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Abstract. In the last three years NASA and some other Space Agencies have
draw some interest to date Mars surface, mainly because the relationship
between its geological age and the probable presence of water beneath it. One
way to do this is by classifying craters on the surface attending to their degree
of erosion. The naive way to solve this problem would let a group of experts
analyze the images of the surface and let them mark and classify the craters.
Unfortunately, this solution is unfeasible because the number of images is huge
in comparison with the human resources any group can afford. Different
solutions have been tried [1], [2] over this period of time. This paper offers an
autonomous Computer Vision System to detect the craters, and classify them.

1 Introduction

In the past three years a number of studies under the supervision of NASA and some
other Research Institutes and Space Agencies have been done to date the geological
age of some celestial bodies. An important number of works over this issue center on
Mars surface, mainly because of the relationship between its relative geological age
and the probable presence of water beneath the surface.

One way to assign a planet or a moon its relative geological age is by dating craters
on it. The first naive approach one might think to solve this problem would dedicate a
group of experts analyze a series of images from Mars surface and let them classify
the craters that appear on them. Nevertheless there are not enough human resources
available to dedicate a team to do this. In order to solve this problem, a number of
different solutions have been studied. One project, under the name of clickworkers,
proposed by NASA investigators [1] put a group of grayscale images from the NASA
database of Viking Orbiter Mission to Mars on the Internet (for a further look see
http://clickworkers.arc.nasa.gov/top). The project let anyone who was willing to help,
after doing a very basic instruction, signal the position (mark) and classify craters
within a series of images that are presented to the collaborator, who received the title
of clickworker. The system presents every image it has, not to one, but to many
clickworkers who give their opinion about the position and class the craters have. The
system collects these opinions and obtains the consensus of them. Finally it colors a
map of Mars based on these information. Some of the results obtained from the
clickworkers project (CP) were quite similar when compared with the solutions of the
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experts. The problem with this project is that it still depends on the human factor.
Some projects have tried to automate this labor, being one example the work done by
Negrete [2]. On his work, Negrete gave an autonomous system based basically on the
Hough Transform to detect and mark craters over an image, and after that, the system
used ontologies to classify the craters that were detected. Sadly, this investigation was
not able to detect more than 60% of the craters. The purpose of this paper is to offer
yet another computer vision system [3] for the marking and classification of the
craters using a number of different image processing techniques [4] and some others,
like Fuzzy Logic [5]. A scheme of the proposed system is presented in the following
figure.

Input Image

(8-bit grayscale, 256x256)

Marking a): Edge Detection
(Laplacian of Gaussian)

Marking b): Circle Detection
(Hough Transform)

Marking c):
Filtering

Crater Classification:
Fuzzy System

Fig. 1. Scheme of the system proposed for crater marking and classification

A detailed explanation of the system and the results obtained from it are presented
in the following sections.

2 Computer Vision System

The system proposed here is very simple, and it was intended to be this way, since the
algorithm should be as fast as possible so it can manipulate a large volume of data.
That is why a number of processes like equalization of the image, mathematical
morphology and clustering among others are omitted at this point. In spite of the
system’s simplicity, the results obtained were in general satisfactory. Moreover, some
techniques were ruled out because the system was not truly enhanced when these
were added. For example, equalization was omitted because the images captured by
the satellite are almost equalized. Nevertheless, when this is not the case, the
classification system absorbed most of these differences. In the following subsections
a deeper description of the marking and classification subsystems will be presented.

2.1 Crater Marking Subsystem

Marking of the crater is a three step process (see Fig. 1). First, we must obtain the
borders of the image. A number of different techniques are available for this matter.
An analysis of the nature of the images suggested that the Laplacian of the Gaussian
Method (LOG) is a good choice in this case. Some other methods were tried, among
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them, Sobel (which is suggested by Negrete in his work [2]), but our experiments
favored LOG in most of the cases. The better results for LOG were attained when
using a threshold of 0.006 and a neighborhood of 2. These borders were feed as an
input to the Hough Transform [6] to detect the circles (craters) on the image.

Hough Transform. As already has been stated, the Hough Transform (HT) is used to
obtain the probable locations of the craters. The general case of the HT was developed
to detect lines, but the generalization of the Transform to detect some other geometric
bodies is straightforward in many cases. An example of the pseudocode! for the HT
that detects the circles within an image, given the set of coordinates of the borders, a
radio r, and the number of samples to be taken over the perimeter of a circle would be
as follows:

HT circles (borders, r, sample rate)
initialize (acum)
for 1 <« 1 to length [borders]
(x, y) < borders [i]
angle = 0;
repeat
angle = angle + sample rate
a < round (x - r * cos (angle))
b « round (y - r * sin (angle))
acum [a, b] = acum [a, b] + 1
until angle > 2w
return acum

Nevertheless, a number of problems arise when the HT is used for detection of a
geometrical shape such as incomplete borders or deformed shapes. For the project,
both things must be accounted for. One way to deal with the geometric body
deformations is by using a variation of the HT called sliding window (HTSW). The
HTSW uses a neighborhood around the point being analyzed, which enhances the
local maxima stored in the accumulator. For the experiments an n by n neighborhood
was selected with the evaluated point as its center. The value of n was obtained as a
function of the radio (7) through the following expression:

{2 15<r (1)

1 r<l5

To solve the problem of incomplete borders, the system takes into account a
threshold value 0< & <1 which measures the percentage needed to detect a crater.
The best results were obtained for 6 =0.3. The marking process using a biased
HTSW system is exemplified in the following figure.

! The pseudocode follows the conventions proposed on Cormen’s book [7]
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(a)

Fig. 2. The marking process takes an image of Mars surface (a) obtains its borders with the
LOG (b) and then uses this borders for the HTSW (c) to detect craters of a particular radio (d)

Filtering. Once a crater has been marked, the borders associated with this crater are
deleted (since two different craters will have their own rims). By eliminating these
borders, not only the process is accelerated, but this also reduces the number of false
detections. After deletion is done there are still two problems that the system handles.
The first problem was that some craters were detected because the region selected was
not a crater, but the borders from a group of different geological accidents. To avoid
this, the system sums the borders in that area. If the number of borders not used in the
detection of the crater is greater than a threshold, the detected crater is discarded,
unless there is clear evidence of the presence of the crater (the accumulator shows that
at least 80% of the elements were accounted). An example of how deletion and
filtering contributed in the detection process is presented in the following figure.

Fig. 3. Series of images showing the craters detected with the HTSW (a), detection using
deletion of the borders used (b) and detection with deletion and filtering (c)

2.2 Crater Classification Subsystem

The crater classification, as stated in the CP proposes that there are three basic
categories called fresh, degraded and ghost related with crater aging. Depending on
the aging, each crater will have a number of features that can be looked upon. The
definition given by CP states that “...a fresh crater displays a sharp rim, distinctive
ejecta blanket, and well-preserved interior features (if any). In a degraded crater the
surrounding ejecta blanket is gone, interior features are largely or totally obliterated
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and the rim is rounded or removed. Finally, the ghost craters are faintly visible
through overlying deposits”. The next figure shows an example of these classes.

Fig. 4. The basic classification proposed by the CP states that there are three categories based
on crater aging. The craters could be fresh (a), degraded (b) and ghost (c)

A common problem with automated classification arises when the rules that define
a category are ambiguous or there is some level of “spatial vagueness”. On these
cases a different approach like a fuzzy logic system is needed. Fuzzy systems have
been applied for a number of different problems of classification such as medical
applications [8], soil classification [9], fish grading [10], etc. For the crater
classification process, a number of problems are inherited from the ambiguity and
vagueness of the definitions, and because of this, the use of a fuzzy system was
considered. The system proposed in fact is a supervised fuzzy system.

Fuzzy System. In the preceding lines, the reader learned that crater classification is
related with a number of features to be looked upon the image. Nevertheless, for an
untrained eye, trying to determine how recent the crater is might be equivalent to
simply say how deep the crater is. Luckily this very simple feature proved to be
enough for the vast majority of the cases. A simple observation related with this
feature (how deep a crater is) is that the number of bright pixels for a fresh crater (Fig.
5(b)) is considerably larger than the same number for a ghost crater (Fig. 5(d)).
Another way to say this is that the distribution of the graylevels for a fresh crater
tends to be uniform while Normal distribution is better suited for ghost craters.

®) «

Fig. 5. Histograms (b), (d) of a fresh (a) and a phantom crater (c)

The fuzzy system proposed here, will use as inputs the maximum over the first and
the second quartiles (maxQ,, max(,) of the histogram of the square region

containing a crater detected from the marking process. For simplicity, the fuzzy input
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variables will be labeled after the values they receive, i.e. max Q> maxQ, - Each of

these fuzzy inputs will have three different sets called small, medium and large;
which were determined experimentally. As output, a single variable is used. This
variable receives the name of category and it contains three fuzzy sets (also
determined experimentally) called fresh, degraded and ghost. The sets of the input
variables are trapezoidal, while the sets for the classes are triangular as can be seen in
Fig. 6. The inputs variables are related with the category simply by an AND operator
as reflected in the following table.

Table 1. AND Relationship between fuzzy input variables max Q, and max Q, and the fuzzy
output variable category for the classification system

max Q, small medium large
max Q,
small degraded ghost ghost
medium degraded degraded degraded
large fresh fresh degraded

For the defuzzification, the mean of maximum method was selected. The
combination of this method together with the type of sets choose for the classes
allowed to determine, by using a simple hard limiter nonlinear function, in which
category the crater was. As an example, the following figure shows the results of the
fuzzy system when it was feed with the pairs (0.0267,0.0124) and (0.0009,0.0276).
These pairs represent the input (max Q,, max Qz) for the craters in Fig. 5(a) and (c).

i
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Fig. 6. When the system was feed with the inputs for the craters shown in Fig. 5(a) (a) and the
ghost crater shown in Fig. 5(c) (b), it correctly classified the craters

The results obtained by this system correctly classified more than 90% of the
craters marked.

3 Results

To determine the factors used for every part of the system a number of experiments
were conducted over a set of 100 grayscale images of 256 x 256 pixels containing
little less than 300 craters. The experiments were carried out to obtain first the
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parameters related with the marking process. After the best set of parameters was
determined from these results the performance of the classifier was obtained.

3.1 Experiments for the Marking

For the marking process, a group of 30 images containing approximately 100 craters
were used. A number of border techniques were tested. In combination with the
border techniques, different approaches were tested as the HT, HTSW, HTSW with
border deletion (HTSW/D) and HTSW with deletion and filtering (HTSW/DF). The
following table (Table 2) contains the results for some schemes that were studied. The
first number of the combination refers to the percentage of craters detected, while the
second number refers to the percentage of the false detections. For example, when the
HTSW with Deletion and Filtering (HTSW/DF) was selected to detect craters with a
threshold 6@ =0.3 using the Sobel Technique with a threshold of 0.06, 53.12% of the
craters were detected, but 23.52% of the crater detections were false. In some cases,
the number of false detections for a particular combination was above 50%. When
this is the case, the data from the experiments is not presented in the table.

Table 2. Statistcs obtained from some of the different combinations tried for crater marking

Canny Sobel Sobel LOG LOG LOG

0.175, 0.05 0.05 0.06 0.0055 0.006 0.0065
HTSW/DF 65.62% 81.25% 66.67%
0=0.25 41.83% 43.48% 42.11%
HTSW/DF 47.75% 53.12% 68.75% 71.88% 65.63%
0=023 46.14% 23.52% 42.42% 22.58% 19.23%
HTSW/DF 37.50% 21.50% 48.48% 46.87% 43.75% 40.62%
0=0235 38.09% 31.17% 11.76% 22.22% 14.29% 4.17%

It is important to point out that the output for the HT and HTSW in general
detected more than 50% of false detections. From the results presented in the table, it
can be said that the best ratio between true and false recognition was obtained for the
HTSW/DF when the threshold was set at 30% and the LOG Method was choose for
the borders with a threshold of 0.006.

3.2 Results for the Classification

For the classification process we let the best system (HTSW/DF and LOG with proper
parameters) mark the craters of 100 images which contain little less than 300 craters.
After marking was done 200 images containing craters (no false detection was
selected) were manually classified using the CP criteria. The classification subsystem
was feed with the images previously selected and its results were compared with the
ones manually obtained. The results generated in this way agreed in 91.5% of the
cases.
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4 Conclusions and Further Work

The time used by the system to mark and classify the craters (less than 5 seconds per
image in average using a Pentium 4, 2 GHz, 512 MB RAM computer) makes it
possible to think that this process can be used in practice. Nevertheless, if the process
is to be useful, the marking subsystem needs to be further developed to obtain at least
an 85% of recognition while the false recognition is kept below 7%. There are some
signals from some research lines being studied at this moment that both percentages
can be achieved, but further work will be needed. Sadly, recognition close to 100%
has already been discarded, because the recognition of some “hard to identify” craters
(usually phantom craters) implies almost certainly an increment in the number of false
recognitions. For the fine tuning of the detection, is probable that Mathematical
Morphology will be helpful. Still, more experiments in this sense are to be
accomplished.

On the other hand, the classification subsystem proved not only to be a good
classifier but also it was very robust because it was capable of correctly classify
craters even when the area contained only partially the crater, the area was bigger than
the one from the crater or the area contained some other elements besides the crater.
The success of this part of the system, in my opinion, resides mainly on the selection
of the histogram based feature, and because of this, some other techniques different
from fuzzy logic might be used with this feature as its input to classify the craters.
Still, T do not believe that great improvements can be done in this line since the
classification remain being a subjective process, and that’s why some results in this
area might vary but not meaningfully.
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