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Abstract. The edit distance correlation attack on the well-known al-
ternating step generator for stream cipher applications was proposed
by Golić and Menicocci. The attack can be successful only if the prob-
ability of the zero edit distance, the so-called embedding probability,
conditioned on a given segment of the output sequence, decreases with
the segment length, and if the decrease is exponential, then the required
segment length is linear in the total length of the two linear feedback
shift registers involved. The exponential decrease for the maximal value
of the embedding probability as a function of the given output segment
was estimated experimentally by Golić and Menicocci. In this paper, by
using the connection with the interleaving and decimation operations,
the embedding probability is theoretically analyzed. Tight exponentially
small upper bounds on the maximal embedding probability are thus de-
rived. Sharp exponentially small lower and upper bounds on the minimal
embedding probability are also determined.

Index Terms: Correlation attack, decimation, edit distance, embedding
probability, interleaving, sequences.

1 Introduction

It is well known that stream ciphers based on irregularly clocked linear feed-
back shift registers (LFSR’s) are suitable for hardware implementations and can
achieve a reasonably high security against secret key reconstruction attacks in
the known plaintext scenario. Correlation attacks are a general class of divide-
and-conquer attacks that aim at reconstructing the initial states of a subset of
the LFSR’s and use appropriate correlation measures between the known out-
put sequence and the output sequences of the targeted LFSR’s when regularly
clocked. Such attacks based on the appropriately defined edit distances and edit
probabilities are introduced in [1] and [2], respectively, and further analyzed
in [3]. They are applicable to LFSR’s that are clocked at least once per each
output bit produced. In the case of a single irregularly clocked LFSR, the edit
distances measure the possibility and the edit probabilities measure the proba-
bility of obtaining the output sequence from the assumed LFSR sequence, where
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the sequence controlling the clocking is not known. Therefore, such attacks can
be called the embedding and probabilistic correlation attacks, respectively, and
the embedding attack is first introduced in [9].

The stop-and-go (stop/go) clocking is particularly interesting for high speed
applications. At any time, a stop/go shift register is clocked once if the clock-
control input bit is equal to 1 (or 0) and is not clocked at all otherwise. The
well-known alternating step generator (ASG) proposed in [6] consists of two
stop/go clocked binary LFSR’s, LFSRX and LFSRY , and a clock-control regu-
larly clocked binary LFSR, LFSRC . At each time, the clock-control bit defines
which of the two LFSR’s is clocked, and the output sequence is obtained as
the bitwise sum of the two stop/go clocked LFSR sequences. Some standard
cryptographic properties of the ASG, such as a long period, a high linear com-
plexity, and approximately uniform relative frequency of short output patterns
on a period are established in [6], under the assumption that the clock-control
sequence is a de Bruijn sequence and that the feedback polynomials of LFSRX

and LFSRY are primitive. It is expected that similar results also hold if the
the clock-control sequence is produced by another LFSR, LFSRC , with a primi-
tive feedback polynomial whose period is coprime to the periods of LFSRX and
LFSRY .

It is shown in [6] that the initial state of LFSRC can be recovered by a
specific divide-and-conquer attack based on the fact that if and only if the guess
about the initial state of LFSRC is correct, then the first (binary) derivative of
the ASG output sequence can be deinterleaved into the first derivatives of the
regularly clocked LFSRX and LFSRY sequences, which are then easily tested
for low linear complexity.

An edit distance correlation attack targeting LFSRX and LFSRY simulta-
neously is proposed in [4]. The specific edit distance incorporating the stop/go
clocking is defined between one output string and two input strings. The output
string is a given segment of the ASG output sequence and the input strings are
the segments of the output sequences of LFSRX and LFSRY whose initial states
are guessed. An efficient algorithm for computing the edit distance is derived
in [4]. Note that the attack has a divide-and-conquer effect since the unknown
initial state of LFSRC is not guessed.

If the initial states of LFSRX and LFSRY are guessed correctly, then the edit
distance is equal to zero. The zero edit distance means that the given segment
of the ASG output sequence can be obtained from the assumed segments of the
output sequences of LFSRX and LFSRY by the stop/go clocking as in the ASG.
In other words, it means that the ASG-embedding is possible. If the guess is
incorrect, then the probability of obtaining the zero edit distance from random
input strings, i.e., the ASG-embedding probability has to decrease with the out-
put segment length in order for the attack to be successful, and if this decrease is
exponential, then the required output segment length is linear in the total length
of LFSRX and LFSRY . This is because the expected number of false candidates
for the initial states of LFSRX and LFSRY can be approximated as the product
of the ASG-embedding probability and the total number of incorrect guesses.
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The experimental results from [4] indicate that the decrease of the ASG-
embedding probability is exponential and that the output segment length of
about four total lengths of LFSRX and LFSRY is sufficient for success. Theo-
retical derivation and analysis of the maximal, average, and minimal values of
the ASG-embedding probability, as a function of the given output segment, is
qualified in [4] as a nontrivial combinatorial problem. Its solution is practically
important for proving that the zero-edit-distance correlation attack on the ASG
is successful if the output segment length is sufficiently large.

A partial step in this direction is made in [7] where an exponentially small
upper bound on the average ASG-embedding probability is established by using
the connection with the interleaving operation. Of course, this does not imply
an exponentially small upper bound on the maximal ASG-embedding probabil-
ity, which is needed to solve the problem completely. The main objective of this
paper is to provide a more effective solution to the problem by deriving expo-
nentially small upper bounds on the maximal ASG-embedding probability. This
is achieved by a mathematically more involved approach using the connection
with the interleaving and decimation operations.

Although it is out of the scope of this paper, it is interesting to mention
that a correlation attack on an individual LFSR, either LFSRX or LFSRY ,
which is based on a specific edit probability is later developed in [5]. For a
similar approach, more explicitly using the connection with the interleaving and
decimation operations, see [8]. Note that for individual LFSR’s, the edit distance
attack cannot be successful, due to a result from [3] regarding the embedding
attack on irregularly clocked shift registers. By experimental analysis of the
underlying statistical hypothesis testing problem, it is shown in [5] that the
output segment length equal to about forty lengths of the targeted LFSR is
sufficient for success. Theoretical analysis of this problem is very difficult and
is related to the theoretically still open capacity problem for a communication
channel with deletion errors.

This paper is organized as follows. In Section 2, the mathematical definitions
of the ASG-embedding probability and the related interleaving and decimation
probabilities are introduced. Some basic relations among these probabilities are
established in Section 3. By analyzing the decimation probability, various expo-
nentially small upper bounds on the maximal ASG-embedding probability are
derived in Section 4. By analyzing the interleaving probability, exponentially
small lower and upper bounds on the minimal ASG-embedding probability are
determined in Section 5. Conclusions are presented in Section 6.

2 Preliminaries

For a binary sequence A = a0, a1, · · · or A = a1, a2, · · · , let Ak = ak, ak+1, · · ·
and let An

k = ak, ak+1, · · · , an denote a segment of length n − k + 1. Formally,
An

k is empty if k > n and, for simplicity, let An = An
1 . Further, the first (binary)

derivative of A is denoted by Ȧ = ȧ0, ȧ1, · · · , where ȧi = ai ⊕ ai+1 and ⊕ stands
for the binary (modulo 2) addition. The (binary) complement of A is denoted by
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A = a0, a1, · · · , where ai = ai ⊕ 1. As usual, AmBn denotes the concatenation
of Am and Bn, whereas an denotes a constant sequence a, a, · · · , a.

Let X , Y , and C be the output sequences of LFSRX , LFSRY , and LFSRC

in the ASG, respectively. Assuming the step-then-add mode of operation, the
ASG output sequence Z = z1, z2, · · · is generated as follows. Initially, the first
bits of X and Y , that is, x0 and y0 are produced. For each t ≥ 1, depending on
whether ct−1 equals 1 or 0, the next bit of X or Y is produced, respectively, and
the output bit zt is obtained as the binary sum of the last produced bits of X
and Y . The ASG output sequence produced from Xn

0 , Y n
0 , and Cn−1

0 is denoted
as Zn = Zn

1 = ASG(Xn
0 , Y n

0 , Cn−1
0 ), where n ≥ 1.

Let Wn = INT(Un, V n, Cn) denote the sequence obtained by interleaving
Un and V n according to Cn, wi being taken from Un if ci = 1 and from V n if
ci = 0. The ASG and interleaving operations are connected by

Żn−1
1 =

{
INT(Ẋn−1

1 , Ẏ n−2
0 , Cn−1

1 ) if c0 = 1
INT(Ẋn−2

0 , Ẏ n−1
1 , Cn−1

1 ) if c0 = 0
. (1)

Our main objective is to analyze the ASG-embedding probability that is ac-
cording to [4] defined as the conditional probability

Pn(Zn) = Pr{(Xn
0 , Y n

0 ) | (∃Cn−1
0 ) ASG(Xn

0 , Y n
0 , Cn−1

0 ) = Zn} (2)

in the probabilistic model in which X and Y are assumed to be mutually indepen-
dent sequences of independent uniformly distributed binary random variables.
In this model,

Pn(Zn) =
1

22(n+1)
|{(Xn

0 , Y n
0 ) : (∃Cn−1

0 ) ASG(Xn
0 , Y n

0 , Cn−1
0 ) = Zn}|. (3)

We similarly define the interleaving probability as

pn(Wn) =
1

22n
|{(Un, V n) : (∃Cn) INT(Un, V n, Cn) = Wn}|. (4)

Both probabilities are invariant under complementation, that is,

Pn(Z
n
) = Pn(Zn) (5)

pn(W
n
) = pn(Wn). (6)

We are particularly interested in deriving the maximal and minimal values of
the two probabilities over Zn and Wn, respectively. They are denoted as Pmax

n ,
pmax

n , Pmin
n , and pmin

n , respectively. The empirical estimates from [4] are Pmax
n ≈

0.72 · 0.915n and Pmin
n ≈ 2.7 · 0.562n.

To this end, we introduce the decimation operation by Uk = DEC(Wn, Cn)
where wi is taken to the output if ci = 1 and discarded if ci = 0, and k = h(Cn)
is the Hamming weight of Cn (for k = 0, U0 is empty). Let

Dk(Wn) = {Uk : (∃Cn) DEC(Wn, Cn) = Uk}, 0 ≤ k ≤ n (7)
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νn(Wn) =
1
2n

n∑
k=0

|Dk(Wn)|. (8)

Clearly, |Dk(Wn)| ≥ 1 and |D0(Wn)| = |Dn(Wn)| = 1. Accordingly, ν1(W 1) = 1
and

(n + 1)2−n ≤ νn(Wn) ≤ 1. (9)

Since
∑n

k=0 |Dk(Wn)| is the number of sequences, of various lengths, that can
be obtained by decimating Wn, we can call νn(Wn) the decimation probability.
Like pn(Wn), νn(Wn) is also invariant under complementation (see (6)). One
can analogously define its maximal and minimal values, respectively.

3 Basic Relations

Lemma 1, based on the characterization (1), determines the relation between Pn

and pn−1. Lemma 2 specifies a basic relation between the interleaving probability
pn and the decimation probability νn. Throughout the paper, in all the mathe-
matical results stated, it is assumed that the unspecified quantities take arbitrary
values (e.g., n and Zn in Lemma 1).

Lemma 1.

3
4

pn−1(Żn−1) ≤ Pn(Zn) ≤ pn−1(Żn−1). (10)

The same inequalities hold for the maximal and minimal values, respectively.

Proof The set {(Xn
0 , Y n

0 ) : (∃Cn−1
0 ) ASG(Xn

0 , Y n
0 , Cn−1

0 ) = Zn} can be parti-
tioned into three subsets according to x0 ⊕ y1 = z1 �= x1 ⊕ y0, x0 ⊕ y1 = z1 �=
x1 ⊕ y0, and x0 ⊕ y1 = x1 ⊕ y0 = z1. In the first two subsets (Xn

0 , Y n
0 ) uniquely

determines c0, whereas in the third subset this is not true. In view of (1), we
first get

|{(Xn
0 , Y n

0 ) : x0 ⊕ y1 = z1 �= x1 ⊕ y0, (∃Cn−1
0 ) ASG(Xn

0 , Y n
0 , Cn−1

0 ) = Zn}|
= |{(Xn

0 , Y n
0 ) : x0 ⊕ y1 = z1 �= x1 ⊕ y0,

(∃Cn−1
1 ) INT(Ẋn−2

0 , Ẏ n−1
1 , Cn−1

1 ) = Żn−1}|
= 4 |{(Ẋn−2

0 , Ẏ n−1
1 ) : (∃Cn−1

1 ) INT(Ẋn−2
0 , Ẏ n−1

1 , Cn−1
1 ) = Żn−1}|

(11)

since c0 = 0 and both x0 and xn can take arbitrary values. Analogous equation
holds if x0 ⊕ y1 = z1 �= x1 ⊕ y0, in which case c0 = 1 and y0 and yn can be
arbitrary. Consequently, we get

|{(Xn
0 , Y n

0 ) : x0 ⊕ y1 �= x1 ⊕ y0, (∃Cn−1
0 ) ASG(Xn

0 , Y n
0 , Cn−1

0 ) = Zn}|
= 8 |{(Un−1, V n−1) : (∃Cn−1) INT(Un−1, V n−1, Cn−1) = Żn−1}|. (12)
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In the remaining case x0 ⊕ y1 = x1 ⊕ y0 = z1, c0 can take both values. For
c0 = 0, similarly as (11), we get

|{(Xn
0 , Y n

0 ) : x0 ⊕ y1 = x1 ⊕ y0 = z1,

(∃Cn−1
0 ) (c0 = 0, ASG(Xn

0 , Y n
0 , Cn−1

0 ) = Zn)}|
= |{(Xn

0 , Y n
0 ) : x0 ⊕ y1 = x1 ⊕ y0 = z1,

(∃Cn−1
1 ) INT(Ẋn−2

0 , Ẏ n−1
1 , Cn−1

1 ) = Żn−1}|
= 4 |{(Ẋn−2

0 , Ẏ n−1
1 ) : (∃Cn−1

1 ) INT(Ẋn−2
0 , Ẏ n−1

1 , Cn−1
1 ) = Żn−1}|. (13)

Analogous equation is obtained for c0 = 1, but the two corresponding subsets
are not necessarily disjoint. Accordingly, we get

4 |{(Un−1, V n−1) : (∃Cn−1) INT(Un−1, V n−1, Cn−1) = Żn−1}|
≤ |{(Xn

0 , Y n
0 ) : x0 ⊕ y1 = x1 ⊕ y0, (∃Cn−1

0 ) ASG(Xn
0 , Y n

0 , Cn−1
0 ) = Zn}|

≤ 8 |{(Un−1, V n−1) : (∃Cn−1) INT(Un−1, V n−1, Cn−1) = Żn−1}|. (14)

Finally, (10) is a direct consequence of (3), (4), (12), and (14). �

Lemma 2.

2−n ≤ pn(Wn) ≤ νn(Wn). (15)

The same inequalities hold for the maximal and minimal values, respectively.

Proof The inequalities directly follow from

pn(Wn) =
1

22n
| ∪n

k=0 {(Un, V n) : (∃Cn) (h(Cn) = k, INT(Un, V n, Cn) = Wn)}|
(16)

|{(Un, V n) : (∃Cn) (h(Cn) = k, INT(Un, V n, Cn) = Wn)}| = 2n|Dk(Wn)|,
(17)

and (17) follows from the fact that when h(Cn) = k, then INT(Un, V n, Cn) =
Wn holds iff Uk = DEC(Wn, Cn) and V n−k = DEC(Wn, C

n
), whereas the

remaining n bits of (Un, V n) are arbitrary. �

4 Maximal Probabilities

Our approach consists of obtaining exponentially small upper bounds on the
maximal ASG-embedding probability Pmax

n by deriving appropriate upper bounds
on the decimation probability νn. An analytical method for deriving an upper
bound on νn is presented in Section 4.1 and is further refined in Section 4.3
to determine νmax

n and thus obtain the tightest upper bound in terms of the
decimation probability. A method based on a concatenation lemma and direct
counting is given in Section 4.2.
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4.1 Analytical Upper Bound

A run in a binary sequence W is a maximal-length segment of W that consists
of equal bits. A binary sequence Wn can uniquely be represented as a sequence
of r runs and let Lr = l1, l2, · · · , lr denote the positive integer sequence of the
run lengths. Accordingly,

∑r
i=1 li = n. Clearly, the only two sequences with the

same Lr are Wn and W
n
.

Our objective is to derive an upper bound on νn(Wn) that is strictly smaller
than 1 for every r and then use it to obtain an exponentially small upper bound
on Pmax

n by applying Lemmas 1 and 2. Our most involved mathematical result
is the following lemma, which uses the concept of minimal decimation sequences
introduced in [3].

Lemma 3.

νn(Wn) <
1
2n

√
5 + 2√

5

(√
5 + 1
2

)r r∏
i=1

li ≤ 1
2n

√
5 + 2√

5

(√
5 + 1
2

)r (n

r

)r

. (18)

Proof Every decimation sequence Cn such that h(Cn) = k ≥ 1 can uniquely
be represented as an increasing sequence of positive integers i1, i2, · · · , ik where
ij is the index of the jth 1 in Cn. Now, for given Wn and Uk, there may exist
different Cn such that Uk = DEC(Wn, Cn). However, as observed in [3], for any
Wn and each Uk that can be obtained by decimating Wn, there exists a unique
decimation sequence C̃n such that Uk = DEC(Wn, C̃n) and that either k = 0
or C̃n is minimal in the sense that, for each j, ij is minimal on the set of all Cn

such that Uk = DEC(Wn, Cn).
Such a decimation sequence is called the minimal decimation sequence and

can be recursively constructed as follows: i1 is the index of the first bit of Wn

equal to u1, and for each j ≥ 2, ij is the index of the first bit wi, i > ij−1, equal
to uj. The constructed sequence is the unique minimal decimation sequence,
because if we suppose that there exists a sequence C′n such that i′j < ij for at
least one value of j, then we get a contradiction. Namely, from the construction
it then follows that i′j′ < ij′ for every j′ < j, which is impossible for j′ = 1.

Since, for a given Wn, there is an 1-1 correspondence between the minimal
decimation sequences and all possible Uk,

∑n
k=0 |Dk(Wn)| is equal to the number

of the minimal decimation sequences given Wn. Each C̃n can be characterized by
an r-bit sequence Dr = d1, · · · , dr such that di = 1 iff at least one bit from the
ith run of Wn is taken to the output as well as by the numbers of bits taken to the
output from each of these s runs, where s = h(Dr). The constraints stemming
from the definition of minimal decimation sequences are that there can exist no
two consecutive 0’s in Dr except at the end and that if di = 1 and di+1 = 0, then
the number of bits taken to the output from the ith run is maximal possible,
that is, li. Let Ms denote the number of all such Dr, s = h(Dr), 0 ≤ s ≤ r.

Consequently, we obtain
n∑

k=0

|Dk(Wn)| ≤
r∑

s=0

Ms

r∏
i=1

li ≤
(n

r

)r r∑
s=0

Ms (19)
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where, to get the right-hand inequality, we used
∑r

i=1 li = n and the well-known
inequality relating the geometric and arithmetic means, for nonnegative real
numbers xi, 1 ≤ i ≤ r,

(
r∏

i=1

xi)1/r ≤ 1
r

r∑
i=1

xi. (20)

It remains to determine
∑r

s=0 Ms, which is the total number of r-bit se-
quences that can contain consecutive 0’s only at the end. It is convenient to
represent this number as

∑r
j=0 Nj , where Nj is the number of such sequences

with the additional property that j is the index of the last bit equal to 1 (where
j = 0 means that there are no 1’s at all). It follows that N0 = N1 = 1. Let
Nj denote the set of all j-bit sequences with the jth bit equal to 1 and without
consecutive 0’s, j ≥ 1. If Bj = b1, · · · , bj ∈ Nj , then bj−1 can be equal to 1
or 0. In the former case, Bj−1 ∈ Nj−1 and in the latter case, Bj−2 ∈ Nj−2.
Accordingly, we get

Nj = Nj−1 + Nj−2, j ≥ 2. (21)

Therefore N0, N1, N2, · · · is the Fibonacci sequence, so that
∑r

j=0 Nj can be
expressed as

r∑
j=0

Nj =
√

5 + 2√
5

(√
5 + 1
2

)r

+
√

5 − 2√
5

(
1 −√

5
2

)r

− 1

<

√
5 + 2√

5

(√
5 + 1
2

)r

. (22)

Finally, (19), (22), and (8) result in (18). �

Theorem 1.

Pmax
n ≤ pmax

n−1 ≤ νmax
n−1 <

√
5 + 2√

5

(
1
2
e

√
5+1
2e

)n−1

< 2.08929 · 0.906735n. (23)

Proof Lemma 1 and Lemma 2 imply that Pmax
n ≤ pmax

n−1 ≤ νmax
n−1. Let

α =
√

5 + 1
2

, β =
α

e
. (24)

Equation (18) from Lemma 3 can be put into the form

νn(Wn) <

√
5 + 2√

5

(
1
2

ef(r/n)

)n

(25)

where f(γ) = γ lnα − γ ln γ, γ = r/n. Accordingly, we have

νmax
n <

√
5 + 2√

5

(
1
2

efmax

)n

(26)
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where fmax is the maximum of f(γ) on (0, 1]. It is easy to prove that f ′′ is
negative and hence f is concave and has a unique maximum reached for γ = β.
Consequently, we get (23). �

The upper bound in (23) is smaller than 1 for n ≥ 8.

4.2 Concatenation Upper Bounds

It is interesting that direct counting by computer simulations can be used to
obtain exponentially small upper bounds on νmax

n via the following concatenation
lemma for the decimation probability νn. This lemma and the resulting theorem
have counterparts pertaining to the embedding probability for an embedding
correlation attack on irregularly clocked shift registers under a constraint on the
maximal number of consecutive clocks (see [9] and [3]).

Lemma 4.

νm+n(AmBn) ≤ νm(Am)νn(Bn). (27)

The same inequality holds for the maximal and minimal values, respectively.

Proof According to the definition of the decimation operation, it follows that
DEC(AmBn, Cm+n) = W k is true iff there exist k1 and k2 such that 0 ≤ k1 ≤
m, 0 ≤ k2 ≤ n, k1 + k2 = k, W k = Uk1V k2 , DEC(Am, Cm) = Uk1 , and
DEC(Bn, Cm+n

m+1 ) = V k2 . This then implies that

|Dk(AmBn)| ≤
∑
k1,k2

|Dk1(A
m)||Dk2(B

n)| (28)

where the sum is over all the permitted values of k1 and k2. Therefore, we obtain

m+n∑
k=0

|Dk(AmBn)| ≤
m∑

k1=0

|Dk1(A
m)|

n∑
k2=0

|Dk2(B
n)| (29)

which in view of (8) directly yields (27). �

Theorem 2.

Pmax
n ≤ pmax

n−1 ≤ νmax
n−1 ≤ ηm(νmax

m )n/m (30)

ηm =
1

(νmax
m )1/m

max
0≤l≤m−1

νmax
l

(νmax
m )l/m

. (31)

Proof Let n − 1 = m
(n − 1)/m� + l, 0 ≤ l ≤ m − 1. As a direct consequence
of Lemma 4, we get

νmax
n−1 ≤ νmax

l (νmax
m )�(n−1)/m� (32)
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and then (30) and (31) easily follow in light of Lemmas 1 and 2. �

By using Theorem 2, exponentially small upper bounds can be obtained from
any νmax

m < 1. It follows that νmax
1 = νmax

2 = 1, but we find that νmax
m < 1 already

for m = 3. By direct counting one can compute νmax
m for m ≥ 3 and thus obtain

various exponentially small upper bounds. For m ≥ 6, these bounds are sharper
than the bound in (23).

4.3 Tight Upper Bound

Direct counting via computer simulations for moderately small values of n shows
that νmax

n is achieved by alternating sequences. An analogous observation for
Pmax

n is made in [4]. It is then reasonable to expect that this holds for any
n. If this is true and if we are able to determine νn(Wn) for an alternating
sequence Wn, we can then obtain the tightest upper bound on Pmax

n in terms
of the decimation probability. Indeed, this is achieved by Lemmas 5 and 6 and
Theorem 3.

Lemma 5. If Wn is an alternating sequence, then

νn(Wn) =
√

5 + 2√
5

(√
5 + 1
4

)n

+
√

5 − 2√
5

(
1 −√

5
4

)n

− 1
2n

<

√
5 + 2√

5

(√
5 + 1
4

)n

. (33)

Proof If Wn is an alternating sequence, then r = n, so that Lemma 3 directly
implies that νn(Wn) is upper-bounded as in (33). Moreover, (19) then holds
with equalities and hence (22) implies the equality in (33). �

Lemma 6.

νn+1(Wnwn) < νn+1(Wnwn). (34)

Proof According to the proof of Lemma 3, νn(Wn) can be expressed in terms
of minimal decimation sequences as

νn(Wn) =
1
2n

n∑
i=0

Ki(Wn) (35)

where Ki(Wn) is the number of the minimal decimation sequences C̃n such that
i is the index of the last bit of C̃n equal to 1 (if C̃n = 0n, then i = 0 and
K0(Wn) = 1). It follows that Ki(Wn) ≥ 1, because the decimation sequence
C̃n = 1i0n−i is always minimal. As Ki(Wn) = Ki(Wm) for m ≥ n, it suffices to
compare only Kn+1(Wnwn) and Kn+1(Wnwn).
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To this end, we have to consider only the minimal decimation sequences
C̃n+1 such that c̃n+1 = 1. By virtue of the minimality of minimal decimation
sequences, the first n bits of any such sequence also constitute a minimal deci-
mation sequence.

Further, for Wnwn, the last two bits are equal, so that the minimality of
minimal decimation sequences implies that c̃n = 1. Hence

Kn+1(Wnwn) = Kn(Wn). (36)

On the other hand, for Wnwn, the last bit is different from all the bits in
the last run of Wn whose length is lr. The minimality of minimal decimation
sequences then implies that C̃n+1 is minimal iff c̃n+1 = 1 and C̃n is a minimal
decimation sequence such that the index, i, of the last bit of C̃n equal to 1
satisfies n − lr ≤ i ≤ n. Consequently, in light of (36), we get

Kn+1(Wnwn) =
n∑

n−lr

Ki(Wn) = Kn−lr(W
n) + lrKn(Wn). (37)

Now, as lr ≥ 1 and Kn−lr ≥ 1, (36) and (37) imply that Kn+1(Wnwn) <
Kn+1(Wnwn), so that (35) then results in (34). �

Theorem 3.

Pmax
n ≤ pmax

n−1 ≤ νmax
n−1

=
√

5 + 2√
5

(√
5 + 1
4

)n−1

+
√

5 − 2√
5

(
1 −√

5
4

)n−1

− 1
2n−1

<

√
5 + 2√

5

(√
5 + 1
4

)n−1

< 2.34165 · 0.809017n (38)

and νn(Wn) = νmax
n iff Wn is an alternating sequence.

Proof In view of Lemmas 5, 1, and 2, it suffices to prove that νn(Wn) < νn(An)
if Wn is different from an alternating sequence An. This is a consequence of
Lemma 6, which directly implies that νn(Wn) ≤ νn(An) and that νn(Wn) =
νn(An) iff Wn is an alternating sequence. �

Theorem 3 is our strongest result as it gives the sharpest upper bound on
Pmax

n . It is interesting to note that the recursions (36) and (37) from the proof
of Lemma 6 enable the efficient computation of νn(Wn) with complexity O(r)
instead of O(2n).

If R is the total length of LFSRX and LFSRY , then the expected number
of false candidates for the initial states of LFSRX and LFSRY can be upper-
bounded by 2RPmax

n . The criterion 2RPmax
n ≤ 1 then yields an approximate

output segment length required for a successful embedding attack as

n ≥ 3.27 R. (39)
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5 Minimal Probabilities

Although any upper bound on Pmax
n is also an upper bound on the minimal ASG-

embedding probability Pmin
n , our main objective here is to obtain sharper upper

bounds on Pmin
n . More precisely, sharp upper and lower bounds on Pmin

n are
obtained by deriving the minimal interleaving probability pmin

n and by applying
Lemma 1.

Lemma 7.

pmin
n =

(n

2
+ 1

) 1
2n

(40)

and pn(Wn) = pmin
n if Wn is a constant sequence, 0n or 1n.

Proof Consider a set of sequences Si = W i−1wi, 1 ≤ i ≤ n + 1, where it
is assumed that S1 = w1 and Sn+1 = Wn. Now, if Si is a prefix of Un and
Wn

i is a prefix of V n and the remaining bits of (Un, V n) are arbitrary (for
i = n + 1, V n is arbitrary), then all such (Un, V n) are different and clearly
INT(Un, V n, Cn) = Wn for Cn = 1i−10n−i+1. The number of such (Un, V n)
is

∑n
i=1 2n−1 + 2n = n2n−1 + 2n, so that pmin

n ≥ n2−n−1 + 2−n. Further, if
Wn is a constant sequence, then there are no other (Un, V n) that can form Wn

by interleaving, because the prefixes of Un and V n forming Wn are then also
constant sequences. Therefore, the equality is achieved and (40) thus follows. �

The following bounds are a direct consequence of Lemmas 7 and 1. Since
νmin

n = (n + 1)2−n, where νn(Wn) = νmin
n iff Wn is a constant sequence, the

upper bound in (41) is sharper than the upper bound, νmin
n−1, which is a direct

consequence of Lemmas 1 and 2.

Theorem 4.

3
4

(n + 1)
1
2n

=
3
4

pmin
n−1 ≤ Pmin

n ≤ pmin
n−1 = (n + 1)

1
2n

. (41)

6 Conclusions

The problem [4] of analyzing the ASG-embedding probability, which is condi-
tioned on the given segment of the ASG output sequence, is theoretically solved.
Exponentially small upper bounds on the maximal ASG-embedding probability,
including the tightest upper bound in terms of the decimation probability, as
well as sharp upper and lower bounds on the minimal ASG-embedding proba-
bility are derived. Apart from their wider theoretical merits for the analysis of
interleaving and decimation operations, the results prove that the embedding
attack [4] on the ASG is successful if the length of the given output segment
is sufficiently large and that this length depends on the total length of the two
underlying LFSR’s only linearly.
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	On the Success of the Embedding Attack on the Alternating Step Generator
	Introduction
	Preliminaries
	Basic Relations
	Maximal Probabilities
	Analytical Upper Bound
	Concatenation Upper Bounds
	Tight Upper Bound

	Minimal Probabilities
	Conclusions
	References




