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Abstract. A pants decomposition of a compact orientable surface M
is a set of disjoint simple cycles which cuts M into pairs of pants, i.e.,
spheres with three boundaries. Assuming M is a polyhedral surface, with
weighted vertex-edge graph G, we consider combinatorial pants decom-
positions: the cycles are closed walks in G that may overlap but do not
Cross.

We give an algorithm which, given a pants decomposition, computes a
homotopic pants decomposition in which each cycle is a shortest cycle in
its homotopy class. In particular, the resulting decomposition is optimal
(as short as possible among all homotopic pants decompositions), and
any optimal pants decomposition is made of shortest homotopic cycles.
Our algorithm is polynomial in the complexity of the input and in the
longest-to-shortest edge ratio of G. The same algorithm can be applied,
given a simple cycle C, to compute a shortest cycle homotopic to C' which
is itself simple.

1 Introduction

Let M be a connected, compact, orientable surface. A pants decomposition of
M is a set of disjoint simple cycles in M which cuts M into pairs of pants, i.e.,
spheres with three boundaries. See Fig. [A.

We shall consider pants decompositions on a polyhedral surface (a surface
obtained by assembling simple polygons). In our combinatorial setting, the cycles
are closed walks on the weighted vertex-edge graph G of M; the cycles may share
edges and vertices of G, provided that they can be spread apart with a thin space
so that they become simple and disjoint.

We describe a conceptually simple, iterative scheme which takes a given pants
decomposition and outputs a shorter homotopically equivalent pants decompo-
sition. We prove that, at the end of the process, each cycle is a shortest cycle
in its homotopy class. In particular, the resulting decomposition is optimal in
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Fig.1. A: A pants decomposition of a genus three surface with one boundary. B:
The two cycles on this double-torus are freely homotopic, though non-homotopic when
considered as loops with endpoint v.

the sense that it is as short as possible among all homotopic pants decompo-
sitions, and any optimal pants decomposition is made of shortest homotopic
cycles. Furthermore, this scheme can be implemented, leading to an algorithm
which is polynomial in the complexity of the surface and of the input pants
decomposition, and in the longest-to-shortest edge ratio of G.

Let v be a non-contractible simple cycle on M, and let I" be the set of all
shortest cycles homotopic to 7. We can compute an element of I" which is simple:
the idea is to extend ~ into a pants decomposition of M; after optimization, this
pants decomposition contains such a cycle. Even the existence of a simple cycle
in I" is non-obvious, and the fact that this optimization problem has polynomial
complexity was previously unknown.

The problem of shortening a pants decomposition of a combinatorial surface
was raised in the conclusion of [Hl; to our knowledge, we present the first algo-
rithm for this purpose. Concerning the optimization of a single cycle, our result
extends [6] to more general surfaces in the case of simple cycles. The present
work is also a natural extension of our former paper [2] where we treat the case
of optimal simple loops in a given class of homotopy with fixed basepoint.

This paper is organized as follows. In Sect. 2], we review elementary topologi-
cal notions, and present the framework and our main theorem. Its proof is given
in the next three sections. Finally, we discuss the computational issues and give
the complexity of our algorithm.

2 Framework and Result

2.1 Homotopy and Pants Decompositions

We begin with some useful definitions.

Let M be a connected, compact, orientable surface, possibly with boundary.
A path is a continuous mapping p : [0, 1] — M; its endpoints are p(0) and p(1).
A closed path, or loop, is a path whose endpoints coincide. A cycle is a continuous
mapping v : R — M, such that v(x) = v(x + 1) for all z € IR. A path is simple
if it is one-to-one; a cycle is simple if its restriction to [0,1) is one-to-one.

Two paths p and ¢, both with endpoints a and b, are homotopic if there is
a continuous family of paths with endpoints a and b which joins p and g. More



480 E. Colin de Verdiere and F. Lazarus

formally, a homotopy between p and ¢ is a continuous mapping h : [0,1] x[0,1] —
M such that h(0,.) = p, h(1l,.) = q, h(.,0) = a, and h(.,1) = b. A closed path
is contractible if it is homotopic to the constant path. Two cycles v and «/ are
homotopic if there is a continuous family of cycles joining v to +'. Equivalently,
if p and p’ denote the restrictions of 4 and 4 to [0, 1], there exists a path
joining p(0) to p’(0) such that the loop 371.p.3.p'~! is contractible (“.” denotes
paths concatenation).

Homotopy of cycles (also called free homotopy) and homotopy of loops
(also called homotopy with basepoint) are two different equivalence relations
(Fig. @B).

A pants decomposition of M is an ordered set of simple, pairwise disjoint
cycles which split M into pairs of pants (see [A]). Every compact orientable sur-
face, except the sphere, disk, cylinder, and torus, admits a pants decomposition,
obtained for example by cutting the surface iteratively along an essential cycle
(a simple cycle which does not bound a disk nor a cylinder). Although pants
decompositions do not exist for the torus and the cylinder, this paper applies to
these surfaces as well (with minor changes) if we allow a pants decomposition
to decompose the surface into pairs of pants and/or cylinders. If M has genus
g and b boundary cycles, a pants decomposition is made of 3g + b — 3 cycles.

We can augment any pants decomposition, s, of M to form a doubled pants
decomposition. Just add to s a copy of each of its cycles and a copy of each of
the boundaries of M, slightly translated, in the same homotopy class, such that
s is still a set of pairwise disjoint simple cycles. A doubled pants decomposition
s = (81,...,8n) is thus made of N = 6g + 3b — 6 cycles. A cycle of s and its
translated copy, or a boundary of M and its translated copy, are called twins.
For a cycle s; in s, the closure of the component of M\ {s\ s;} that contains
s; is a pair of pants.

2.2 Length of Cycles

M is assumed to be a polyhedral surface, whose edges have positive weights.
Let G be the (weighted) vertex-edge graph of M, and G* be its dual graph
embedded into M| We are interested in sets of piecewise lincar (PL) curves
(paths and cycles) drawn on M which are regular with respect to G*. More
precisely, the set of (self-)intersection points between the curves (resp. between
the curves and G*) is finite and, at such points, exactly two curve parts (resp.
exactly one curve part and one edge of G*) meet and actually cross. Regularity
18 always assumed throughout this paper, although omitted in all statements. If a
curve c crosses the edges €7, ..., ef of G*, its length |c| is defined to be the sum
of the weights of ey, ..., ex, counting multiplicities.

Any set of simple, pairwise disjoint, PL cycles on M can be retracted onto
closed walks on GG without changing their homotopy classes, see Fig. ZIAB; and

! This means that there is a vertex of G* in each face of G and an edge of G* crossing
each interior edge of G. Furthermore, for each edge of G on the boundary of M, we
put a vertex of G* on this edge and link it with an edge of G* to the vertex of G*
in the incident face of G.
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the length of a cycle is the length of the corresponding closed walk. The resulting
walks can fail to be simple or disjoint as they can travel several times through
a same vertex or edge of GG; however, it is always possible to perturb them to
get disjoint, simple cycles. This observation motivates the definition of length
of a cycle: in this paper, we are interested in combinatorial sets of cycles in G.
From an algorithmic point of view, it will be sufficient to work with cycles stored
as closed walks on GG, with the additional information, if several edges of these
walks go along a same edge e of G, of their ordering, from left to right, along e.

C

Fig.2. A, B: A retraction of the set of simple, pairwise disjoint cycles (a,b,c,d,e)
onto G, in the neighborhood of a vertex whose incident edges are ey, ...,es. C: The
construction of the graph G(P;), represented in bold lines, for the computation of an
Elementary Step (described in Sect. ).

2.3 Our Result

Definition 1. Let s be a doubled pants decomposition of M. An Elementary
Step f;(s) consists in replacing the jth cycle s; by a shortest simple homotopic
cycle in the pair of pants of M\ (s\ s;) containing s;. A Main Step f(s) is the
application of f = fy o fny_10...0 fao f1 to s. These operations transform a
doubled pants decomposition into another one, keeping the homotopy class of the
decomposition.

Here is our main theorem:

Theorem 2. Let s be a doubled pants decomposition of M, and let s"t! =
f(s™). For some m € IN, s™ and s™*! have the same length and, in this sit-
uation, s™ is a doubled pants decomposition homotopic to s° made of simple
cycles which are individually as short as possible among all cycles in their (free)
homotopy class. In particular, s™ is an optimal doubled pants decomposition of
M, and contains an optimal pants decomposition.

Since any non-contractible simple cycle can be extended to a doubled pants
decomposition of M, we obtain:
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Corollary 3. Let v be a non-contractible simple cycle in M. There exists a
simple cycle v' homotopic to v which is as short as possible among all cycles
homotopic to 7.

3 Crossing Words

In this section, we will introduce the main ingredient of this paper: the crossing
word between a set of disjoint, simple paths or cycles, and a given path or cycle.

3.1 Universal Cover and Lifts

We refer the reader to any textbook in algebraic topology (e.g. [7]) for the details.

The universal cover of M is a simply connected surface, M, (i.e., each closed
path is contractible) together with a continuous projection 7 from M onto M
satisfying: each point x of M has an open, arcwise connected neighborhood U
so that 7=1(U) is a union of disjoint open sets (U;);er and 7|y, : U; — U is a
homeomorphism. It is known that the universal cover of a surface is unique up to
isomorphism. A translation T of M is a projection-preserving homeomorphism:
o1 =m. A lift of a path p is a path p on M such that 7o p = p. Analogously,
a lift of a cycle «y is a continuous mapping 7 : R — M such that 7o 5 =~. The
main properties of M used in this paper are:

— the lift property: let p be a path in M with source point y; let x € M be
such that 7(z) = y. Then there is a unique path p in M, starting at x, such
that mop = p;

— the homotopy property: two paths p; and ps with the same endpoints are
homotopic in M if and only if they have two lifts p; and ps with the same
endpoints in M;

— the intersection property: a path p in M self-intersects if and only if either
a lift of p self-intersects, or two lifts of p intersect.

If 4 is a lift of a cycle v, and k € ZZ, note that 7/(.) := 4(k +.) and ¥ are
identical as points sets. We therefore define the geometric lifts of a cycle ~ to
be all lifts of ~y, identifying two lifts 4 and 4’ whenever there exists k € ZZ such
that 4'(.) = 4(k +.). If v is simple, the geometric lifts of v correspond precisely
to the connected components of 7~1(v). By definition, for paths, the sets of lifts
and of geometric lifts coincide.

A lifted set C is a set of simple, pairwise disjoint curves on M which are:

— either non-contractible cycles in the interior of M,
— or paths in M, whose intersections with the boundary of M are precisely
their endpoints,

€N of it

together with the data, for each curve c in C, of an enumeration (c®)
geometric lifts in M.
In the rest of this paper, C is a lifted set. The proof of the following lemma

is a consequence of the Jordan—Schonflies theorem (see [Il p. 417]).

Lemma 4. Each geometric lift of a curve in C separates M in two connected
components.
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3.2 Crossing Words for Paths

We consider words on the alphabet made of letters of the form ¢ and ¢*, where
c € C and a € IN. Let w be a word. If w contains a subword c¢*¢® or ¢*c?,
let w’ be the word resulting from removing this subword from w; we say that
w’ is deduced from w by an elementary c-reduction. An elementary reduction is
an elementary c-reduction for some c¢. A word w is (c-)irreducible if it can be
applied no elementary (c-)reduction, it (c-)reduces to w’ if w’ can be obtained
from w by successive elementary (c-)reductions.

Let $ be a path in M. Walk along p and, at each crossing encountered
with a geometric lift ¢® in C, write down the symbol ¢® or ¢%, according to the
orientation of the crossing (with respect to a fixed orientation of M — recall that
p and the elements of C are oriented). The word we obtain is called the crossing
word of p with C, and denoted by C/p.

In all this paper, the following situation will often occur: p is a lift of a path
p, and an elementary reduction is possible on C/p. This reduction corresponds to
two intersection points, a and a’, of a lift ¢ of C with p. The subpaths associated
with this possible elementary reduction are the parts ¢; and py of ¢ and p which
are between a and a’. We will often remove these two crossings, by replacing p;
by a path with the same endpoints, going along ¢, and obtaining by projection
onto M a new path p’ which crosses C twice less than p. Obviously, C/p’ is
deduced from C/p by proceeding to the elementary reduction; and the new path
p’ is homotopic to p. See Fig.

~ ~/
p p
v o
>§'< W
~/
C
C C

Fig. 3. The fundamental operation of uncrossing the parts of two curves ¢ and p corre-
sponding to an elementary reduction on C/p. p1 and ¢; are the parts of p and ¢ between
a and a’; p; is not necessarily simple, and ¢ can cross other pieces of p.

Lemma 5. Any word w reduces to exactly one irreducible word.

Of interest are the words which are parenthesized, i.e., those reducing to the
empty word . The proof of the following lemma relies on Lemma @l

Lemma 6. Let p: [0,1] = M be a contractible closed path, and let p be a lift
of p. Then, C/p is parenthesized.
3.3 Crossing Words Sets for Cycles

The goal of this section is to define the analogue of the crossing word between
C and a geometric lift 4 of a non-contractible cycle . A lifted period of v is a
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path which is the restriction of (an element of) 4 to [a,a + 1] for some a € IR
(reparameterized over [0,1]). The crossing words set of 4 with C, denoted by
[C/7], is the set of crossing words C/p, over all lifted periods p of 4 whose
endpoints are not on lifts of C. Our first task will be to show that the crossing
words set [C/7] is entirely determined once we know one of its elements.

We note that ¥ induces a translation 75 in M, as follows. Let v € M. Let p
be a lifted period of ; consider a path 3° joining $(0) to v and call 3! the lift
of m(3°) starting at p(1). The target v’ of B! satisfies w(v) = 7(v'); intuitively, 7
translates v to v’. It is readily seen that v’ does not depend on the choice of 59
and p. We therefore define 75(v) := ¢’. In particular, 75 sends a geometric lift of
a curve ¢ € C to another geometric lift of c.

Define a permutation ¢5 over the set of words by: ¢5(c*.w) = w.t3(c%),
¢5(c*w) = w.r5(c*), and ¢5(c) = ¢ (w is any word, and “.” denotes concatena-
tion).

Lemma 7. For any word w in [C/7], we have: [C/7] = {¢5(w),n € Z}.

If w is a word, we define [w] to be the set {¢%(w),n € Z}. The sets of words
having this form are called the ¥-words sets. Note that ¢5 does not affect the
length of a word, so that the length of a ¥-words set is well-defined. Let W be
a y-words set. If there exists w € W containing a subword ¢*¢® or ¢“c®, denote
by w’ the word resulting from removing this subword from w; we say that W
(which equals [w]5) elementarily c-reduces to [w']5.

Lemma and Definition 8. Any J-words set W c-reduces (resp. ~reduces) to
ezactly one c-irreducible (resp. irreducible) y-words set. We define g2 (W) (resp.
gY(W)) to be this y-words set.

When an elementary c-reduction is possible on [C/7], exactly the same phe-
nomenon occurs as in Fig. B (with 4 instead of p), and we may also proceed to
the reduction by modifying ~, removing the two crossings.

Proposition 9. Let vy be a cycle homotopic in M to some cycle ~" disjoint from
C. Let 74 be a geometric lift of v. Then g7 ([C/7]) = [e]5.

Proof. Let p and p’ be the restrictions of v and 4 to [0, 1]. There exists a path (
joining p(0) to p’(0) such that the path ¢ := 8~t.p.3.p'~! is contractible in M.
Let § be a lift of g, concatenation of the inverse of 8%, , 3!, and the inverse of
P’ (respectively lifts of 3, p, 3, and p’). We choose ¢ so that p is a lifted period
of 4.

Since p’ is disjoint from C, w := C/q is the concatenation of C/(3°)~1, C/p,
and C/B'. Furthermore, 75(3°) is equal to 3'; hence, if the kth symbol of C/3°
is equal to ¢ (resp. ¢*), then the kth symbol of C/3" is equal to 75(c*) (resp.
75(c)). It follows that [w]s reduces to [C/4]. Now, by Lemma 6 w is parenthe-
sized, so that [w]5 also reduces to [¢]5. Lemma [B] concludes. O

So far, we have introduced the notations C/p and [C/7], where p and 7 are
lifts a path p and a cycle v of M, respectively. In the rest of this paper, when
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no risk of confusion arises, we will also use the notations C/p or [C/v], meaning
that we consider in fact C/p or [C/7], where p and 4 are any fixed geometric
lifts of p or ~. Furthermore, the notation [p/~] will mean that we consider the
crossing words set of v with the geometric lifts of C, this lifted set being made
of only one path p in M with an arbitrary enumeration of its geometric lifts.

4 Curves on Pairs of Pants

In this section, we use crossing words to prove some basic facts regarding curves
on pairs of pants.

Proposition 10. Let K be a cylinder or a pair of pants, and ~ be a cycle ho-
motopic to a boundary of K. There exists a simple cycle homotopic to and not
longer than .

Proof. We will only give a proof when K is a pair of pants; the proof of the
case where K is a cylinder is simpler. Let p be a shortest path between the two
boundaries of K which are not homotopic to ; let C' be the cylinder obtained
when cutting K along p; and let p’ be a shortest path in C between its two
boundaries.

[p/~] reduces to [g]5 by Proposition[d; if it is not empty, let 1 and p; be the
subpaths of lifts of v and p corresponding to an elementary reduction. Since p is
a shortest path, |p1| < |31], and we can, like in Fig.[3, proceed to the elementary
reduction by changing v to another cycle, which is homotopic to and not longer
than 7, and has two crossings less than + with p. By induction, we obtain that
there exists a cycle 7/, homotopic to and not longer than ~, which does not cross
p. Using similar techniques, we prove that there exists a cycle v/, homotopic to
and not longer than v, which does not cross p and crosses p’ only once, say at
some point a.

Cutting C along p’, we obtain two copies a’ and a” of a, and v is transformed
into a path between a’ and a”. Hence, a shortest path between a’ and a” leads
to a cycle in C' which is simple, not longer than -, and homotopic to v in K. 0O

Proposition 11. Let K be a cylinder or a pair of pants, and ~y be one boundary
of K. Assume 7 is a shortest cycle among the simple cycles homotopic to ~y. Let
q be a path in K whose endpoints are on v and which is homotopic to a path
whose range (set of values) is included in the range of v. Then the shortest path
on v homotopic to q is not longer than q.

The proof is omitted and relies on similar ideas as the proof of Proposition [IT

Proposition 12. Let s be a (doubled) pants decomposition of M. Assume that
a cycle v is inside one component K of M\ s (a cylinder or a pair of pants),

and homotopic in M to a cycle si. Then v is homotopic, in K, to one boundary
of K.
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Lemma 13. Any cycle inside K which is contractible (in M) is also contractible
m K.

Proof (of Proposition [[3). Again, we assume that K is a pair of pants. Let S
be a lifted set whose curves are the cycles in s, with an arbitrary enumeration
of the geometric lifts. Let 4" be a simple cycle, disjoint from all cycles of s, and
homotopic in M\ (s\sx) to si. Let p and p’ be the restrictions of v and v’ to [0, 1].
There exists a path 3 joining p(0) to p’(0) such that the path ¢ := 3= 1.p.3.p' 7!
is contractible in M. Without loss of generality, assume that S/f is irreducible.
If this crossing word is empty, then ¢ is contractible in K by Lemma[I3] hence v
and " are homotopic in K; so are v and s, and the proof is complete. Assume
this crossing word is non-empty.

Since p and p’ do not cross s, S/q is the concatenation of S/(3°)~1 and
S/, where 80 is a lift of 3, and ' = 75(8°). Because S/f3 is irreducible and
S/q can be elementarily reduced, the first lifts of S crossed by 8% and B! must
be the same, say sJ. Let 3’ be the beginning of 3 before its first crossing with
s; we get that 8/~!.p.3#" is homotopic to a power of s; in M, hence also in K by
Lemma[T3 By [3| Theorem 4.2], the nth power of s; is homotopic to no simple
cycle if |n| > 2. Hence « is homotopic, in K, to s; or its reverse. a

5 Proof of Theorem [2]

Let b denote the set of boundary cycles of M. As for a lifted set, we will assume
that the geometric lifts of the cycles in b are enumerated. Consider now a doubled
pants decomposition s of M. We define a lifted set S whose curves in M are the
curves in s.

Note that a cycle in s and its twin (in s or in b) are homotopic disjoint cycles,
hence bound a cylinder by [B3] Lemma 2.4]; the lifts of this cylinder in M are
disjoint infinite strips which contain no geometric lift of s or b in their interior.
Let k € [1, N], and let si or by be the twin of s, (depending on whether it is
an element of s or b). We can choose the enumeration of the geometric lifts of
sy so that, for each a, s¢ and s, (or b¢,) bound a strip which contains no lift
of s and b in its interior.

Fix j € [1,N]; let r = f;(s). We consider the lifted set R whose curves are
the cycles in r; the enumeration of the geometric lifts of r is as follows. If k # j,
then rif = s¢ for any k € IN. For the enumeration of the geometric lifts of r;, we
note that r; and its twin, rj (or b;/), bound a cylinder in M \ r; as above, we
choose ¢ so that 7§ and 7%, = s (or b%,) bound an infinite strip containing no
lift of  or b in its interior.

Finally, fix i € [1, N]; let ¢; be a shortest cycle among all cycles homotopic
to s;, and ¢; be a geometric lift of ¢;. Henceforth, the words on the lifted sets

R and S will be written differently as above, by omitting the “r” and the “s”

374 R

(for example, we shall write § I 3 instead of s3 s si). This allows to say, for
example, that [R/t;] = [S/t;] if ¢; does not cross r; nor s;. Let P; be the pair of
pants bounded by s\ s; in which s; and r; are.
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Proposition 14. gj([R/fz]) = gj([S/fz])

We note S§; the lifted set made of the cycle s;, with the enumeration of its
geometric lifts induced by S; the same holds for R;.

Lemma 15. Let p be a path in P; whose endpoints are on the boundary of P;,
and p be a lift of p. Then S;/p and R;/p reduce to the same irreducible word.

Proof (of Proposition[T]). Assume first that ¢; is contained in P;. By Proposi-
tion @ we have g% ([R/#;]) = elz, = g% ([S/;]). But this also equals gfl([R/m)
and gﬁ" ([S/ti]), and this concludes the proof. If ¢; is not entirely contained in P;,
then let #; be a maximal subpath of ¢; which is inside P;, and #; be a lift of t/; it

is sufficient to prove that R;/t; and S;/t, reduce to the same irreducible word;
but this follows from Lemma [TH. O

Proposition 16. There exists a cycle t},, homotopic to and not longer than t;,
and a geometric lift ¥} of t;, such that 75, = 75 and [R/t]] = gﬁl([S/fZ])

Proof. By Proposition[d, [R/#;] j-reduces to g3 ([S/&:]). If [R/;] is j-irreducible,
there is nothing to show. Otherwise, an elementary j-reduction is possible on
[R/t;]. We can apply Proposition [T to the subpath of ¢; corresponding to this
j-reduction, and apply the uncrossing operation to ¢;. We obtain a geometric lift
t of a cycle t; which is homotopic to and not longer than ¢;. Clearly, i, = Th
(which implies that g" = ¢%). Furthermore, [R/#}] results from [R/;] by this
elementary j-reduction. By induction, we obtain the desired ;. ad

Proposition 17. Assume t; is disjoint from s, and that t; and s are homotopic
in the cylinder or pair of pants of M\ s containing t;. Then, there exists a cycle
t., homotopic to and not longer than t;, which is disjoint from r, and which is
homotopic to 1y in the cylinder or pair of pants of M\ r containing t.

The (omitted) proof relies on Propositions [0 and 1. We now conclude the
proof of our main theorem.

Proof (of Theorem [4). We consider a lifted set S whose curves are s°, the
enumeration of the geometric lifts being chosen as described at the beginning
of this section. By induction on n € IN, we construct a lifted set S™ whose set
of curves is s", with the enumeration of the lifts being chosen also as in the
beginning of the section.

Let 9 be a lift of a shortest cycle t) homotopic to s{. By Proposition [
[S°/#]] reduces to [¢]z. By Proposition[I6, we can construct a sequence (#) of
lifts of shortest homotopic cycles such that the length of [S™ /7] strictly decreases
until it becomes empty at some stage n. By Proposition IZ, ¢} and a cycle s}
are homotopic in the cylinder or pair of pants of s™ containing ¢}'. By k — 1
applications of Proposition [T and then using Proposition [0 |sZ+1| = [t?|. The
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n+1 n+1 1

cycle sp! is either s7™! or its twin; in the latter case, since s/t and s}t
bound a cylinder, |s"?| = |s}t?| = |t?|. From this discussion, it follows that
the length of (s?)n,en becomes stationary. It remains to prove that all lengths
remain unchanged once s” and s"*! have the same lengths. The proof of this

fact uses the same tools as above, and is omitted from this VersionE O

6 Computational Issues

We describe here the combinatorial framework (which is similar to the one de-
scribed in [2]) used to perform the optimization process.

6.1 Edge-Ordered Set of Cycles

We (temporarily) view G, the vertex-edge graph of M, as a directed graph:
each edge of G is replaced by two opposite directed edges. An edge-ordered set
of cycles (EOSC for short) S on the graph G is a set of closed walks (without
basepoint) in G, with the data, for each oriented edge e of G, of an order =,
over all edges of the walks in S corresponding to e or —e (edge e with opposite
orientation). These orders should be consistent in the following sense: a =<, b if
and only if b <_. a. Intuitively, a <. b if and only if a is on the left of b on e.

Let v be a vertex of G, and ey, ..., e, be the clockwise-ordered list of oriented
edges of G whose source is v. We define a cyclic order <, over the edges of the
walks in S meeting at v, by enumerating its elements in this order: first, the
edges of the walks in .S on e; or —ej, in <., -order; then the edges of the walks
in S on es or —eg, in =.,-order; and so on. We say that two subpaths of length
two, a1, as and by, by, of walks in S cross if the targets of a; and b; are the same
vertex, v, and if, in the cyclic order <,,, a; and as separate b; and by. The EOSC
S is simple if no crossing occurs in S.

Clearly, a set of disjoint simple cycles s can be retracted onto G to get a simple
EOSC S = p(s) (see Fig.[IAB), this retraction preserving the lengths (with the
appropriate definitions) and homotopy classes of the cycles. The converse is also
true: the closed walks of a simple EOSC S can be expanded along the edges to
get a set of disjoint, simple cycles s € p~1(.9).

6.2 Computation of Shortest Paths

By the proof of Proposition [0, we can proceed to an Elementary Step f; as
follows: find the pair of pants P; of s\ s; that contains s;; find a shortest path p
between the two boundaries of P; which are not homotopic to s;, and a shortest
path p’ between the two boundaries of C':= P; \ p. Cutting C along p’ yields a
topological disk D, where points of p’ on C' correspond to pairs of points on D.
The solution is found by considering the shortest paths between all such pairs
of points and taking the shortest of these shortest paths.

% Note that this fact is unnecessary if we modify the algorithm as follows: if f;(s); has
the same length as s;, we choose fi(s); to be equal to s;.
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From an algorithmic point of view, let S = p(s) be a simple EOSC. Define
G(P;j) to be the weighted graph whose vertices are the components of P; \ G*
and whose edges join two vertices separated by (a piece of) an edge e* of G*;
such an edge has the same weight as e. This graph represents the vertex-edge
graph of the surface M after cutting along the cycles of S. Its construction is
easy and skipped in this abstract (see Fig.[2IC). We can perform the computation
of a shortest homotopic cycle in P; by translating the operations of the previous
paragraph to this combinatorial framework.

6.3 Complexity Analysis

Let R be a simple EOSC. For each vertex v of M, consider the parenthesized
word formed by the pairs of consecutive edges of R meeting at v. The multiplicity
of vertex v (w.r.t. R) is the maximal number of nested parentheses in (any cyclic
permutation of) this expression. Thus any 2-path aj,as crosses R a number of
times which is at most the multiplicity of R at the target of a;.

Let n be the complexity of M (total number of vertices, edges, and faces), g
its genus and b its number of boundaries. Let a be the longest-to-shortest edge
ratio of M. Let s be a doubled pants decomposition of M composed of O(g+ b)
cycles, and S = p(s). Let p be the maximum, over j € [1, N] and the vertices v
of M, of the multiplicity of S; at v.

Bounding the number of Elementary Steps in the algorithm reduces to bound-
ing the maximum, over ¢, of the minimal number of crossings between s; and a
shortest homotopic loop ¢;. Doing so, we obtain (using Dijsktra’s algorithm for
the computation of shortest paths):

Theorem 18. This algorithm computes an optimal pants decomposition homo-
topic to s in O((g + b)2au*n3log(aun)) time.

Finally, assuming M is triangulated, and given an EOSC made of a sin-
gle simple cycle v, with multiplicity p, we can compute a doubled pants de-
composition containing v which has multiplicity O(u) (details omitted). This
implies that computing a shortest cycle homotopic to = is possible in time
O((g +b)*a’u*n? log(aun)).
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