
Bounds and Methods for k-Planar Crossing
Numbers
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Abstract. The k-planar crossing number of a graph is the minimum
number of crossings of its edges over all possible drawings of the graph
in k planes. We propose algorithms and methods for k-planar drawings
of general graphs together with lower bound techniques. We give exact
results for the k-planar crossing number of K2k+1,q, for k ≥ 2. We prove
tight bounds for complete graphs.

1 Introduction

Let cr(G) denote the standard crossing number of a graph G, i.e. the minimum
number of crossings of its edges over all possible drawings of G in the plane. For
k ≥ 2, define the k-planar crossing number as

crk(G) = min{cr(G1) + cr(G2) + ... + cr(Gk)},

where the minimum is taken over all edge disjoint subgraphs Gi = (V, Ei),
i = 1, 2, ..., k, so that E = E1 ∪ E2 ∪ ... ∪ Ek.

Motivated by printed circuit boards, Owens [9] introduced the biplanar cross-
ing number of a graph G, i.e. the case k = 2. He described a biplanar drawing of
the complete graph Kn with cr2(Kn) ≤ 7n4/1536+O(n3). A survey on biplanar
crossing numbers is in [5]. Determining crk(G) has application to the design of
multilayer VLSI circuits [1].
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Much of this paper extends ideas of the papers [5] and [12] investigating the
biplanar crossing number to the k-planar crossing number. Section 2 gives general
bounds for the k-planar crossing number and exposes an important extremal
problem: how does crk(G) decrease when k increases?

Section 3 yields unexpected exact results for the k-planar crossing number
of some complete bipartite graphs. Complete bipartite graphs Kp,q are also the
best studied graphs with respect to planar crossing numbers. Exact results are
known only for p ≤ 6 and arbitrary q, [6]. Crossing numbers of bipartite graphs
drawn on surfaces of higher geni were determined only for p ≤ 3, and arbitrary
q, [10]. Thus our results belong to the same rare class of exact results on crossing
numbers (for bipartite graphs), and are direct extensions of the results of [5] for
cr2(K5,n) and cr2(K6,n). We spell out the results in more details. Recall that
the thickness θ(G) of G is the minimum number of planar graphs whose union
is G. By definition, crk(G) = 0 if and only if θ(G) ≤ k. Beineke et al. [4] proved
that the thickness of Kp,q is given by

θ(Kp,q) =
⌈

pq

2(p + q − 2)

⌉
, (1)

except, possibly, when p ≤ q are both odd and there exists an integer k such
that 1

4 (p + 5) ≤ k ≤ 1
2 (p − 3) and q = �2k(p − 2)/(p − 2k)�. According to (1)

crk(K2k,q) = 0, for k ≥ 2 and any q, so the first interesting bipartite graph is
K2k+1,q. We prove that for k ≥ 2, q ≥ 1

crk(K2k+1,q) =
⌊

q

2k(2k − 1)

⌋(
q − k(2k − 1)

⌊
q

2k(2k − 1)

⌋
− k(2k − 1)

)

and for k ≥ 2, and 1 ≤ q ≤ 4k2

crk(K2k+2,q) = 2
⌊ q

2k2

⌋(
q − k2

⌊ q

2k2

⌋
− k2

)
.

Section 4 improves on the general bounds for the k-planar crossing numbers
of complete and complete bipartite graphs. The improvement means constant
multiplicative factors.

2 General Bounds

Little is known about lower bounds for the k-planar crossing number in general.
Some of the lower bounds for crossing numbers, mutatis mutandis apply to k-
planar crossing numbers. For example, if G = (V, E), |V | = n, |E| = m, then
the lower bound resulting from Euler’s formula, cr(G) ≥ m − 3n + 6 for n ≥ 3,
generalizes to

crk(G) ≥ m − k(3n − 6).

There is a strengthening of the lower bound resulting from Euler’s formula for
graphs G with girth g, cr(G) ≥ m − g(n − 2)/(g − 2) for n ≥ g; and we get

crk(G) ≥ m − gk

g − 2
(n − 2). (2)
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We state a k-planar version of Leighton’s Lemma [7] for crossing numbers
(note that we do not go for the best constants here, since the best constant is
always getting improved even for the ordinary crossing number).

Lemma 1. For a simple graph G with n vertices and m edges, we have m ≤ 6kn,
or

crk(G) ≥ 1
64

· m3

n2k2 . (3)

Proof. Recall Leighton’s Lemma for the ordinary crossing number: m ≤ 4n or
cr(G) ≥ m3/64n2. Consider an optimal k-planar drawing of G, such that Gi is
the subgraph drawn on the ith plane. Assume that the first x graphs have at
most 4n edges, while the last k − x graphs have more. We have

crk(G) ≥
k∑

i=x+1

cr(Gi) ≥
k∑

i=x+1

m3
i

64n2 ≥

≥ k − x

64n2 ·
(∑k

i=x+1 mi

k − x

)3

≥ 1
64n2 · (m − 4nx)3

(k − x)2
≥ 1

64
· m3

n2k2 ,

where the last inequality holds for m ≥ 6kn according to the sign of the deriva-
tive. ��

Recall that a(G), or arboricity of G, is the minimum number of acyclic sub-
graphs whose union covers E. By a well known theorem of Nash-Williams [8]

a(G) = max
H⊆G

⌈
m(H)

n(H) − 1)

⌉

where the maximum is taken over all subgraphs H of G, with m(H) edges and
n(H) vertices. It is easily seen that a(G) ≥ θ(G), moreover, θ(G) ≥ �a(G)/3	,
since m(H) ≤ 3n − 6 for any planar graph.

Let P = {V1, V2, ...Vt} be a partition of V . We denote by Eij the set of edges
with one end point in Vi and the other in Vj , hence Eii denotes the set of all
edges with both end points in Vi, for 1 ≤ i ≤ t. Let H denote the t vertex
graph that is obtained by contracting all vertices in Vi into one single vertex
and removing the multiple edges. We call H the mate of G with respect to P ,
or simply the mate of G. Let T1, T2, ...Ta(H), be a decomposition of the edge set
of H into acyclic subgraphs of H. Let di(x) denote the degree of x ∈ V (H) in
Ti, i = 1, 2, ...k.

Theorem 1. Let G = (V, E), and let k be a given integer. Let {V1, V2, ...Vt} be
a partition of V and let H = (V (H), E(H)) denote the mate of G. If k ≥ a(H),
then we can construct in polynomial time a k-planar drawing of G with at most

tp2 + 2pq|E(H)| +
k∑

i=1

p2
∑

x∈V (H)

d2
i (x)

crossings, where p = max{|Eii|} and q = max{|Eij |}, i, j = 1, 2, ...t.
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Proof Sketch. Consider a drawing of each Ti, i = 1, 2, ..., k in plane i, with no
crossings, so that the vertices are placed in the corners of a convex polygon, and
each edge is drawn using one straight line segment. Now, replace each vertex
j ∈ V (H) with the set Vj . In particular, place the vertices of Vj in a very small
neighborhood around j. Next, draw the edges in E with straight line segments
using the drawings of Ti’s, to produce a k-planar drawing of G. There will be 3
kinds of crossings:
(a) between edges of Eii,
(b) between edges of Eii, and edges of Eij , i �= j, and finally
(c) between edges Eij , where i, j = 1, 2, ...k and i �= j.
The terms in the theorem correspond to these 3 cases. Note that the estimate
for (b) is pq

∑k
i=1
∑

x∈V (H) di(x) = 2pq|E(H)|. ��
Theorem 1 can be used effectively, if the degrees appearing in the last term

are small. In fact, in certain cases one can decompose G into a number of (cyclic)
outer planar graphs of small maximum degree, and still use the method of Theo-
rem 1 to obtain upper bounds for crk(G). In this paper, we have obtained exact
values of crk(G) for certain graphs in this way. Nonetheless, the acyclic decom-
positions into forests of small maximum degree has been also studied. Let ad(G)
denote the degree bounded arboricity, that is the minimum number of forests
that the edges of G can be decomposed to so that the maximum degree of each
forest is bounded by d. Truszczýnski [14] conjectured that for every multigraph
G and d ≥ 2,

ad(G) =
{

∆(G)/d or 1 + ∆(G)/d if a(G) = ∆(G)/d,
max (a(G), �∆(G)/d	) otherwise. (4)

Truszczýnski actually proved his conjecture for complete and complete bipartite
graphs, and also for the case d ≥ ∆(G) + 1 − a(G). Combining Theorem 1 with
(4), we immediately obtain

Corollary 1. For n ≥ 1 crk(Kn) = O(n4/k2).

However, Corollary 1 also follows from the next theorem:

Theorem 2. For any graph G on n vertices and m edges,

crk(G) ≤ 1
12k2

(
1 − 1

4k

)
m2 + O

(
m2

kn

)
.

The corresponding drawing can be found in polynomial time. For any graph G,

crk(G) ≤ 2cr(G)
klog2

8
3

=
2cr(G)
k1.4708...

.

Proof. The first upper bound follows from our paper [11] (Corollary 3.2) and a
simple observation that a drawing of a graph G in 2k pages gives a drawing of
the graph G in k planes. The second upper bound follows by iteration from the
inequality cr2(G) ≤ 3

8cr(G), proved in [5]. ��
One challenging question is how crk changes from cr(G) to 0, as k increases

from 1 to the thickness of G, θ(G).
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3 Exact Results

Theorem 3. For k ≥ 2, q ≥ 1

crk(K2k+1,q) =
⌊

q

2k(2k − 1)

⌋(
q − k(2k − 1)

(⌊
q

2k(2k − 1)

⌋
+ 1
))

. (5)

Proof. Upper bound. Beineke [2] proved that the thickness of K2k+1,2k(2k−1)
is k by describing a drawing of K2k+1,2k(2k−1) in k planes without crossings.
We extend this drawing to a drawing of K2k+1,q in k planes with minimum
number of crossings. Let u1, u2, ..., u2k+1 be the vertices of the first partition.
Let v1, v2, ..., v2k(2k−1) be the vertices of the second partition. Beineke’s drawing
possesses the following properties.

1. On every plane, all vi’s lie on the vertices of the regular 2k(2k − 1)-gon.
2. All uj ’s lie inside or outside of the polygon.
3. The edges do not cross.
4. For every vi, its degree on exactly one plane is 3 and 2 on the remaining

(k − 1) planes. Moreover, on every plane, the vertex vi has a neighbor inside
and a neighbor outside the polygon.

Fig. 1 shows the case k = 3, i.e. a drawing of K7,30 in 3 planes without crossings.
The graphs on the same row are drawn on the same plane. The left (right) graph
corresponds to the inside (outside) part of the drawing on a plane.

Now consider K2k+1,q and assume that q = 2k(2k − 1)a + b, where a, b are
integers and 0 ≤ b < 2k(2k − 1). Partition the q-vertices into 2k(2k − 1) almost
equal sets S1, S2, ..., S2k(2k−1), where 2k(2k − 1) − b sets have a vertices, and b
sets have a + 1 elements. On every plane, replace each vertex vj by the set Sj

such that its vertices lie on a very short arc and the arcs do not interfere. Join
every vertex Si to all vertices of Sj on a plane iff ui was adjacent to vj on that
plane in the Beineke’s drawing. Clearly the total number of crossings is

2k(2k−1)∑
j=1

(|Sj |
2

)
.

The above sum turns to

b

(
a + 1

2

)
+ (2k(2k − 1) − b)

(
a

2

)
= a(b + k(2k − 1)(a − 1)),

which gives the claimed value by substituting a = �q/(2k(2k − 1))� and b =
q − 2k(2k − 1)a.

Lower bound. We will proceed by induction on q. The claim is obviously true
for q ≤ 2k(2k − 1). The claim is also true for 2k(2k − 1) ≤ q ≤ 4k(2k − 1) as the
RHS of (5) equals q − 2k(2k − 1), which is a lower bound given by (2). Hence
assume that the claim is true for some q ≥ 4k(2k − 1). Using the counting argu-
ment with H = K2k+1,q, G = K2k+1,q+1, i.e. counting the number of crossings
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Fig. 1. A drawing of K7,30 in 3 planes without crossings.

produced by all occurrencies of H in G and dividing it by the multiplicity of
each crossing, we have

crk(K2k+1,q+1) −
⌊

q + 1
2k(2k − 1)

⌋(
q + 1 − k(2k − 1)

(⌊
q

2k(2k − 1)

⌋
+ 1

))
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≥
⌈(

q+1
q

)
(

q−1
q−2

)crk(K2k+1,q)

⌉
−
⌊

q + 1
2k(2k − 1)

⌋(
q + 1 − k(2k − 1)

(⌊
q

2k(2k − 1)

⌋
+ 1

))

≥
⌈

q + 1
q − 1

⌊
q

2k(2k − 1)

⌋(
q − k(2k − 1)

(⌊
q

2k(2k − 1)

⌋
+ 1

))

−
⌊

q + 1
2k(2k − 1)

⌋(
q + 1 − k(2k − 1)

(⌊
q

2k(2k − 1)

⌋
+ 1

))⌉
.

To conclude the proof, it is sufficient to show that for q ≥ 4k(2k − 1) the
expression inside the big brackets of the last line is greater than −1. Let q =
2k(2k − 1)a + b, as above. Distinguish two cases.
If b < 2k(2k − 1) − 1 then the expression inside the big brackets equals

q + 1
q − 1

a(q − k(2k − 1)(a + 1)) − a(q + 1 − k(2k − 1)(a + 1)) =
−a − b

q − 1
> −1.

If b = 2k(2k − 1) − 1 then the expression inside the big brackets equals

q + 1
q − 1

a(q − k(2k − 1)(a + 1)) − (a + 1)(q + 1 − k(2k − 1)(a + 2)) = 0.

��
Theorem 4. For k ≥ 2

crk(K2k+2,q) ≤ 2
⌊ q

2k2

⌋(
q − k2

⌊ q

2k2

⌋
− k2

)
. (6)

The equality holds for 1 ≤ q ≤ 4k2.

Proof.Upper bound. We start with a drawing of K2k+2,2k2 in k planes without
crossings and then extend this drawing to a drawing of K2k+2,q. Denote the
vertices of the first partition class by u1, u2, ..., uk+1 and v1, v2, ..., vk+1. Denote
the vertices of the second partition class by a0, a2, ..., ak2−1 and b0, b1, ..., bk2−1.

On the first plane, place the vertices u1, u2, ..., uk+1 (resp. v1, v2, ..., vk+1)
on the positive (resp. negative) part of the x axis, in this order from the ori-
gin. Place the vertices a0, a1, ..., ak2−1 (resp. b0, b1, ..., bk2−1) on the positive
(resp. negative) part of the y axis, in this order from the origin. Join ui and
vi to a(i−1)(k−1), ..., aik−i and b(i−1)(k−1), ..., bik−i, for all i. On the second plane,
the positions of ui’s and vi’s remain unchanged. Shift aj ’s (resp. bj ’s) cycli-
cally up (down) by k position. Join ui and vi to a(i−2)(k−1), ..., a(i−1)(k−1) and
b(i−2)(k−1), ..., b(i−1)(k−1), where the indices are computed modulo k2. Contin-
uing in this drawing for all planes we get a drawing of K2k+2,2k2 in k planes
without crossings. See Fig. 2 for the case k = 3.

Now consider K2k+2,q. Partition the q vertices into 2k2 almost equal sets,
A0, A1, ..., Ak2−1 and B0, B1, ..., Bk2−1. Replace every aj and bj by Aj and Bj

and join ui and vi to Aj and Bj on a plane iff ui and vi were adjacent to aj and
bj on that plane. A simple counting shows that the number of crossings is

k2−1∑
j=0

2
((|Aj |

2

)
+
(|Bj |

2

))
.
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Fig. 2. A drawing of K8,18 in 3 planes without crossings.

The rest is similar to the proof of Theorem 3.
Lower bound. As θ(K2k+2,2k2) = k, from (1), crk(K2k+2,q) = 0, for q ≤ 2k2.

Assume 2k2 ≤ q ≤ 4k2. In this interval the RHS of (6) equals 2q − 4k2, which is
the lower bound given by (2). ��



Bounds and Methods for k-Planar Crossing Numbers 45

4 Improved Bounds on Complete and Complete Bipartite
Graphs

4.1 Lower Bounds

For specific graphs we can strengthen the lower bound by the standard counting
argument.

Theorem 5. For p ≥ 6k − 1 and q ≥ max{6k − 1, 2k2}

crk(Kp,q) ≥ 1
3(3k − 1)2

(
p

2

)(
q

2

)
.

Proof. The estimation (2) gives

crk(K6k−1,6k−1) ≥ 12k2 − 4k + 1.

Using the counting argument with H = K6k−1,6k−1 and G = Kp,q we have

crk(Kp,q) ≥
(

p
6k−1

)(
q

6k−1

)
(

p−2
6k−3

)(
q−2
6k−3

)crk(K6k−1,6k−1) >
1

3(3k − 1)2

(
p

2

)(
q

2

)
.

��
Theorem 6. For n ≥ 2k2 + 6k − 1

crk(Kn) ≥ 1
2(3k − 1)2

(
n

4

)
.

Proof. Let n = p + q. Combining the counting argument with H = Kp,q and
G = Kn with the lower bound from Theorem 8 we get the claim. ��

4.2 Upper Bounds

For special values of k we can improve on the upper bounds from Corollary 1
and Theorem 2.

Theorem 7. Let k − 1 be a power of a prime. For n ≥ (k − 1)2

crk(Kn) ≤ 1
64

k

(k − 1)3
(n + k2)4.

Proof. To appear in the full verion.
For the complete bipartite graphs and arbitrary k we can extend the con-

struction from the Section 3.

Theorem 8. For p ≥ 2k + 2 and q ≥ 2k2

crk(Kp,q) ≤ k2 + k + 2
16k2(k + 1)2

(p + 2k + 1)2(q + 2k2 − 1)2.

Proof. To appear in the full version.
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