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Abstract. Let E be an elliptic curve defined over F2n . The inverse op-
eration of point doubling, called point halving, can be done up to three
times as fast as doubling. Some authors have therefore proposed to per-
form a scalar multiplication by an “halve-and-add” algorithm, which is
faster than the classical double-and-add method.
If the coefficients of the equation defining the curve lie in a small subfield
of F2n , one can use the Frobenius endomorphism τ of the field extension
to replace doublings. Since the cost of τ is negligible if normal bases are
used, the scalar multiplication is written in “base τ” and the resulting
“τ -and-add” algorithm gives very good performance.
For elliptic Koblitz curves, this work combines the two ideas for the first
time to achieve a novel decomposition of the scalar. This gives a new
scalar multiplication algorithm which is up to 14.29% faster than the
Frobenius method, without any additional precomputation.

Keywords. Koblitz curves, scalar multiplication, point halving, τ -adic
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1 Introduction

In 1985 Miller [9] and Koblitz [7] independently proposed to use the group of
rational points of an elliptic curve over a finite field to create cryptosystems
based on the discrete logarithm problem (DLP).
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The basic operation of a DLP-based cryptosystem is the scalar multiplication,
i.e. given a point P and an integer s, to compute sP . Some families of elliptic
curves have arithmetic properties useful for speeding up this operation. One such
family consists of the Koblitz curves: These curves, first proposed by Koblitz [8]
and called anomalous binary curves by Solinas in [14], are defined over F2n by
equations of the form

Ea : y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1} . (1)

The present paper is devoted to scalar multiplication on Koblitz curves. We
restrict our attention to those curves for which n is prime, and whose rational
point group contains a (unique) subgroup of large prime order p with a cofactor
at most 4, such as those in the standards [17,18].

Let τ denote the Frobenius endomorphism τ(x, y) = (x2, y2) and P be a
point of order p on Ea. As τ commutes with point addition, τ(P ) also has order
p, and there exists a scalar λ with τ(P ) = λP . This suggests that τ may be used
to compute multiples of P . In fact, we can write a “τ -adic expansion associated
to the scalar s”, i.e. an expression of the form

∑m
i=0 siτ

i, with si ∈ {0,±1},
such that

∑m
i=0 siτ

i(P ) = sP for all P ∈ Ea(F2n). Then a “τ -and-add” loop is
used to compute sP . Since τ is much faster than a point doubling, the resulting
method is very efficient.

Knudsen [5] and Schroeppel [12] independently proposed a technique for
elliptic curves over binary fields based on point halving. This method computes
the multiple R of any point P of odd order such that 2R = P and R ∈ 〈P 〉.
Since for curves of order 2p point halving is up to three times as fast as doubling,
it is possible to improve performance of scalar multiplication by expanding the
scalar using “powers of 1/2” and replacing the double-and-add algorithm with
a halve-and-add method.

In our paper, we combine for the first time the τ-NAF approach with a single
point halving, thereby reducing the amount of point additions from n/3 to 2n/7,
and providing an asymptotic speed-up of about 14.29%. The idea is that it is pos-
sible, using a single point halving, to replace some sequences of a τ-NAF having
density 1/2 (and containing at least three non-zero coefficients) with sequences
having weight 2.

In the next section we collect some basic facts about τ -NAFs and point halv-
ing. In Section 3, we describe our new scalar decomposition, prove its correct-
ness, and apply it to the computation of scalar multiplications. The complexity
analysis is given in Section 4. In Section 5 we conclude.

Acknowledgements. The authors express their gratitude to Darrel Hankerson,
Tanja Lange, Nicolas Thériault and to the anonymous referees for the many
useful suggestions for improving the paper. The authors also thank Jean-Jacques
Quisquater for fruitful discussions and support.
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2 Background Concepts

2.1 τ Non Adjacent Forms

All facts here are stated without proofs: These are found in [14,15].
Let the Koblitz curve Ea defined over F2n by equation (1) have a (unique)

subgroup G of large prime order p with a cofactor at most 4. Let τ denote
the Frobenius endomorphism. It is easy to see that for each point P we have
(τ2 + 2)P = µ τ(P ) where µ = (−1)1−a, i.e.

τ2 + 2 = µτ . (2)

If τ is identified with a complex root of equation (2), say τ = (µ +
√−7)/2, we

can view τ(P ) as multiplication by τ and let Z[τ ] operate on P .
The τ -adic non-adjacent form (τ -NAF for short) of an integer z ∈ Z[τ ] is a

decomposition z =
∑

i ziτ
i where zi ∈ {0,±1} with the non-adjacency property

zjzj+1 = 0, similarly to the classical NAF [11]. The average density (that is the
average ratio of non-zero bits related to the total number of bits) of a τ -NAF is
1/3. Each integer z admits a unique τ -NAF. The length of the τ -NAF expansion
of a randomly chosen scalar is ≈ 2n, whereas the bit length of is ≈ n. But,
for any point P ∈ Ea(F2n) � Ea(F2), τnP = P and τP �= P . Since Z[τ ] is an
Euclidian ring we can take the remainder of s mod (τn − 1)/(τ − 1) and use it in
place of s. This remainder will have smaller norm than that of (τn − 1)/(τ − 1),
and thus it will have length at most n. Its τ -NAF is called the reduced τ -NAF
of s.

The computation of an element of Z[τ ] of minimal norm which is congruent
to s modulo (τn −1)/(τ −1) is a very slow operation. To overcome this problem,
Solinas proposes to compute an element which is almost of minimal norm and
whose computation is much faster. The length of its τ -NAF (the partially reduced
τ -NAF of s) is at most n + a + 3. The corresponding τ -and-add algorithm runs
marginally slower than with the reduced τ -NAF of the scalar, but the overall
speed-up is significant.

2.2 Point Halving

Let E be a generic elliptic curve over F2n by an equation of the form

E : y2 + xy = x3 + ax2 + b

with a, b ∈ F2n (hence, not necessarily a Koblitz curve) and having a subgroup
G ≤ E(F2n) of large prime order. To a point P with affine coordinates (x, y) we
associate the quantity λP = x + y

x . Let P = (x, y) and R = (u, v) be points of
E(F2n) \ {0} with 2R = P . The affine coordinates of P and R are related as
follows:

λR = u +
v

u
(3)

x = λ2
R + λR + a (4)

y = u2 + x(λR + 1) (5)
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Given P , point halving consists in finding R. To do this, we have to solve (4)
for λ, (5) for u, and finally (3) for v. After some simple manipulations, we see
that we have to perform the following operations:

(i) Solve λ2
R + λR = a + x for λR (6)

(ii) Put t = y + x(λR + 1)

(iii) Find u with u2 = t (7)
(iv) Put v = t + uλR .

Knudsen [5] and Schroeppel [12,13] show how to perform the necessary steps
in an efficient way. A more thorough analysis of the costs of these steps is given
in [3]. We shall return to this matter in Section 4.

Point halving is an automorphism of G. So, given a point P ∈ G, there is
a unique R ∈ G such that 2R = P . In other words, the equations (6) and (7)
can always be solved in F2n . But, they do not determine a unique point R with
2R = P . In fact, solving them will always yield two distinct points R1 and R2

such that R1 − R2 is the unique point of order 2 of the curve. It is possible, by
performing an additional check, to determine the point R ∈ G, but we do not
need that in our applications. We refer the interested reader to [5,12,13] of [3]
for details.

3 New Scalar Decomposition and Scalar Multiplication

Consider a Koblitz curve Ea and adopt the notation of Subsection 2.1. Equation
(2) implies that τ3 + 2τ = µτ2 = µ(µτ − 2) = τ − 2µ, hence

2 = −µ
(
1 + τ2

)
τ . (8)

In particular, this means that we can compute 2P as −µ
(
1+ τ2

)
τP . This alone

is not very useful, since it replaces a point doubling with one addition and three
Frobenius operations. However, these relations become interesting if we can make
repeated use of them:

Lemma 1. Let P = 2R. Put Q = τR. The following equalities hold:
( k−1∑

j=0

(−1)jτ 2j

)

P = −µ(1 + (−1)k−1τ 2k)Q, (I)

( k−2∑

j=0

(−1)jτ 2j

)

P + (−1)k−2τ 2(k−1)P = (−µ + (−1)k−1τ 2k−1)Q, (II)

( k−3∑

j=0

(−1)jτ 2j

)

P + (−1)k−3(τ 2(k−2) + τ 2(k−1))P = (−µ + (−1)k−3τ 2k−3)Q. (III)

Proof. The first statement is simplified using (8), giving a telescopic sum

k−1∑

j=0

(−1)jτ2jP = −µ
k−1∑

j=0

(−1)jτ2j(1 + τ2)Q = −µ
(
1 + (−1)k−1τ2k

)
Q .
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To prove the second equality we use the previous relation (with k−1 in place
of k) in combination with the fact that P = (µ − τ)Q:

( k−2∑

j=0

(−1)jτ2j

)

P + (−1)k−2τ2(k−1)P =

= −µ
(
1 + (−1)k−2τ2(k−1)

)
Q + (−1)k−2τ2(k−1)(µ − τ)Q

= (−µ + (−1)k−1τ2k−1)Q .

The verification of the third equality proceeds in a similar fashion:

( k−3∑

j=0

(−1)jτ2j

)

P + (−1)k−3
(
τ2(k−2) + τ2(k−1)

)
P =

=
(− µ + (−1)k−2τ2k−3

)
Q + (−1)k−3τ2(k−1)(µ − τ)Q

=
(− µ + (−1)k−2τ2k−3(1 − µτ + τ2)

)
Q =

(− µ + (−1)k−3τ2k−3
)
Q . �	

We need more terminology and notation to describe and analyze our recoding.

Notation. We write S = 〈sn . . . sjsj−1 . . . s1s0〉 for any τ-adic expansion (also
called string)

∑
0≤j≤n sjτ

j . We call #S = n the length of the expansion S.
Also by S[i . . . j] we denote the sub-expansion 〈si . . . sj〉 of S. Occasionally, we
will encounter the string x × 〈si . . . sj〉, where x = ±1. It is then understood
that −1 × 〈si . . . sj〉 = 〈−si . . . − sj〉 is the bitwise complement of the original
string. Henceforth S will denote the τ-NAF expansion of any integer, namely an
expansion as above with sj = 0,±1 and sjsj+1 = 0. We write 1̄ for −1, and also
1̄t for (−1)t.

Definition 1. Let K = 〈� 0 � . . . � 0 �〉 be a substring of a τ-NAF expansion S,
where the symbol � denotes a 1 or a −1. K is a k-block if it contains k elements
�, i.e. it is of length 2k − 1. A k-block is maximal if the two digits preceding it
and the two following it are all zero.

Example 1. We highlight a few examples of k-blocks in a sequence

〈 1 0 0

2-block
︷ ︸︸ ︷
1 0 1 0 1
︸ ︷︷ ︸
(maximal)

3-block

0 0 0 1 0 0 1̄ 0

3-block
︷ ︸︸ ︷
1̄ 0 1̄ 0 1

︸ ︷︷ ︸
(maximal)

4-block

0 0 1̄ 〉 .

We now give a practical application of Lemma 1.

Remark 1. Let s be an integer and P a point of odd order on a Koblitz curve.
Let S = 〈s�−1 . . . sjsj−1 . . . s1s0〉 be the τ -NAF associated to s, so that sP =
∑�−1

j=0 sjτ
j(P ). By Lemma 1, the multiples of P corresponding to some special

k-blocks appearing in S can be computed as suitable multiples of Q := τ
(

1
2P

)

by a τ -and-add method involving fewer group additions. The situation, in terms
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of substrings of τ -adic expansions, is the following (where all blocks on the left-
hand side are k-blocks).

〈 1̄k−1 0 1̄k−2 0 . . . 0 1 0 1̄ 0 1
︸ ︷︷ ︸

length 2k−1

〉P = µ̄〈 1̄k−1 0 0 . . . 0 0 1
︸ ︷︷ ︸

length 2k+1

〉Q (I)

〈 1̄k−2 0 1̄k−2 0 1̄k−3 0 . . . 0 1 0 1̄ 0 1
︸ ︷︷ ︸

length 2k−1

〉P = 〈 1̄k−1 0 0 . . . 0 0 µ̄
︸ ︷︷ ︸

length 2k

〉Q (II)

〈 1̄k−3 0 1̄k−3 0 1̄k−3 0 1̄k−4 0 . . . 0 1 0 1̄ 0 1
︸ ︷︷ ︸

length 2k−1

〉P = 〈 1̄k−3 0 0 . . . 0 µ̄
︸ ︷︷ ︸

length 2k−2

〉Q. (III)

Definition 2. We call the k-blocks of the above three types together with their
opposites in sign good k-blocks. A maximal good k-block is a good k-block which
cannot be further extended at its sides.

Remark 1 suggests a strategy for saving operations in the computation of
sP . From the τ -NAF S of s, we create two τ -adic expansions, S(1) and S(2), by
repeated replacements of subsequences, where:

1. S(1) is obtained from S by discarding the maximal good k-blocks for k ≥ 3,
substituting them with a string of 2k − 1 zeros;

2. S(2) consists of the weight two right-hand sequences replacing the maximal
good k-blocks removed from S, each at the same position where the original
k-block was in S, according to I, II or III.

It is clear from Lemma 1 and Remark 1 that sP = S(1)P + S(2)Q.

Remark 2. It is easy to verify that no two k-block replacements overlap. For
k-blocks of types II and III this is obvious. Since a maximal k-block of type I is
followed by at least two zero bits (otherwise it would not be maximal), the next
non-zero bit may only occur after the end of the replacement block. S(2) need
not satisfy the non-adjacency property.

We have written down explicity the algorithm which generates S(1) and S(2)

as Algorithm 1. Note that the length of S(1) is equal to the length of S and that
of S(2) is at most the length of S plus two.

The total number of non-zero coefficients in S(1) and S(2) is, by construction,
no greater than that of S. In fact, the number of non-zero coefficients decreases
considerably on average (see Section 4). We now see how to use the new recoding
to perform a scalar multiplication.

3.1 Field Represented Using a Normal Basis

If n is prime, then a normal basis for F2n exists and it is easy to construct [1].
Squaring an element of the field consists in a circular shift of the bits of the
internal representation of its argument. The same holds for the inverse operation,
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Input: A Koblitz curve Ea with corresponding parameter µ = (−1)1−a, a point P
of odd order on Ea and a scalar s with associated (partially) reduced τ -NAF S
Output: Two τ -adic expansions S(j) =

∑
i s

(j)
i τ i, j = 1, 2 such that sP = S(1)P +

S(2)Q, where Q = τ
(

1
2
P

)

S(1) ← S , S(2) ← 〈 0 . . . 0 〉 with #S(2) = #S + 2, and i← 0
DO {

x← si

If x = 0 then { i← i + 1 }
else {

Let k ≥ 1 be the largest integer such that:
S [i + 2(k − 1) . . . i] = x× 〈 1̄k−1 0 1̄k−2 0 . . . 1̄ 0 1 〉

type ← I
If si+2k = si+2(k−1) then { k ← k + 1 and type ← II ,

If si+2k = si+2(k−1) then { k← k + 1 and type ← III } }
(Observe that si+2k−1 = 0)
If k ≥ 3 then {
S(1)[i + 2(k − 1) . . . i]← 〈 0 . . . 0 〉
If type = I then { s

(2)
i+2k ← (−1)kµx and s

(2)
i ← −µx }

If type= II then { s
(2)
i+2k−1 ← (−1)k−1x and s

(2)
i ← −µx }

If type = III then { s
(2)
i+2k−3 ← (−1)k−3x and s

(2)
i ← −µx }

}
i← i + 2k

}
} WHILE i ≤ #S
Output

(S(1),S(2)
)
.

Algorithm1. New τ -adic scalar recoding

the extraction of a square root. Therefore, τ , and its inverse, have the same
minimal cost.

To compute S(1)P + S(2)Q, it is not necessary to precompute Q: We can
first compute S(2)P , halve the result, apply a suitable power of τ , and then
resume the τ -and-add loop using S(1), thus avoiding an extra point storage. We
give a realization of this idea which processes the τ -adic expansions right-to-
left (i.e. beginning with the lowest powers of τ) and using τ−1 instead of τ . In
Remark 3 we will see how this allows to interleave our recoding of S into S(1)

and S(2) with the scalar multiplication.
We begin by computing S(2)P . We first set a variable X to s

(2)
0 P . For each

j = 1, 2, . . . , �2−1 with �2 = #S(2) we apply τ−1 to X and add s
(2)
j P . After these

steps X equals τ−�2+1S(2)P because we used the exponentiation algorithm from
right to left with τ−1 instead of τ , so we apply τ �2−1−n to get the correct result.
(We use the fact that τn − 1 is 0 on E.) We then replace X with τ

(
1
2X

)
and

repeat the above procedure with S(1) in place of S(2), starting from X + s
(1)
0 P .

We have thus Algorithm 2.

Remark 3. Once the τ -NAF S is given, there is no need to store S(j) for j = 1, 2.
The generation of S(j) for j = 1, 2 can be done twice and online, during the run
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Input: A Koblitz curve Ea with corresponding parameter µ = (−1)1−a, a point P
of odd order on Ea and a scalar s with associated (partially) reduced τ -NAF S
Output: sP

Compute the two τ -adic expansions

S(j) =
∑�j−1

i=0 s
(j)
i τ i for j = 1, 2

from S using Algorithm 1
( If S is the reduced τ -NAF of s then #S and �1 ≤ n.
If S is partially reduced then #S , �1 ≤ n + a + 3.
�2 is at most #S + 2. )

X ← s
(2)
0 P

for j = 1 to �2 − 1 do

{ X ← τ−1X , and X ←X + s
(2)
j P }

( Now X = τ−�2+1S(2)P )

X ← τ �2−nX , X ← 1
2
X

( Here we simplified X ← τ �2−1−nX , X ← τ
(

1
2
X) .

Now X = S(2)τ
(

1
2
P

)
. )

X ←X + s
(1)
0 P

for j = 1 to �1 − 1 do

{ X ← τ−1X , and X ←X + s
(1)
j P }

( Now s = τ−�1+1
(S(1)P + S(2)τ

(
1
2
P

))
= τ−�1+1sP )

X ← τ �1−1−nX
Output (X).

Algorithm2. New scalar multiplication algorithm, right–to–left

of Algorithm 2. For simplicity we do not write down the resulting algorithm. The
result is: The scalar multiplication algorithm based on the new scalar decompo-
sition can be done without any precomputations, and without requiring storage
for the recoding.

3.2 Field Represented Using a Polynomial Basis

In this case, squarings have a small, yet non-negligible cost: According to the
experiments in [4, Section 3.5] we can assume S

M ≈ 1
8 for n = 163 and S

M ≈ 1
10 for

n = 233. Knudsen [5] expects “the time to compute a square root in a polynomial
basis to be equivalent to half the time to compute a field multiplication plus a very
small overhead”. This is in the general case confirmed in [3]. So, τ and τ−1 have
in general different costs. In [3] a special square root extraction algorithm is given
if the field is represented via a trinomial: in the case of F2233 , a good trinomial
is f(x) = x233 + x74 + 1 and a square root costs about 1

8M .
If we use Algorithm 2 to perform a scalar multiplication, we pay a penalty

due to the increased number of Frobenius (τ−1) operations. One way to overcome
this problem is to compute S(1)P +S(2)Q using the joint representation obtained
from S(1) and S(2), i.e. the sequence of pairs

(
s
(1)
i , s

(2)
i

)
i≥0

and Shamir’s trick
(actually due to Straus [16] and in a more general form). By Remark 2, at
most one element in each pair

(
s
(1)
i , s

(2)
i

)
is non-zero: Hence, we can use the
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Input: A Koblitz curve Ea with corresponding parameter µ = (−1)1−a, a point P
of odd order on Ea and a scalar s with associated (partially) reduced τ -NAF S
Output: sP

Compute the two τ -adic expansions

S(j) =
∑�j−1

i=0 s
(j)
i τ i for j = 1, 2

from S using Algorithm 1

X ← s
(2)
�2−1P

for j = �2 − 2 to 0 do

{ X ← τX , and X ←X + s
(2)
j P }

( Now X = S(2)P )
X ← τn+2−�1X , X ← 1

2
X

( Here we simplified X ← τ−�1+1+nX , X ← τ
(

1
2
X) .

Now X = S(2)τ−�1+2
(

1
2
P

)
. )

X ←X + s
(1)
�1−1P

for j = �1 − 2 to 0 do

{ X ← τX , and X ←X + s
(1)
j P }

( Now s = τ �1−1S(2)τ−�1+2
(

1
2
P

)
+ S(1)P = S(1)P + S(2)Q. )

Output (X).

Algorithm3. New scalar multiplication algorithm, left–to–right

Straus-Shamir trick without the need to precompute P ± Q, and we only need
to store Q.

A better solution when the extraction of square roots is (relatively) expensive
is to use a variant of Algorithm 2 with τ instead of τ−1. We write it down as
Algorithm 3: In this case we must store the τ -adic expansion before the scalar
multiplication, and we need to compute and store each of S(1) and S(2), before
the corresponding τ -and-add loop.

4 Analysis and Performance Aspects

In the next subsection we prove the reduction of 14.29% in group additions
of our method with respect to the τ -and-add method based on the τ -NAF. In
Subsection 4.2 we estimate the effective improvement brought by our techniques
by considering all group operations.

4.1 Complexity Analysis

The following lemma can be proved analysing the τ -NAF recoding algorithm.
Similar results hold for the usual NAF (see for example [2]).

Lemma 2. In a τ-NAF the probability that the digit immediately to the left of
a 0 is another 0 is 1

2 and that it is 1 or −1 is 1
4 in each case(i).

(i) The given probabilities are actually correct up to an error term exponentially de-
creasing in the length of the τ -NAF, and that does not influence the following analysis
significantly.
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To prove that our method gives an expected 14.29% reduction in group ad-
ditions over the classical τ -and-add method, we model the reading of S in Algo-
rithm 1 – and the consequent construction of S(1) and S(2) – in terms of Markov
chains. To do this, we describe the algorithm as a sequence of states taken from
a list {Σ0, . . . , Σr}. States Σ0, . . . , Σr occur with respective limiting probabilities
σ0, . . . , σr. The states must be subject to the condition that the probability πij

that the state following Σi is Σj depends only on the States Σi and Σj and not
on the way State Σi has been reached. If Π = (πij)r

i,j=0 then the probabilities
σ0, . . . , σr sum up to 1 and form a vector σ = (σ0 . . . σr) such that σΠ = σ.

While scanning S in Algorithm 1 we are either attempting to form a maximal
good k-block, or skipping zeros between blocks. We define five different states.

Σ0: The state in which zeros outside k-blocks are skipped. Only one zero is
skipped. All other states describe operations done to build k-blocks.

Σ1: Entered whenever the first non-zero bit in a k-block is found. This is the
one and only state where the first non-zero bit of a new k-block is read.
Of course a zero bit follows and is skipped (the same also holds for States
Σ2–Σ4). The following three states describe the scanning of the next bits
in the k-block begun by entering State Σ1.

Σ2: Entered every time we find a non-zero bit which is the negative of the
previous non-zero bit read. It can only follow States Σ1 or Σ2 itself.

Σ3: This state corresponds to the first non-zero bit having the same sign as the
previous one. Either this bit is the last non-zero bit in a type II k-block or
the second to last in a type III k-block.

Σ4: Entered after Σ3 if the third in a line of three non-zero bits having the same
sign is found. This bit is the last bit in a type III k-block.

State Σ0 is reached if and only if the bit to the left of the bit(s) of the
previous state is 0. We recall that in all states except Σ0 the algorithm actually
processes two bits: a non-zero bit whose relation to the previous non-zero bits
determines the actual state, and the following zero.

State Σ1 may follow States Σ3 and Σ4 directly. This occurs when a k-block
follows immediately a maximal good k-block of type II or III.

The following state diagram illustrates the flow of the algorithm. The nodes
correspond to the states and the arrows are labelled with the transition proba-
bilities, which follow immediately from Lemma 2.

Σ0

1/2

��

1/2
�� Σ1

1/4
��

1/2

��

1/4

���������������

Σ2

1/4

��
1/4

��

1/2

���������������
Σ3 1/4

��

1/4

���������������

1/2

��

Σ4

1/2

��

1/2
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Recall that πij denotes the transition probability from state Σi to state Σj .
We have the following probability transition matrix:

Π = (πij)4i,j=0 =









1/2 1/2 0 0 0
1/2 0 1/4 1/4 0
1/2 0 1/4 1/4 0
1/2 1/4 0 0 1/4
1/2 1/2 0 0 0









.

Now that Π is known, we can easily compute the limiting probabilities
σ0, . . . , σ4, which are uniquely determined, and are: σ = 1

42 ( 21 12 4 4 1 ).
Now suppose that, after λ state transitions, the algorithm has processed m

bits of S and output a total of w non-zero bits in S(1) and S(2). Since in state Σ0

only one bit of S is scanned and in all other states two, after λ state transitions
the expected number of processed bits is m = λ(σ0 +2(1−σ0)) = λ

(
1
2 +2 · 1

2

)
=

3
2λ.

Now, good k-blocks of weight 1 and 2 are left in S(1), whereas good k-blocks of
weight at least 3 are cleared from S(1) and appropriate sequences of weight 2 are
inserted in S(2) as described in Algorithm 1. Suppose the algorithm enters State
Σ1. If it immediately goes to State Σ0, only one non-zero bit is output. In all
other cases two non-zero bits are output. Then w = σ1λ

(
1 · π10 + 2 · (1 − π10)

)
=

12
42λ

(
1
2 + 2 · 1

2

)
= 3

7λ.
Last, suppose the length of the original τ -NAF is m. It has, as already re-

called, about m/3 non-zero digits. However the number of the non-zero digits in
S(1) ∪ S(2) is 2m/7. Since the number of additions equals the number of non-
zero digits, minus one, our method brings a reduction of

(
1
3 − 2

7

)
/ 1

3 ≈ 14.29% in
additions with respect to the τ -and-add method.

4.2 Practical Estimates

We now estimate the actual speed-up for specific curves. As examples, we shall
consider the Koblitz curves K-163 and K-233 over F2163 and F2233 from the FIPS
standard issued by NIST [18].

Point halving (H), as described in Subsection 2.2, requires two field multi-
plications (M), the solution of an equation in λ of the type λ2 + λ = c (EQ)
and the extraction of a square root (

√
). An elliptic curve addition (A) is done

by one field inversion (I), two multiplications and one squaring (S). A point
doubling (D) requires I + 2 M + 2 S. A Frobenius operation (τ) and its inverse
(τ−1) require 2 S and 2

√
respectively.

With a polynomial basis, according to [4], S ≈ 1
7.5M for n = 163 and 1

9M for
n = 233. Following [3] we assume that, on average, I ≈ 8 M when n = 163 and
I ≈ 10 M when n = 233. (For a comparison, [10] has I ≈ 9.3 M for n = 191, for
a software implementation on an embedded processor.) In F2233 , a field defined
by a trinomial, a square root can be computed in ≈ 1

8M [3, Example 3.12].
For F2163 only a generic method is currently known, so

√ ≈ 1
2M . EQ takes,

experimentally ≈ 2
3M .
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If a normal basis is used, [5], S,
√

and EQ have negligible costs. Because of the
relatively high cost of a multiplication, we may assume I ≈ 3 M .

Since the length of a τ -expansion is ≈ n + a + 3 (see Subsection 2.1), we see
that the expected cost of the τ -and-add algorithm is 1

3 (n+a+2)A+(n+a+2)τ .
Algorithm 2 requires 2

7 (n + a + 2)A+ 2(n + a + 2)τ−1 in the two loops; Between
the two loops there are: H , 1 A, and on average (n+a+3)−n = a+3 Frobenius
operations (τ). Algorithm 3 has similar costs in the main loops, with τ in place of
τ−1, but, on average, between the loops there is only a doubling and one addition.
If the Straus-Shamir method is used (with a polynomial basis) right-to-left and
with a single precomputation, the cost is 2

7 (n + a + 2)A + (n + a + 3)τ + H .
In the following table we write down the costs of different scalar multipli-

cation algorithms relative to that of one multiplication: the τ -and-add method
based on the τ -NAF, our Algorithms 2 and 3 with the gain of the bast of the
latter two over the τ -and-add. In the case of polynomial basis, we also show
the costs of two methods requiring one precomputation: the one based on the
Straus-Shamir trick from Subsection 3.2, and the usage of the width-2 τ -NAF
(see [14,15]), which needs only 3P .

n a basis τ -&-A Algo. 2 Algo. 3
gain w.r.t. width-2 Straus-

τ -&-A τ-&-A -Shamir

163 1
NB 276.7 244.1 – 11.8% – –
poly 605 827 572.4 5.5% 485.2 528.3

233 0
NB 391.7 342.7 – 12.5% – –
poly 1001 946.2 932.5 7% 788.1 868.4

The speed-ups are less than the theoretical estimate because of the additional
overheads. The improvements will approach the theoretical maximum for large
n. Our estimates are for software implementations. In hardware, where the ratio
I/M is higher, the actual improvement will be much closer to the asymptotic
maximum. But in that case one should also consider the use of projective co-
ordinates. If one can store one precomputed point, the width-2 τ -NAF is faster
than the Straus-Shamir trick.

5 Conclusions

In this paper we considered the problem of computing scalar multiplications on
Koblitz curves. We combined for the first time the τ -adic expansion with point
halving to give a new recoding of the scalar. By means of this we reduced the
number of group operations required for a scalar multiplication by an asymptotic
14.29%.

For the curves K-163 and K-233 from NIST’s FIPS standard we estimate an
overall speedup of at least 12% if a normal basis is used.

The case where the field extension is represented using a normal basis is of
particular relevance. It gives the highest speed-up, it allows to perform the scalar
recoding online in the scalar multiplication, hence has no additional memory
requirements (with respect to the classical τ -and-add method), apart from code
size.
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