds �JC(Fq):

�(√q − 1)2g� ≤ �J(Fq) ≤ �(√q + 1)2g�.

Due to Mumford [16], every point on JC(Fq) can be represented uniquely by
a pair 〈u(x), v(x)〉 where u(x) and v(x) are polynomials in Fq[x] with deg v(x) <
deg u(x) ≤ 2 such that u(x) divides f(x) − v(x)2. The identity element of the
addition law is represented by 〈1, 0〉. We refer this representation as “Mumford
representation” in the following. By using Mumford representation of a point
on JC(Fq), we obtain an algorithm for adding two points on JC(Fq) (cf. Cantor’s
algorithm [3], Harley’s algorithm [9]).

2.2 Hasse-Witt Matrix and the Order of JC(Fq)

There is a well-known method to calculate �JC(Fq) (mod p) by using the Hasse-
Witt matrix. The method is based on the following two theorems ([14, 22]).

Theorem 1. Let y2 = f(x) with deg f = 2g+1 be the equation of a genus g hy-
perelliptic curve. Denote by ci the coefficient of xi in the polynomial f(x)(p−1)/2.
Then the Hasse-Witt matrix is given by A = (cip−j)1≤i,j≤g .

For A = (aij), put A(pi) = (api

ij ). Then we have the following theorem.

Theorem 2. Let C be a curve of genus g defined over a finite field Fq where q =
pl. Let A be the Hasse-Witt matrix of C, and let Aφ = AA(p)A(p2) · · ·A(pl−1). Let
κ(t) be the polynomial given by det(Ig−tAφ) where Ig is the (g×g) identity matrix
and χq the characteristic polynomial of the q-th power Frobenius endomorphism.
Then χq(t) ≡ (−1)gtgκ(t) (mod p).

Due to the above two theorems, we can calculate �JC(Fq) (mod p) by the fol-
lowing formula:

�JC(Fq) ≡ (−1)gκ(1) (mod p).

But this method is not practical in general when p is very large.

3 Basic Idea for Our Algorithm

We only consider the case of genus 2 in the following. Let f(x) be a polynomial
in Fq[x] of degree 5 with no multiple root, C a hyperelliptic curve over Fq of
genus 2 defined by the equation y2 = f(x). Then, the characteristic polynomial
χq(t) of the q-th power Frobenius endomorphism of C is of the form:

χq(t) = t4 − s1t
3 + s2t

2 − s1qt + q2, si ∈ Z, |s1| ≤ 4
√

q, |s2| ≤ 6q.

Hence the order of JC(Fq) is given by the following formula:

�JC(Fq) = q2 + 1− s1(q + 1) + s2.
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We also note on the well-known fact that si are given by

s1 = 1 + q −M1 and s2 = (M2 − 1− q2 + s2
1)/2

where Mi is the number of Fqi -rational points on C (cf. [11]).
The following sharp bound is useful for calculating �JC(Fq).

Lemma 1 (cf. [17, 15]). �2√q|s1| − 2q� ≤ s2 ≤ �s2
1/4 + 2q�.

In the following we consider the case of q = p. When q = p, we obtain the
following lemma as a collorary of Theorem 1 and 2.

Lemma 2. Let f(x), si, p be as above and ci the coefficient of xi in f(x)(p−1)/2.
Then s1 ≡ cp−1 + c2p−2 (mod p) and s2 ≡ cp−1c2p−2 − cp−2c2p−1 (mod p).

Remark 1. Since |s1| ≤ 4
√

p, if p > 64 then s1 is uniquely determined by cp−1,
c2p−2. Moreover, by Lemma 1, if s1 is determined, then there are only at most
five possibilities for the value of s2.

Even in the case q = p and g = 2, it is difficult in general to calculate si

(mod p) by using Lemma 2 when p is very large. But for hyperelliptic curves
of special type, it is possible to calculate them in a remarkably short time even
when p is extremely large, e.g. 160-bit.

Here we consider hyperelliptic curves of type y2 = x5 + ax, a ∈ Fp. We show
the following theorem which is essential to construct our algorithm.

Theorem 3. Let a be an element of Fp, C a hyperelliptic curve defined by the
equation y2 = x5 + ax and χp(t) the characteristic polynomial of the p-th power
Frobenius endomorphism of C. Then s1, s2 in χp(t) are given as follows.

1. if p ≡ 1 (mod 8), then

s1 ≡ (−1)(p−1)/82c(a3(p−1)/8 + a(p−1)/8) (mod p),

s2 ≡ 4c2a(p−1)/2 (mod p)

where c is an integer such that p = c2 + 2d2, c ≡ 1 (mod 4) and d ∈ Z.
2. if p ≡ 3 (mod 8), then s1 ≡ 0 (mod p) and s2 ≡ −4c2a(p−1)/2 (mod p)

where c is an integer such that p = c2 + 2d2 and d ∈ Z.
3. Otherwise, s1 ≡ 0 (mod p) and s2 ≡ 0 (mod p).

Proof. Since (x5 +ax)
p−1
2 =

∑(p−1)/2
r=0

( p−1
2
r

)
x4r+(p−1)/2a(p−1)/2−r, the necessary

condition for an entry cip−j of the Hasse-Witt matrix A =
(

cp−1 cp−2

c2p−1 c2p−2

)
of C

being non-zero is that there must be an integer r, 0 ≤ r ≤ (p − 1)/2 such that
4r + (p − 1)/2 = ip − j. Then there are the following three possibilities: (i)

A =
(

cp−1 0
0 c2p−2

)
if p ≡ 1 (mod 8), (ii) A =

(
0 cp−2

c2p−1 0

)
if p ≡ 3 (mod 8),

(iii) A = O if p �≡ 1, 3 (mod 8).
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Case (i). Put f = (p−1)/8. Then, since 4r+(p−1)/2 = p−1 for cp−1, we have
r = (p− 1)/8 = f and cp−1 =

(
4f
f

)
a3f . For c2p−2, since 4r + (p− 1)/2 = 2p− 2,

we have r = 3(p − 1)/8 = 3f and c2p−2 =
(
4f
3f

)
af . From the result of Hudson-

Williams [10, Theorem 11.2], we have
(
4f
f

) ≡ (−1)f2c (mod p) where p = c2+2d2

and c ≡ 1 (mod 4). Since
(
4f
f

)
=

(
4f
3f

)
, we have the case (1).

Case (ii). By the condition, it is obvious that s1 ≡ 0 (mod p). Put f =
(p− 3)/8. Then, since 4r +(p− 1)/2 = p− 2 for cp−2, we have r = (p− 3)/8 = f

and cp−2 =
(
4f+1

f

)
a3f+1. For c2p−1, since 4r + (p − 1)/2 = 2p − 1, we have

r = (3p − 1)/8 = 3f + 1 and c2p−1 =
(
4f+1
3f+1

)
af . From the result of Berndt-

Evans-Williams [1, Theorem 12.9.7],
(
4f+1

f

) ≡ −2c (mod p) where p = c2 + 2d2

and c ≡ (−1)f (mod 4). Since
(
4f+1
3f+1

)
=

(
4f+1

f

)
, we have s2 ≡ −

(
4f+1

f

)2
a4f+1 ≡

−4c2a(p−1)/2 (mod p). Thus we obtain the case (2).
Case (iii). This is obvious and we obtain the case (3). �

Remark 2. Note that the order of JC(Fp) for a curve of type y2 = x5 + ax is
always even because JC(Fp) has a point of order 2. By Lemma 1, if p > 64, then
there are only at most three possibilities for the value of s2.

By using Theorem 3 and Remark 2, we can calculate (at most three) possibilities
of �JC(Fp) in a very short time. Then to determine �JC(Fp), we only have to
multiply a random point on JC(Fp) by each possible order. The following remark
is also important.

Remark 3. If p > 16 for the case (2) and (3) in Theorem 3, we have s1 = 0.

4 Study on the Structure of the Jacobian Group

Before describing our point counting algorithm, we study the structure of the
Jacobian group for y2 = x5 + ax more precisely. First, we study the reducibility
of the Jacobian variety over extension fields of the defining field Fp. Second, we
determine the characteristic polynomial of the p-th power Frobenius endomor-
phism for many cases and give a necessary condition to be suitable for HCC
explicitly.

4.1 Reducibility of the Jacobian Variety

We recall a few basic facts on the relation between the reducibility of the Jacobian
variety and the characteristic polynomial of the Frobenius endomorphism. The
following famous result was proved by Tate [18]:

Theorem 4. Let A1, A2 be abelian varieties over Fq and χ1(t), χ2(t) character-
istic polynomials of q-th power Frobenius endomorphisms of A1, A2, respectively.
Then, A1 is isogenous to A2 over Fq if and only if χ1(t) = χ2(t).



Counting Points for Hyperelliptic Curves of Type y2 = x5 + ax 31

The characteristic polynomial of the q-th power Frobenius endomorphism for
a simple abelian variety of dimension two over Fq is determined as follows:

Theorem 5 ([21], cf. [17, 19]). All possible characteristic polynomials χq(t)
of q-th power Frobenius endomorphisms for simple abelian varieties of dimension
two over Fq = Fpr are the followings:

1. χq(t) = t4− s1t
3 + s2t

2− qs1t + q2 is irreducible in Z[t], where s1, s2 satisfy
some basic conditions,

2. χq(t) = (t2 − q)2, r is odd,
3. χq(t) = (t2 + q)2, r is even and p ≡ 1 (mod 4),
4. χq(t) = (t2 ± q1/2t + q)2, r is even and p ≡ 1 (mod 3).

For the reducibility of χq2 (t), the following lemma holds:

Lemma 3. Let C be a hyperelliptic curve over Fq and χq(t) = t4−s1t
3 +s2t

2−
qs1t + q2 the characteristic polynomial of q-th power Frobenius endomorphism
of C, χq2(t) the one of q2-th power Frobenius endomorphism. Assume that χq(t)
is irreducible in Z[t]. Then χq2(t) is reducible in Z[t] if and only if s1 = 0.

Proof. Let α, ᾱ, β, β̄ be four roots of χq(t) where ¯ means complex conjugate.
Then it is a well-known fact that χq2(t) = (t− α2)(t− ᾱ2)(t− β2)(t− β̄2).

Assume that s1 = 0. Put ω1 = α + ᾱ and ω2 = β + β̄. Then from s1 = 0
and s2 ∈ Z, we have ω1 + ω2 = 0 and ω1ω2 + 2q ∈ Z. Put m = ω1ω2 + 2q.
Then α2 + ᾱ2 = ω2

1 − 2q = −m. We also have β2 + β̄2 = −m. Hence we have
χq2(t) = (t2 + mt + q2)2.

Assume that χq2(t) is not irreducible over Z. First we consider the case
χq2(t) factors into a product of two polynomials of degree 2 over Z. In this
case, there are two possibilities: (a) (t− α2)(t− ᾱ2), (t− β2)(t− β̄2) ∈ Z[t], (b)
(t−α2)(t−β2), (t− ᾱ2)(t− β̄2) ∈ Z[t]. In case (a), (α+ ᾱ)2 = α2 + ᾱ2 +2q ∈ Z.
We also have (β + β̄)2 ∈ Z. Since χq(t) is irreducible over Z, α+ ᾱ and β + β̄ are
irrational numbers and we obtain that s1 = (α + ᾱ) + (β + β̄) must be zero. In
case (b), since α2+β2, ᾱ2+β̄2, α2β2, ᾱ2β̄2 are all in Z, we have α2+β2 = ᾱ2+β̄2

and α2β2 = ᾱ2β̄2. Then α2 = ᾱ2 or α2 = β̄2. Since χq(t) is irreducible, it cannot
have a double root. So we have α = −ᾱ or α = −β̄. Moreover α = −ᾱ does not
occur because if α = −ᾱ then χq(t) has a factor (t− α)(t− ᾱ) = t2 + q over Z.
Hence we obtain α = −β̄. Then α+β̄ = 0 and we have s1 = (α+β̄)+(ᾱ+β) = 0.
Finally, we consider the case that χq2(t) has a factor of degree 1 over Z. But if
t − α2 ∈ Z[t] then we obtain α2 = ᾱ2. As we showed in case (b), it does not
occur. �

Now we consider the reducibility for the Jacobian variety of our curve y2 =
x5 + ax.

Lemma 4. Let p be an odd prime and C a hyperelliptic curve defined by y2 =
x5 + ax, a ∈ F

×
p and Fq = Fpr , r ≥ 1. If a1/4 ∈ Fq, then JC is isogenous to the

product of the following two elliptic curves E1 and E2 over Fq:

E1 : Y 2 = X(X2 + 4a1/4X − 2a1/2),

E2 : Y 2 = X(X2 − 4a1/4X − 2a1/2).
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Proof. Let α be an element of Fq such that α4 = a. We can construct maps
ϕi : C → Ei explicitly as follows: ϕ∗

i (X) = (x − (−1)iα)2/x, ϕ∗
i (Y ) = (x −

(−1)iα)y/x2, i = 1, 2. Since pull-backs of regular 1-forms dX/Y on Ei’s generate
the space of regular 1-forms on C, ϕ1×ϕ2 induces an isogeny from JC to E1×E2

(cf. [13, 12]). �
The Jacobian variety for curves of type y2 = x5 +ax is reducible over Fp4 by

the above lemma. From a cryptographic point of view, if the Jacobian variety
splits over an extension field of degree two, HCC for these curves might lose its
advantage to ECC. Hence in the following, it is important to see whether the
Jacobian splits over an extension field Fpr of lower degree, i.e. r = 1, 2.

Remark 4. If Fq includes a 4-th primitive root of unity, E1 and E2 in Lemma 4
are isomorphic to each other by the following transformation: X → −X , Y →
ζ4Y where ζ4 is a 4-th primitive root of unity in Fq.

4.2 Determining the Characteristic Polynomial
of the p-th Power Frobenius Endomorphism

Due to Theorem 3, we divide the situation into the following three cases:
(1) p ≡ 1 (mod 8), (2) p ≡ 3 (mod 8), (3) p ≡ 5, 7 (mod 8).

The Case of p ≡ 1 (mod 8).

Lemma 5. Let p be a prime number such that p ≡ 1 (mod 8) and C a hyperel-
liptic curve over Fp defined by an equation y2 = x5 + ax. If a(p−1)/2 = 1, then 4
divides �JC(Fp). Moreover, if a(p−1)/4 = 1, then 16 divides �JC(Fp).

Proof. First note that there is a primitive 8-th root of unity, ζ8, in Fp because 8
divides p−1. If a(p−1)/2 = 1, then there exists an element b ∈ Fp such that b2 = a.
Then

x5 + ax = x5 + b2x = x(x2 + ζ2
8 b)(x2 − ζ2

8 b).

It is easy to see that 〈x, 0〉 and 〈x2 + ζ2
8 b, 0〉, which are points on JC(Fp) in

the Mumford representation, generate a subgroup of order 4 in JC(Fp). Hence 4
divides �JC(Fp).

If a(p−1)/4 = 1, there is an element u in Fp such that a = u4. Then

x5 + ax = x5 + u4x = x(x + ζ8u)(x− ζ8u)(x + ζ3
8u)(x− ζ3

8u).

It is easy to see that 〈x, 0〉, 〈x + ζ8u, 0〉, 〈x − ζ8u, 0〉 and 〈x + ζ3
8u, 0〉 generate

a subgroup of order 16 in JC(Fp). Hence 16 divides �JC(Fp). �
Theorem 6. Let p be a prime number such that p > 64, p ≡ 1 (mod 8) and C

a hyperelliptic curve over Fp defined by an equation y2 = x5 + ax. If
(

a
p

)
= 1,

then χp(t) are as follows:
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1. if p ≡ 1 (mod 16) and a(p−1)/8 = 1, then χp(t) = (t2 − 2ct + p)2,
2. if p ≡ 9 (mod 16) and a(p−1)/8 = 1, then χp(t) = (t2 + 2ct + p)2,
3. if p ≡ 1 (mod 16) and a(p−1)/8 = −1, then χp(t) = (t2 + 2ct + p)2,
4. if p ≡ 9 (mod 16) and a(p−1)/8 = −1, then χp(t) = (t2 − 2ct + p)2,
5. otherwise, χp(t) = t4 + (4c2 − 2p)t2 + p2,

where p = c2 + 2d2, c, d ∈ Z and c ≡ 1 (mod 4).

Proof. First of all, from Theorem 3, s1 ≡ (−1)(p−1)/82c
(
a3(p−1)/8 + a(p−1)/8

)
(mod p) and s2 ≡ 4c2 (mod p) for all cases.

For the case (1), from Theorem 3 we have s1 ≡ 4c (mod p). By the definition
of c, c2 < p and hence 0 < |4c| < 4

√
p. Since p > 64 and Remark 1, we

have that s1 = 4c. Moreover since �2√p|s1| − 2p� ≤ s2 ≤ �s2
1/4 + 2p� and

0 < 4c2 < 4p, s2 is of the form 4c2 + mp, −5 ≤ m ≤ 2, m ∈ Z. Then �JC(Fp) =
1+p2−4c(1+p)+4c2 +mp where m is an integer such that −5 ≤ m ≤ 2. Since
�JC(Fp) ≡ 0 (mod 16) from Lemma 5, 1+p2−4c(1+p)+4c2+mp ≡ 0 (mod 16).
Since p ≡ 1 (mod 16) and c ≡ 1 (mod 4), we have mp ≡ 2 (mod 16) and then
m = 2. Hence we obtain χp(t) = t4−4ct3+(4c2+2p)t2−4cpt+p2 = (t2−2ct+p)2.

For the cases (2), (3), (4), we can show in the same way.
For the case (5), a(p−1)/8 is a primitive 4-th root of unity and a3(p−1)/8 +

a(p−1)/8 = 0. So we have that s1 = 0 by Theorem 3 and p > 64. Since |s2| ≤ 2p
in this case by Lemma 1 and 0 < 4c2 < 4p by the definition of c, s2 is of the form
4c2 + mp, −5 ≤ m ≤ 1, m ∈ Z. On the other hand, since 1 + p2 ≡ 2 (mod 4)
and �JC(Fp) ≡ 0 (mod 4) by Lemma 5, we have that m = −2. Hence we obtain
χq(t) = t4 + (4c2 − 2p)t2 + p2. �

Hence in particular if p ≡ 1 (mod 8) and
(

a
p

)
= 1, then C with a(p−1)/4 = 1

is not suitable for HCC because �JC(Fp) = (p ± 2c + 1)2 and |c| <
√

p. In
addition, JC in case (5) is isogenous to the product of two elliptic curves over
Fp2 because a1/4 ∈ Fp2 .

The Case of p ≡ 3 (mod 8).

Lemma 6. For a hyperelliptic curve C : y2 = x5 + ax, a ∈ Fp where p ≡ 3
(mod 4), the followings hold:

1. if
(

a
p

)
= 1, then �JC(Fp) ≡ 0 (mod 4),

2. if
(

a
p

)
= −1, then �JC(Fp) ≡ 0 (mod 8).

Proof. If
(

a
p

)
= 1, then there exists an element b ∈ Fp such that a = b2. Since(

−1
p

)
= −1 by p ≡ 3 (mod 4), either 2b or −2b is a square. If 2b = u2, then

x5 + ax = x{(x2 + b)2 − 2bx2} = x(x2 + ux + b)(x2 − ux + b)
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over Fp and 〈x, 0〉 and 〈x2 +ux+ b, 0〉 generate a subgroup of order 4 in JC(Fp).
If −2b = u2,

x5 + ax = x{(x2 − b)2 − (−2b)x2} = x(x2 + ux− b)(x2 − ux− b)

over Fp and 〈x, 0〉 and 〈x2 +ux− b, 0〉 generate a subgroup of order 4 in JC(Fp).

If
(

a
p

)
= −1, then x5 + ax factors into a form x(x + β)(x − β)(x2 + γ) over

Fp. It is easy to see that 〈x, 0〉, 〈x + β, 0〉 and 〈x− β, 0〉 generate a subgroup of
order 8 in JC(Fp). �
Theorem 7. Let p be a prime number such that p > 16, p ≡ 3 (mod 8) and C

a hyperelliptic curve over Fp defined by the equation y2 = x5 + ax. If
(

a
p

)
= 1,

then χp(t) = (t2 + 2ct + p)(t2 − 2ct + p) where p = c2 + 2d2, c, d ∈ Z.

Proof. The order of JC(Fp) is given by 1+p2+s2 because s1 = 0. Moreover s2 ≡
−4c2a(p−1)/2 ≡ −4c2 (mod p). Since |s2| ≤ 2p, s2 = −4c2 + mp where m ∈ Z

such that −2p ≤ −4c2 + mp ≤ 2p. By the definition of c, 0 < c2 < p and
−4p < −4c2 < 0. Hence we have −1 ≤ m ≤ 5.

On the other hand, since 4 divides �JC(Fp) by Lemma 6, we have (1 + p2 +
mp − 4c2) ≡ 0 (mod 4). By p ≡ 3 (mod 8) and c2 ≡ 1 (mod 4), we have the
condition 1 + p2 + mp− 4c2 ≡ 2 + 3m ≡ 0 (mod 4) and we obtain m = 2. Hence
χp(t) = t4 + (2p− 4c2)t2 + p2 = (t2 + 2ct + p)(t2 − 2ct + p). �
Theorem 8. Let p be a prime number such that p > 16, p ≡ 3 (mod 8) and C

a hyperelliptic curve over Fp defined by the equation y2 = x5 +ax. If
(

a
p

)
= −1,

then χp(t) = t4 + (4c2 − 2p)t2 + p2 where p = c2 + 2d2, c, d ∈ Z.

Proof. In this case, �JC(Fp) = 1+p2+mp+4c2 where −2p ≤ mp+4c2 ≤ 2p and
−5 ≤ m ≤ 1. Since 8 divides �JC(Fp) by Lemma 6, 1+p2+mp+4c2 ≡ 6+3m ≡ 0
(mod 8) and we obtain m = −2. Hence χp(t) = t4 + (4c2 − 2p)t2 + p2. �

Hence in this case, �JC(Fp) only depends on p and the value of the Legendre

symbol for
(

a
p

)
. And in particular, C is not suitable for HCC if

(
a
p

)
= 1

because �JC(Fp) = (p + 2c + 1)(p − 2c + 1) and |c| < √p. In addition, JC for

the case of
(

a
p

)
= −1 is isogenous to the product of two elliptic curves over Fp2

because a1/4 ∈ Fp2 .

The Case of p ≡ 5, 7 (mod 8). This is the case that the Jacobian variety JC

is supersingular because s1 ≡ s2 ≡ 0 (mod p) (cf. [21]).

Lemma 7. Let p be a prime number such that p > 16 and p ≡ 5 (mod 8). For
a hyperelliptic curve C : y2 = x5 + ax, a ∈ Fp, the followings hold:

1. if a(p−1)/4 = 1, then �JC(Fp) ≡ 0 (mod 4),
2. if a(p−1)/4 = −1, then �JC(Fp) ≡ 0 (mod 8).
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Proof. Note that Fp has a 4-th primitive root of unity, ζ4, because p − 1 ≡ 0

(mod 4). Since
(

a
p

)
= 1 in both cases, there exists an element b ∈ Fp such that

a = b2 and x5 + ax = x(x2 + ζ4b)(x2 − ζ4b). Hence 〈x, 0〉, 〈x2 + ζ4b, 0〉 generates
a subgroup of order 4 in JC(Fp).

If a(p−1)/4 = −1,
(

b
p

)
= −1 and then x2 − ζ4b factors into the form (x +

β)(x − β) because
(

ζ4
p

)
= −1. Hence in case (2), 〈x, 0〉, 〈x + β, 0〉, 〈x − β, 0〉

generate a subgroup of order 8 in JC(Fp). �
Using the above lemma and Lemma 6, we obtain the following theorem.

Theorem 9. Let p be a prime number such that p > 16, p ≡ 5, 7 (mod 8)
and C a hyperelliptic curve over Fp defined by the equation y2 = x5 + ax. Then,

1. if p ≡ 5 (mod 8) and a(p−1)/4 = 1, then χp(t) = (t2 + p)2,
2. if p ≡ 5 (mod 8) and a(p−1)/4 = −1, then χp(t) = (t2 − p)2,

3. if p ≡ 5 (mod 8) and
(

a
p

)
= −1, then χp(t) = t4 + p2,

4. if p ≡ 7 (mod 8), then χp(t) = (t2 + p)2.

Proof. The order of JC(Fp) is given by 1+p2+s2 because s1 = 0. Moreover, s2 =
0 or ±2p by Lemma 1 and Remark 2. Note that 1 + p2 ≡ 2 (mod 8).

In case (1), a1/4 ∈ Fp. Then JC is isogenous to the product of two elliptic
curves over Fp by Lemma 4. Hence by the list of Theorem 5, χp(t) must be
(t2 + p)2.

In case (2), �JC(Fp) ≡ 0 (mod 8) by Lemma 7. Then we obtain s2 = −2p
and the result.

In case (3), we use the relation s2 = (M2−1−p2+s2
1)/2 where M2 = �C(Fp2 ).

Since s1 = 0, s2 = (M2 − 1 − p2)/2 and M2 is given by 1 + �R + 2�S where
R = {x ∈ Fp2 |x5 + ax = 0} and S = {x ∈ Fp2 |x5 + ax is a non-zero square }.
Since Fp2 has a primitive 8-th root of unity, ζ8, we easily see that if u ∈ S then
ζ2
8u ∈ S. Hence we have that 4 divides �S. In the case of p ≡ 5 (mod 8) and(
a
p

)
= −1, �R = 1 and we have M2 ≡ 2 (mod 8). Hence in this case, s2 ≡ 0

(mod 4) and we have that s2 = 0.
In case (4), we divide the situation by the value of the Legendre symbol

(
a
p

)
.

If
(

a
p

)
= 1 then a1/4 ∈ Fp because

(
−1
p

)
= −1. By this fact, if

(
a
p

)
= 1 then JC

is isogenous to the product of two elliptic curves over Fp and we obtain the result

as in case (1). For the case of
(

a
p

)
= −1, we have s2 = 2p by Lemma 6. �

So in this case, C is not suitable for HCC if p ≡ 5 (mod 8) with
(

a
p

)
= 1 or

p ≡ 7 (mod 8), because �JC(Fp) = (p ± 1)2. If p ≡ 5 (mod 8) and
(

a
p

)
= −1,

χp2(t) is split because s1 = 0 but JC is simple over Fp2 by Theorem 5.
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4.3 Necessary Condition to be Suitable for HCC

From the results in 4.2, we have the following corollary.

Corollary 1. Let p be a prime number and C a hyperelliptic curve defined by
an equation y2 = x5 + ax where a ∈ Fp. Then C is not suitable for HCC if one
of the followings holds: (1) p ≡ 1 (mod 8), a(p−1)/4 = 1, (2) p ≡ 3 (mod 8),(

a
p

)
= 1, (3) p ≡ 5 (mod 8),

(
a
p

)
= 1, (4) p ≡ 7 (mod 8).

In addition to the above cases, if p ≡ 1 (mod 8) with a(p−1)/4 = −1 or p ≡ 3
(mod 8) with

(
a
p

)
= −1, JC is isogenous to the product of two elliptic curves

over Fp2 .

5 Point Counting Algorithm
and Searching Suitable Curves

In this section we search suitable curves for HCC among hyperelliptic curves
of type y2 = x5 + ax, a ∈ Fp. From the result of the previous section, all the
cases which can have suitable orders are the followings: (1) p ≡ 1 (mod 8) with(

a
p

)
= −1, (2) p ≡ 1 (mod 8) with a(p−1)/4 = −1, (3) p ≡ 3 (mod 8) with(

a
p

)
= −1, (4) p ≡ 5 (mod 8) with

(
a
p

)
= −1. But as we remarked in 4.2

and 4.3, JC ’s are reducible over Fp2 in the case (2) and (3). Moreover JC is
supersingular in the case (4) as we remarked in 4.2. Hence we exclude these
cases and only focus on the remaining case (1): p ≡ 1 (mod 8) with

(
a
p

)
= −1.

On the other hand, the Jacobian group JC(Fp) for our curve has a 2-torsion
point (Remark 2), the best possible order of JC(Fp) is 2l where l is prime. The
case (1) in the above is the case that we can obtain the best possible order.

For the case (1) we cannot determine the characteristic polynomial of the p-
th power Frobenius endomorphism by using the same method in 4.2. So we need
a point counting algorithm for JC(Fp). First we describe our algorithm and next
we show the result of the search based on our algorithm.

5.1 Point Counting Algorithm for p ≡ 1 (mod 8) and
(

a
p

)
= −1

We describe our algorithm based on Theorem 3. The algorithm is as follows:

Algorithm 1
Input: a ∈ Fp where p ≡ 1 (mod 8) and p > 64
Output: �JC(Fp) (C : a hyperelliptic curve of genus 2 defined by y2 = x5 + ax)

1. Calculate an integer c such that p = c2 +2d2, c ≡ 1 (mod 4), d ∈ Z by using
Cornacchia’s Algorithm.
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2. Determine s1:
s← (−1)(p−1)/82c(a3(p−1)/8 + a(p−1)/8) (mod p) (0 ≤ s ≤ p− 1)
If s < 4

√
p, then s1 ← s, else s1 ← s− p.

3. Determine the list S of candidates for s2:
t← 4c2a(p−1)/2 (mod p) (0 ≤ t ≤ p− 1)
If t: even, then S ← {

t + 2mp
∣∣ 2
√

p|s1| − 2p ≤ t + 2mp ≤ s2
1/4 + 2p

}
,

else S ← {
t + (2m + 1)p

∣∣ 2
√

p|s1| − 2p ≤ t + (2m + 1)p ≤ s2
1/4 + 2p

}
.

4. Determine the list L of candidates for �JC(Fp):
L← {

1 + p2 − s1(p + 1) + s2 | s2 ∈ S
}

. (�L ≤ 3 by Remark 2.)
5. If �L = 1, then return the unique element of L,

else determine �JC(Fp) by multiplying a random point D on JC(Fp) by each
element of L.

It is easy to show that the expected running time of the above algorithm is
O(ln4 p). (For an estimation for Cornacchia’s algorithm and so on, see Cohen’s
book [5] for example.)

5.2 Searching Suitable Curves for HCC and Results

Here we show the result that we have searched hyperelliptic curves suitable for
HCC among hyperelliptic curves of type y2 = x5 + ax, a ∈ Fp.

Our search is based on the algorithm which we proposed in 5.1. All compu-
tation below were done by Mathematica 4.1 on Celeron 600MHz.

Example 1. The followings are examples of curves such that the orders of their
Jacobian groups are in the form 2·(prime).

p = 1208925819614629175095961(81-bit), a = 3,

JC(Fp) = 2 · 730750818666480869498570026461293846666412451841(160-bit)
(The computation for counting points took 0.04s.)

p=2923003274661805836407369665432566039311865180529(162-bit), a=371293,

JC(Fp)=2·42719740718418201647900421592006690578364140623317241379335\
65193825968686576267080087081984838097(321-bit)

(The computation for counting points took 0.07s.)

In the above examples, JC ’s are simple over Fp2 . Since �JC(Fp) has a large prime
factor, the characteristic polynomial of the p-th power Frobenius endomorphism
must be irreducible. Moreover since s1 �= 0 over Fp, the characteristic polynomial
of p2-th power Frobenius endomorphism cannot split by Lemma 3.

Furthermore, one can easily check that large prime factors of the above
�JC(Fp) do not divide pr − 1, r = 1, 2, . . . , 23�log2 p�. Hence these curves are
not weak against the Frey-Rück attack [7].
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Example 2. The following table shows the result of search in many p’s. We can
find the following number of suitable curves for each search range.

search range (r, s) num. of primes num. of curves s.t. time
for p, r < p < s p ≡ 1 (mod 8) �JC(Fp) = 2×(prime) (seconds)
280, 280 + 106 4441 366 416.67
281, 281 + 106 4309 352 409.72

2161, 2161 + 106 2276 93 497.49
2325, 2325 + 106 1100 30 731.52

Remark 5. From the result of Duursma, Gaudry and Morain [6], an automor-
phism of large order can be exploited to accelerate the Pollard’s rho algorithm.
If there is an automorphism of order m, we can get a speed up of

√
m. The order

of any automorphism of y2 = x5+ax is at most 8. So the Pollard’s rho algorithm
for these curves can be improved only by a factor

√
8.

6 Point Counting Algorithm
for another Curve: y2 = x5 + a

In this section, we consider another curve y2 = x5 + a, a ∈ Fp. For the case a is
square in Fp, it is a kind of Buhler-Koblitz’s curves [2]. Hence we consider the
case a is non-square.

Theorem 10. Let p be an odd prime number such that p ≡ 1 (mod 5). C a hy-
perelliptic curve defined by the equation y2 = x5 + a where a ∈ Fp. Moreover
let J5(χ, χ) =

∑p−1
s=0 χ(s)χ(1 − s) be the Jacobi sum for a character χ of Fp

which maps a fixed non-quintic element in Fp to ζ = e2πi/5 and c1, c2, c3, c4 be
coefficients of ζi in the expression J5(χ, χ) = c1ζ + c2ζ

2 + c3ζ
3 + c4ζ

4. Then
for the characteristic polynomial t4 − s1t

3 + s2t
2 − s1pt + p2 of the p-th power

Frobenius endomorphism of C, s1, s2 are given as follows:

s1 ≡ 1
2
α3 (−z + β) a3(p−1)/10 +

1
2
α (−z − β) a(p−1)/10 (mod p)

s2 ≡ 1
4
α4

(
z2 − β2

)
a2(p−1)/5 (mod p)

where α = 2(p−1)/5 (mod p), β = w(z2−125w2)
4(zw+uv) and z, u, v, w are given by z =

−(c1 + c2 + c3 + c4), 5u = c1 + 2c2 − 2c3 − c4, 5v = 2c1 − c2 + c3 − 2c4,
5w = c1 − c2 − c3 + c4.

Proof. Since (x5 + a)(p−1)/2 =
∑(p−1)/2

r=0

( p−1
2
r

)
x5ra(p−1)/2−r and p ≡ 1 (mod 5),

the Hasse-Witt matrix of C is of the form
(

cp−1 0
0 c2p−2

)
. Put f = (p − 1)/10.

Then s1 ≡
(
5f
2f

)
a3f +

(
5f
4f

)
af (mod p) and s2 ≡

(
5f
2f

)(
5f
4f

)
a4f (mod p). From

the result of [10, Theorem 13.1],
(
5f
2f

)
= 1

2α3
(
−z + w(z2−125w2)

4(zw+uv)

)
and

(
5f
f

)
=

1
2α

(
−z − w(z2−125w2)

4(zw+uv)

)
. Hence we obtain the result. �
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Remark 6. If p �≡ 1 (mod 5), then the Hasse-Witt matrix is of the form
(

0 cp−2

0 0

)

or
(

0 0
c2p−1 0

)
. Hence s1 ≡ s2 ≡ 0 (mod p) and JC is supersingular [21].

From the above theorem, we obtain a point counting algorithm for curves of
type y2 = x5 + a over Fp when p ≡ 1 (mod 5). The algorithm is as follows:

Algorithm 2
Input: a ∈ Fp where p ≡ 1 (mod 5) and p > 64.
Output: �JC(Fp) (C: a hyperelliptic curve of genus 2 defined by y2 = x5 + a).

1. Calculate coefficients c1, c2, c3, c4 in J5(χ, χ) =
∑4

i=1 ciζ
i in Theorem 10 by

using the LLL algorithm. (See [2] for details.)
2. Determine s1 by Theorem 10 and the bound |s1| < 4

√
p.

3. Determine the list of candidates for s2 by Theorem 10 and Lemma 1.
4. Determine the list L of candidates for �JC(Fp) from results of Step 2 and 3.

(�L ≤ 5 by Remark 1.)
5. If �L = 1, then return the unique element of L, else determine �JC(Fp)

by multiplying a random point D on JC(Fp) by each element of L.

We show the result that we have searched suitable curves for HCC among hyper-
elliptic curves of type y2 = x5+a, a ∈ Fp where a is non-square. All computation
below were done by Mathematica 4.1 on Celeron 600MHz.

Example 3. The followings are examples of curves whose Jacobian groups have
prime orders.

p = 1208925819614629174708801(81-bit), a = 1331,

JC(Fp) = 1461501637326815988079848163961117521046955445901(160-bit)
(The computation for counting points took 0.18s.)

p = 1208925819614629174709941(81-bit), a = 2,

JC(Fp) = 1461501637331762771847359428275278989652932675771(161-bit)
(The computation for counting points took 24.58s.)

In these examples, JC ’s are simple over Fp2 by Lemma 3 and not weak against
the Frey-Rück attack.

Example 4. The following table shows the result of search in many p’s. We can
find the following number of suitable curves for each search range.

search range (r, s) num. of primes num. of curves s.t. time
for p, r < p < s p ≡ 1 (mod 5) �JC(Fp) =prime (seconds)
280, 280 + 104 50 7 237.67
281, 281 + 104 40 7 224.16
282, 282 + 104 39 5 297.13

2100, 2100 + 104 33 5 335.76
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Remark 7. The order of any automorphism of y2 = x5 + a is at most 10. So as
same as we remarked in Remark 5, the Pollard’s rho algorithm for these curves
can be improved only by a factor

√
10.
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