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Abstract. We have developed an algorithm capable of enforcing a shape
correspondence between two views of the same object in different shape-
states. This algorithm, together with several other significant updates,
has helped improve the performance of the Integrated Shape and Pose
Model (ISPM) described in [T] by a factor of 10. The ISPM utilizes two
flexible basis views to integrate the linear combination of views technique
with a coupled-view Flexible Shape Model (FSM) [2]. As a proof-of-
principle we have evaluated the performance of the improved ISPM in
comparison to that of its predecessor [1] and of the conventional FSM [3],
via two different databases. The results show that, unlike the FSM, the
current ISPM is view-invariant and that, on average, it out-performs the
FSM. It also out-performs the initial ISPM described in [1].

1 Introduction and Background

Machine vision systems that utilize two or more two-dimensional (2D) images
to represent three-dimensional (3D) objects have recently become quite popular
because they are sufficient for many purposes, while computationally being rela-
tively easy to build. In particular, not building an explicit 3D model means that
we can avoid poorly conditioned 3D reconstruction steps and can, therefore for
example, generate virtual images with less noise [4]. There is also some evidence
to suggest that such view-based representations are used by the human visual
system [5]. Ullman and Basri [6] developed the view-based approach, also known
as the Linear Combination of Views (LCV) technique, though only for represent-
ing rigid objects. In the LCV technique, any image of a 3D object is represented
as a linear combination of at least “1%” other images of the same object. Ullman
and Basri [6] used line-drawings, whilst others have taken this concept further
to the combination of real images [7J8] but using an over-complete approach so
that the basis views may be teated symmetrically. We reformulated the over-
complete LCV approach [I], via the Centred Affine Trifocal Tensor (CATT) [4],
introducing the required constraints [9].

Thus far, however, the LCV technique has only been used to represent rigid
3D objects. We have taken this approach even further to model non-rigid 3D
objects. For this we integrate an LCV model with a Coupled-View Flexible
Shape Model (CVFSM) [2], via two flexible basis views, to form the Integrated
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Shape and Pose Model (ISPM), which was first introduced in [1]. In order to
generate such a model we need: (i) a technique for mapping the intrinsic shape
from any given image, simultaneously to two (or more) preselected views and,
(it) a technique for ensuring the two mapped shapes correspond to the same
3D shape (as though they were images captured simultaneously from different
views). Given two such techniques, we could train a CVFSM on almost any given
set of images, by first transferring the intrinsic shape from each given image to
two preselected views providing the required corresponding pairs of images [2].
Once we have two such flexible basis views, we can synthesize, via the CVFSM,
an image of the object in any view by, for example, the LCV technique.

The first of the above mentioned techniques, (7), which we refer to as a
2D Pose Alignment, was first described in [I]. However, since we were missing
technique (i7) for ensuring the two mapped shapes correspond to the same 3D
shape, the success of the ISPM described in [I], though encouraging, was limited.
We have now developed the second technique, (i7), which is explained in Sect. Bl
of this paper. It has, along with several other new steps, described in Sect. [Z2]
helped improve the performance of the ISPM by an order of magnitude.

2 An Implicit (2D) Pose Alignment via the CATT

Here we assume, for the moment, that we are given two images of the mean
shape as seen from two preselected views (the basis views) i.e. we have two sets
of corresponding landmark points, X & X, respectively from two images of
the same shape (the mean shape) as seen from the two basis views. Let’s also use
two sets of corresponding landmark points X & X to represent the images, as
seen from the two basis views, of the shape in a given image, i say, represented
by the landmark points X; (i.e. X;, X & X/ have the same shape). The aim
of the 2D (implicit) Pose Alignment (2D-PA) process is then to recover X/ &

X! given X, X &X'

2.1 The Subset of Stable Points

Before we begin the 2D-PA process, we first select a subset of at least 4 non-co-
planar landmark points that can be considered as forming a rigid sub-object. For
this we employ a RANSAC algorithm [10] to select a subset of p (> 4) landmark
points that best conforms to the constraints of multi-view geometry for a rigid
object by minimizing

e? = ZEQ(i) ., where for each X; €?(i) = ||T(Z)Y(Z)H2 , (1)

T(i) is the CATT matrix [I] and Y (i) = (XiT,fHT,f/T)T. Here, in each case,
each image is represented in the X, X & Y//7 only by the subset of p landmark
points being considered. In our experiments we used a subset of 6 stable points
(i.e. p = 6) and manually checked that the selected points were not co-planar. If
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the selected subset were co-planar, then we continued to check the subset that
provides the next smallest value for e? until we found a non-co-planar one.

2.2 The 2D Pose Alignment (2D-PA) Process

Given the stable points, we begin the 2D-PA process, as in [I], by computing
the best approximation to the CATT [4] corresponding to X, X &X' by
computing the T(7) that minimizes e?(i). However, we now use only the subset
of stable points for this, which provides a more accurate estimate of the CATT
than reported in [I] and makes the process a lot faster. We then use the computed
CATT and all the landmark points (not just the stable points) to generate the
least squares estimate of X;, the mean shape in the view of the given image X;.
Next, we compute the in-view shape difference, AX; = X; — X, which is then
added to X & X, to generate our first estimates of X & X

X! (temp) = X + AX; & X/(temp)=X +AX; . (2)

Since AX; is a shape difference in the view X ;, applying it to the basis views
will not, in general, lead to a valid result, since X/ (temp) & X/ (temp) will not,
in general, conform to the constraints of multi-view geometry. However, in each
case it provides a better estimate of the landmarks of the pose aligned image
than the means X & X . We continue by extracting, from the CATT, the two
fundamental matrices that link X; to each of the basis views via Algorithm 14.1,
on page 366 of [I1]. We then use the fundamental matrices to compute the equa-
tions of the epipolar lines in each of the X/ (temp) & X (temp) corresponding
to each landmark point in the given image X,;. Next, we move each landmark
point in each of X/ (temp) & X (temp) to the nearest point on the correspond-
ing epipolar line to generate 3(/: & }H which are updated estimates of X/ &

2

—~/ —~
X/. This step ensures that X, & X, conform to the multi-view geometry. We

then align 3(/; to X & /)Z/LI to X, as in [1], via a further affine transformation
applied to the landmark points of each image. This is done in order to determine
all the degrees of freedom in the alignment process. However, now we do not stop
at this point, but complete the alignment by enforcing a shape correspondence

—/ —/!
between the two sets of pose-aligned points X,; & X, as described in Sect. [3.

3 Enforcing a Shape Correspondence between Views

Suppose now that we are using the 2D-PA algorithm to align points in an image
X; to the points, X & Yﬂ, in two given mean basis views. The 2D-PA algorithm
would generate two sets of points 3(:; & 3(/;/ as explained in Sect.Z2labove, which
are aligned as well as possible. Since f; & 3(/;/ may not have the same shape, in

order to complete the alignment, we need to update the shapes represented by
each of them until they can be considered as simultaneous images of the same
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—~/ —~/
3D object (i.e. we need to enforce shape correspondence between X,; & X, ).
_t — — —~
Thus, our aim, here, is to recover X & X/, given X/, X”7 X, & X,.
—~/ —~
We begin by setting X; & X; as our first estimates of X/ & X7/, respectively.
Next, we use Algorithm 13.1, on page 340 of [I1], to compute the maximum
likelihood estimate of the (affine) fundamental matrix that maps X to x".
Here again we use only the stable points in order to compute an estimate of the
fundamental matrix, since a rigid-object is assumed in the algorithm used. We
then use the fundamental matrix and all the landmark points (not just the stable

points) to map the shape of X/ to X" and generate X ;/. This shape transfer
is achieved, as explained in the 2D-PA process, by moving each landmark point
to the nearest point along the corresponding epipolar line (see Sect. 2.2)). X ;/
corresponds to an image of the shape represented by points X/ as seen from the

view of X . We do the same for the pair of images X & X to generate X ;
and update our estimates of X, & X as follows:

1 . ! X
X5 (X4 X)) & XU (X4 X)) ®)

We then iterate, using our current estimates of X, & X7, to re-compute

~_ I A/ ~_ I A/

X, & X, and using X, & X, to update our estimates of X} & X7 via @).
We continue iterating until the difference between consecutive estimates of X/
& X7 is smaller than some tolerance.

3.1 The Initial Reference Images

At this point we recall that in order to begin the 2D-PA algorithm, we require
landmark points, X & Y/,, in the two mean basis views. Thus, initially, we
generate all the distinct combinations of landmark points from image pairs in
the training set. We consider each pair of images, enforce a shape correspondence
between them (as explained next), and compute the error e? defined in ([
corresponding to the selected pair. We then select the two images that produce
the minimum value for e?. The two images (with the shape correspondence
enforced) thus selected, are then used as the initial reference images X1 &
X9 in the Extended Procrustes Alignment (EPA) algorithm [I] to compute
the points in the mean basis views. The EPA algorithm begins by considering
X1 & X9 as the first estimates of X' & X" Then we iterate, aligning points
in all the training images (via the 2D-PA process) to the current estimates of
X' & X" and re-computing X' & X from the aligned sets of images, until
convergence. Thus, until X & X are computed, we use their current estimates
instead.

During the process of selecting the two initial reference images for the EPA
algorithm (see Sect. B.]), however, we only have two sets of points that corre-

— —~ [— —_
spond to X, & X, since X " & X" have not yet been computed. Therefore,
in order to enforce a shape correspondence between these two sets of points, in
—_—/ —//
each iteration we use the current estimates of X/ & X7 in place of X & X .
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4 The Integrated Shape and Pose Model (ISPM)

The ISPM, first introduced in [1], utilizes landmark points representing two
flexible basis views to integrate the LCV technique with a CVFSM [2]. To build
an ISPM, from (almost) any given set of images, we first select two reference
images that define the basis views (see Sect. B) and use the EPA algorithm [1]
to simultaneously compute the points representing the two mean basis views and
align all the training images to them (via the 2D-PA algorithm). This results, for
each training image, in two corresponding sets of landmark points that represent
simultaneous images of the object of interest taken from the two selected basis
views while the object changes only its shape. Thus, we can then build two FSMs
to model the intrinsic shape variation present in these two sets of landmark points
and use the correspondence to build a hierarchical CVFSM. The parameters of
the CVFSM (the shape parameters) enable us simultaneously to change the
shape of the object in the two basis view images in a corresponding manner.
Given the points representing the two basis views of the object with a particular
shape, we may use the reformulated LCV technique [I] to synthesize that shape
as seen from any desired view point via an appropriate CATT [4]. The elements
of the CATT are the pose parameters. To use the ISPM, given the landmark
points in a new image of the object, we first align them, via the 2D-PA algorithm,
to the points representing the mean basis views. This provides: (i) the CATT
that defines the pose of the object in the image (i.e. the pose parameters) and,
(74) the input set of landmark points to each of the two individual FSMs. The
parameters of the individual FSMs then provide the input to the CVFSM, from
which we extract the shape parameters in the usual way [2/3].

5 Evaluation

As a proof-of-principle the updated version of the ISPM detailed in this paper
was evaluated in comparison to its predecessor [I] and a conventional Flexible
Shape Model (FSM) as built by Cootes et al. [3]. The evaluation was carried out
on landmark points selected from both real and synthetic image data. For the
real images, we used landmark points manually selected from the same data as
in [1], with five expressions (Neutral, Angry, Happy, Sad & Surprised) sampled at
13 different poses (~ 5° intervals from ~ —30° to ~ +30° where 0° corresponds
to the frontal view) giving 65 sets of points in total. For the synthetic data, we
utilized the 3D head model of Loizides et al. [I2] to generate images of a face. A
subset of the 3D model points was manually selected as landmarks. The error-
free locations of these landmark points in the corresponding synthetic images,
and the images themselves were computed via an affine projection matrix. Four
expressions (Fear, Happiness, Sadness & Neutral) were sampled at 11 different
poses (at 5° intervals from —25° to +25°) to generate 44 sets of points in total. In
both cases (real and synthetic), rotations were performed only about the vertical
axis. Owing to the space limit here, we refer the reader to [I3] for a complete
description of the databases. Some example images and the landmark points
used in each case are shown in Fig. [l
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Fig. 1. Some examples of the real (bottom) and synthetic (top) images used in the
evaluation. The subset of stable points (squares) and the other landmark points (circles)
used in each case are shown in the leftmost images.

We evaluated the performance of each model (i.e. of the FSM, the initial
ISPM [1] and the current ISPM described in this paper) by its ability to recon-
struct the point configuration in a given image. For this we used each model to
extract its own representation of a given image and use this representation to
reconstruct the points representing the original image. The reconstruction er-
ror was then computed to be the root mean square error between the positions
of the landmark points in the original image and the points reconstructed by
the model. We represent this error as a percentage of the scale of the original
image in order to make it scale invariant. The reconstruction errors were also
averaged over expression, providing an error measure as a function of pose and
independent of expression.

We performed cross-validation [14] and leave-one-out experiments on the two
data sets in order to determine the accuracy of each model. The results of the
leave-one-out experiments are shown in Fig.[2l The cross-validation experiments
produced similar results. The graphs in Fig. 2] clearly show that the FSM is
dependent on pose whereas the current ISPM isn’t. Furthermore, in all exper-
iments, on average the current ISPM out-performed the FSM. The minimum
error of the initial ISPM was, however, much larger (always > 1.0%) and is
therefore not shown in the graphs in Fig.[2l Thus, although the initial ISPM was
pose-invariant, it wasn’t able to rival the FSM in terms of accuracy as the cur-
rent ISPM does. Since similar results were generated on the real and synthetic
databases, which were completely different in size, shape, number of landmark
points and noise level, we are confident they reflect the performance of the mod-
els of interest and not some peculiarity of a particular database.

We also evaluated the performance of our algorithm that enforces a shape
correspondence between two views (see Sect. Bl) by computing the Pearson Cor-
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Fig. 2. The reconstruction errors from the leave-one-out experiments on the (a) real
& (b) synthetic data for the FSM (dotted line) and the current ISPM (solid line).

relation Coefficient (PCC) between the eigenvectors, eigenvalues and the scatter
matrices of the two individual FSMs that were built from the pose-aligned im-
ages. We use the absolute value of the PCC which is, by definition, between 0
(no apparent correlation) and 1 (highly correlated). In all experiments the PCC
values for the current ISPM were above 0.9, which shows that a shape correspon-
dence was successfully enforced. Except for the PCC values for the eigenvalues
(0.9) and of the first eigenvector (0.8), all the other PCC values for the initial
ISPM were below 0.7. Since space is limited here, we refer the reader to [I3] for
more details on our results.

6 Conclusions and Future Work

We have developed an algorithm capable of enforcing a shape correspondence
between two views of the same 3D non-rigid object in different shape-states. We
have used this algorithm, along with many other significant updates, to improve
the version of the Integrated Shape and Pose Model (ISPM) described in [T]
by a factor of 10. As a proof-of-principle we have evaluated the performance
of the improved ISPM in comparison to that of its predecessor [I] and of the
conventional FSM [3], on two different databases via cross-validation and leave-
one-out experiments. The results show that, unlike the FSM, the current ISPM is
view-invariant since we separate the extrinsic (pose) variations from the intrinsic
(shape) variations. Furthermore, on average the current ISPM described in this
paper out-performs the FSM, while also completely out-classing the initial ISPM.
The algorithm that enforces a shape correspondence between two views was also
evaluated and shown to be successful. We anticipate that the ISPM will be useful
in a variety of applications including calculation of head pose and view-invariant
expression recognition. The approach may also be of relevance to theories of
human vision.
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