
Neurons, Dendrites, and Pattern Classification

Gerhard X. Ritter1, Laurentiu Iancu1, and Gonzalo Urcid2

1 CISE Dept., University of Florida, Gainesville, FL 32611-6120, USA
{ritter, liancu}@cise.ufl.edu

2 Optics Dept., INAOE, Tonantzintla, Pue. 72000, Mexico
gurcid@inaoep.mx

Abstract. Computation in a neuron of a traditional neural network is
accomplished by summing the products of neural values and connection
weights of all the neurons in the network connected to it. The new state
of the neuron is then obtained by an activation function which sets the
state to either zero or one, depending on the computed value. We provide
an alternative way of computation in an artificial neuron based on lattice
algebra and dendritic computation. The neurons of the proposed model
bear a close resemblance to the morphology of biological neurons and
mimic some of their behavior. The computational and pattern recog-
nition capabilities of this model are explored by means of illustrative
examples and detailed discussion.

1 Introduction

Various artificial neural networks (ANNs) that are currently in vogue, such as
radial basis function neural networks and support vector machines, have very
little in common with actual biological neural networks. A major aim of this
paper is to introduce a model of an artificial neuron that bears a closer re-
semblance to neurons of the cerebral cortex than those found in the current
literature. We will show that this model has greater computational capability
and pattern discrimination power than single neurons found in current ANNs.
Since our model mimics various biological processes, it will be useful to provide
a brief background of the morphology of a biological neuron.

A typical neuron of the mammalian brain has two processes called, respec-
tively, dendrites and axons. The axon is the principal fiber that forms toward its
ends a multitude of branches, called the axonal tree. The tips of these branches,
called nerve terminals or synaptic knobs, make contact with the dendritic struc-
tures of other neurons. These sites of contact are called synaptic sites. The
synaptic sites of dendrites are the places where synapses take place. Dendrites
have many branches that create large and complicated trees and the number
of synapses on a single neuron of the cortex typically ranges between 500 and
200,000. Figure 1 provides a simplified sketch of the processes of a biological
neuron. It is also well-known that there exist two types of synapses; excitatory
synapses that play a role in exciting the postsynaptic cell to fire impulses, and

A. Sanfeliu and J. Ruiz-Shulcloper (Eds.): CIARP 2003, LNCS 2905, pp. 1−16, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Fig. 1. Simplified sketch of the processes of a biological neuron

inhibitory synapses that try to prevent the neuron from firing impulses in re-
sponse to excitatory synapses. The postsynaptic membranes of the dendrites will
thus either accept or inhibit the received input from other neurons.

It is worthwhile to note that dendrites make up the largest component in
both surface area and volume of the brain. Part of this is due to the fact that
dendrites span all cortical layers in all regions of the cerebral cortex [1–3]. Thus,
when attempting to model artificial brain networks, one cannot ignore dendrites,
which make up more than 50% of the neuron’s membrane. This is especially
true in light of the fact that some researchers have proposed that dendrites, and
not the neurons, are the elementary computing devices of the brain, capable of
implementing such logical functions as AND, OR, and NOT [1–9].

Current ANN models, and in particular perceptrons, do not include dendritic
structures. As a result, problems occur that may be easily preventable when in-
cluding dendritic computing. For example, M. Gori and F. Scarselli have shown
that multilayer perceptrons (MLPs) are not adequate for pattern recognition
and verification [10]. Specifically, they proved that multilayer perceptrons with
sigmoidal units and a number of hidden units less than or equal to the number
of input units, are unable to model patterns distributed in typical clusters. The
reason is that these networks draw open separation surfaces in pattern space.
In this case, all patterns not members of the cluster but contained in an open
area determined by the separation surfaces will be misclassified. This situation
is depicted in Fig. 2. When using more hidden units than input units, the sep-
aration may result closed but, unfortunately, determining whether or not the
perceptron draws closed separation surfaces in pattern space is NP-hard. This
is quite opposite to what is commonly believed and reported in the literature.
The network model described in this paper does not suffer from these problems.

Gori’s and Scarselli’s result was one reason for trying to use lattice algebra
operations in perceptrons. Another reason is that lattice operations have proven
quite successful in the area of associative memories as well as some pattern clas-
sification tasks [11–22]. Earlier attempts at morphological perceptrons did not
include the notion of dendritic computing and were restricted to two-class prob-
lems. The lack of dendrites required hidden layers and computationally intensive

2 G.X. Ritter, L. Iancu, and G. Urcid

Fig. 2. In a trained MLP, the separation surface (dotted) between two clusters (black
and white circles) may result open and include impostor patterns (triangles) (a). A
closed surface avoids this problem and is desired (b)

algorithms that did not provide for easy generalization to multiclass pattern sep-
aration. In contrast, the model defined in this paper uses dendritic computation,
requires no hidden layers, is capable of multi-class separation to within any de-
sired degree of accuracy, has the ability to produce closed separation surfaces
between pattern clusters, and generalizes to fuzzy pattern recognition.

2 Morphological Perceptrons Based on Dendritic
Computation

Let N1, . . . , Nn denote a collection of neurons with morphology as shown in
Fig. 1. Suppose these neurons provide synaptic input to another collection M1,
. . . , Mm of neurons also having processes as depicted in Fig. 1. The value of a
neuron Ni (i = 1, . . . , n) propagates through its axonal tree all the way to the
terminal branches that make contact with the neuron Mj (j = 1, . . . ,m). The
weight of an axonal branch of neuron Ni terminating on the kth dendrite of
Mj is denoted by w�

ijk, where the superscript � ∈ {0, 1} distinguishes between
excitatory (� = 1) and inhibitory (� = 0) input to the dendrite. The kth dendrite
of Mj will respond to the total input received from the neurons N1, . . . , Nn and
will either accept or inhibit the received input. The computation of the kth
dendrite of Mj is given by

τ j
k(x) = pjk

∧
i∈I(k)

∧
�∈L(i)

(1)1 � xi + w�
ijk

)
, (1)

where x = (x1, . . . , xn) denotes the input value of the neurons N1, . . . , Nn with
xi representing the value of Ni, I(k) ⊆ {1, . . . , n} corresponds to the set of
all input neurons with terminal fibers that synapse on the kth dendrite of Mj ,
L(i) ⊆ {0, 1} corresponds to the set of terminal fibers of Ni that synapse on
the kth dendrite of Mj, and pjk ∈ { 1, 1} denotes the excitatory (pjk = 1) or
inhibitory (pjk = 1) response of the kth dendrite of Mj to the received input.

It follows from the formulation L(i) ⊆ {0, 1} that the ith neuron Ni can have
at most two synapses on a given dendrite k. Also, if the value � = 1, then the
input (xi+w1

ijk) is excitatory, and inhibitory for � = 0 since in this case we have
(xi + w0

ijk).

3Neurons, Dendrites, and Pattern Classification

Fig. 3. Morphological perceptron with dendritic structure. Terminations of excitatory
and inhibitory fibers are marked with • and ◦, respectively. Symbol Djk denotes den-
drite k of Mj and Kj its number of dendrites. Neuron Ni can synapse Djk with exci-
tatory or inhibitory fibers, e.g. weights w1

1jk and w0
nj2 respectively denote excitatory

and inhibitory fibers from N1 to Djk and from Nn to Dj2

The value τ j
k (x) is passed to the cell body and the state of Mj is a function

of the input received from all its dendrites. The total value received by Mj is
given by

τ j(x) = pj

Kj∧
k=1

τ j
k(x) , (2)

where Kj denotes the total number of dendrites of Mj and pj = ±1 denotes
the response of the cell body to the received dendritic input. Here again, pj = 1
means that the input is accepted, while pj = 1 means that the cell rejects
the received input. The next state of Mj is then determined by an activation
function f , namely yj = f τ j(x)

)
. In this exposition we restrict our discussion

to the hard-limiter

f τ j(x)
)
=

{
1 if τ j(x) ≥ 0
0 if τ j(x) < 0 (3)

unless otherwise stated. The total computation of Mj is, therefore, given by

yj(x) = f


pj

Kj∧
k=1


pjk

∧
i∈I(k)

∧
�∈L(i)

(1)1 � xi + w�
ijk

)




 . (4)

Figure 3 provides a graphical representation of this model.
A single layer morphological perceptron (SLMP) is a special case of this

model. Here the neuronsNi, . . . , Nn would denote the input neurons and the neu-
rons M1, . . . ,Mm the output neurons. For SLMPs we allow x = (x1, . . . , xn) ∈
IRn. That is, the value xi of the ith input neuron Ni need not be binary.

4 G.X. Ritter, L. Iancu, and G. Urcid

Fig. 4. The output neuron M will fire (y = 1) for input values from the interval [a, b];
if x ∈ IR \ [a, b], then y = 0

3 Examples

Having defined the computational model of dendritic processes and SLMPs, it
will be instructive to provide a few examples in order to illustrate the computa-
tional capabilities of the proposed model.

Example 1. The simplest case occurs when the SLMP consists of just one input
neuron N , and one output neuron M with a single dendrite having an excitatory
(pjk = 1) response to the received input. Here the notation can be simplified
by discarding subscripts i, j and k (as being all 1). Figure 4 illustrates such
an SLMP. If the response of the cell body p = 1, then by (1) and (2) we have
τ(x) = (x a) ∧ (x b), and τ(x) ≥ 0 ⇐⇒ x ≥ a and x ≤ b. Hence, the
output neuron M will fire (y = f(τ(x)) = 1) when x ∈ [a, b].

Example 2. The SLMP depicted in Fig. 5 also consists of one input neuron
and one output neuron, but this time the output neuron has three dendrites,
D1, D2 and D3. The corresponding network parameters are given in Table 1.
For algebraic consistency as well as numerical computation when using (1) and
(4), unused terminal fibers with a hypothetical excitatory or inhibitory input
will be assigned a weight of +∞ or ∞ , respectively. If a < b < c < d, by
substituting the values of the synaptic weights in (1) and (2), we obtain τ(x) =
[(x a)]∧ [(x a) ∧ (x b)]∧ [(x c) ∧ (x d)]. The output neuron M
will fire when τ(x) ≥ 0 ⇐⇒ x ∈ {a} ∪ [b, c] ∪ [d,∞), as depicted on the axis at
the bottom of Fig. 5.

Example 3. An SLMP with two input neurons, N1 and N2, and two output
neurons, M1 and M2, can be used to solve the XOR problem, formulated as a
two-class problem. Figure 6 illustrates such an SLMP. If y = (y1, y2), where yj

denotes the output signal of neuron Mj (j = 1, 2), then the desired network
output is:

y =



(1, 0) if x ∈ C1

(0, 1) if x ∈ C2

(0, 0) if x ∈ R
2 \ (C1 ∪ C2) .

(5)

5Neurons, Dendrites, and Pattern Classification

Fig. 5. The output neuron M will fire (y = 1) for input values from the set X =
{a} ∪ [b, c] ∪ [d,∞); if x ∈ � \ X, then y = 0

Table 1. Weights and Synaptic Responses, Ex. 2

Dk w1
1k w0

1k pk

D1 a ∞ +1

D2 a b 1

D3 c d 1

As in classical perceptron theory, solving this problem requires two output
neurons. However, in contrast to the classical model, no hidden layer is necessary
for the morphological perceptron to solve the problem.

In this case, y = f τ1(x)
)
, f τ2(x)

))
, where τ j(x) =

∧Kj

k=1 τ
j
k(x), denotes

the computation performed by Mj , and Kj denotes the number of dendrites of
Mj . The values of the axonal branch weights w�

ijk and output responses pjk are
specified in Table 2.

4 Computational Capability of an SLMP

Analogous to the classical single layer perceptron (SLP) with one output neuron,
a single layer morphological perceptron (SLMP) with one output neuron also
consists of a finite number of input neurons that are connected via axonal fibers
to the output neuron. However, in contrast to an SLP, the output neuron of an
SLMP has a dendritic structure and performs the lattice computation embodied
by (4). Figure 3 provides a pictorial representation of a general SLMP with a
single output neuron. As the examples of the preceding section illustrate, the
computational capability of an SLMP is vastly different from that of an SLP as
well as that of classical perceptrons in general. No hidden layers were necessary
to solve the XOR problem or to specify the points of the non-convex region of
Fig. 7. Observing differences by examples, however, does not provide answer as

6 G.X. Ritter, L. Iancu, and G. Urcid

Fig. 6. SLMP that solves the two-class XOR problem for points from the domain
x = (x1, x2) ∈ IR2

Table 2. Two-Class XOR Network Parameters, Ex. 3

Djk w1
1jk w0

1jk w1
2jk w0

2jk pjk

D11 0 1 0 1 +1

D12 0 ∞ 0 ∞ 1

D13 +∞ 1 +∞ 1 1

D21 0 1 0 1 +1

D22 0 ∞ +∞ 1 1

D23 +∞ 1 0 ∞ 1

to the specific computational capabilities of an SLMP with one output neuron.
Such an answer is given by the following two theorems.

Theorem 1. If X ⊂ R
n is compact and ε > 0, then there exists a single layer

morphological perceptron that assigns every point of X to class C1 and every
point x ∈ R

n to class C0 whenever d(x, X) > ε.

The expression d(x, X) in Theorem 1 refers to the distance of the point x ∈
R

n to the setX . Figure 7 illustrates this concept. All points ofX will be classified
as belonging to class C1 and all points outside the banded region of thickness ε
will be classified as belonging to class C0. Points within the banded region may
be misclassified. As a consequence, any compact configuration, whether it is
convex or non-convex, connected or not connected, contains a finite or infinite

7Neurons, Dendrites, and Pattern Classification

Fig. 7. The compact region X (shaded) and the banded region of thickness ε (dashed)

number of points, can be approximated to any desired degree of accuracy ε > 0
by an SLMP with one output neuron.

The proof of Theorem 1 requires tools from elementary point set topology and
is given in [23]. Although the proof is an existence proof, part of it is constructive
and provides the basic idea for our training algorithms.

Theorem 2 is a generalization of Theorem 1 to multiple sets. Suppose X1,
X2, . . . , Xm denotes a collection of disjoint compact subsets of R

n. The goal
is to classify, ∀j = 1, . . . ,m, every point of Xj as a point belonging to class Cj

and not belonging to class Ci whenever i �= j. For each p ∈ {1, . . . ,m}, define
Yp =

⋃m
j=1,j �=p Xj . Since each Yp is compact and Yp∩Xp = ∅, εp = d(Xp, Yp) > 0

∀p = 1, . . . ,m. Let ε0 = 1
2 min{ε1, . . . , εp}.

Theorem 2. If {X1, X2, . . . , Xm} is a collection of disjoint subsets of R
n and

ε a positive number with ε < ε0, then there exists a single layer morphological
perceptron that assigns each point x ∈ R

n to class Cj whenever x ∈ Xj and j ∈
{1, . . . ,m}, and to class C0 = ¬⋃m

j=1 Cj whenever d(x, Xi) > ε, ∀i = 1, . . . ,m.
Furthermore, no point x ∈ R

n is assigned to more than one class.

Figure 8 illustrates the conclusion of Theorem 2 for the casem = 3. The proof
of this theorem is somewhat lengthy and because of page limitation could not be
included. The proof is given in [24]. Based on the proofs of these two theorems, we
constructed training algorithms for SLMPs [23, 24]. During the learning phase,
the output neurons grow new dendrites and input neurons expand their axonal
branches to terminate on the new dendrites. The algorithms always converge
and have rapid convergence rate when compared to backpropagation learning in
traditional perceptrons.

These training algorithms are similar in that they all dynamically grow den-
drites and axonal fibers during the learning phase, which will use the patterns
of the training set in just one iteration (one epoch). The algorithms differ in the
strategy of partitioning the pattern space, by either growing a class region by
merging smaller hyper-boxes, or reducing an initial large box through elimination

8 G.X. Ritter, L. Iancu, and G. Urcid

Fig. 8. The compact region X (shaded) and the banded region of thickness ε (dashed)

of foreign patterns and smaller regions that enclose them. Also, as a consequence
of the aforementioned theorems on which the algorithms are based, the trained
SLMPs will always correctly recognize 100% of the patterns in the training set.
The next examples illustrate the performance of these training algorithms for
some well-known problems.

Example 4. A nontrivial benchmark for testing the performance of a training
algorithm is the well known problem of the two intertwined spirals [25]. For
our tests, we used two Archimedean spirals defined by the complex expression
zc(θ) = xc(θ) + iα 1yc(θ) = (1)1 cρθeiθ, where i =

√
1, c ∈ {0, 1} denotes

the spiral class label, θ is the angle in radians, α > 0 denotes the aspect ratio
between the xc and yc coordinates, and ρ > 0 is a constant that controls the
spread of the spiral turns.

This problem was used to test the performance of one SLMP training algo-
rithm that we developed, which is tailored to handle data sets where the patterns
are points on a curve in 2-D space. The data set consists of 192 patterns, 96 on
each spiral, 75% of which were used for training and 25% for test, selected at
random from the entire set. During a typical training session, the algorithm
grew 163 dendrites (161 excitatory and 2 inhibitory). Recognition of the test
patterns was 100% correct. The class C1 region learned by the SLMP is illus-
trated in Fig. 9. In the figure, each small rectangle represents an elementary
area recognized by an individual dendrite. The solid-line rectangles correspond
to excitatory dendrites; regions of inhibitory dendrites are drawn with dashed
lines. The learned class C1 region is the union of the solid-line rectangles minus
the dashed-line rectangles.

Example 5. Another data set we used is the one considered in [26] to test their
simulation of a radial basis function network. The data set consists of two non-
linearly separable classes of 10 patterns each. This pattern set was used as input
by two other training algorithms that we developed. The former algorithm uses
region merging, but assumes no a priori distribution of the patterns as did the

9Neurons, Dendrites, and Pattern Classification

✲

✻

��

��

�

�

�

�

�

�

�

�

�

��

�

�

��

�

�

��

��

��

�

�

�

��

�

�

�

�

�

�

�

� ��

�

�

��

�

�

�

�

��

�

�

�

�

�

��

�

��

�

�

�

��

��

�

�

�

��

��

�

�

�

�

���

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

��

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

��

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

��

��

�

�
� �

��

�

�

��

��

��

��

��

�

��

�

�

��

��

�

�

��

��

�

�

��

�

��

�

�

��

�

��
�

��
����

Fig. 9. The two-spirals problem. Each spiral consists of 96 patterns, 75% of which were
used for training. Class C1 patterns are marked with filled circles (training) and circled
dots (test); class C2 patterns with empty circles (training) and double circles (test).
The shaded area is the learned class C1 region; recognition is 100% correct

method mentioned in Example 4. The latter algorithm uses region elimination,
i.e. it starts training by drawing an enclosing large hyper-box and proceeds by
eliminating smaller regions around patterns that do not belong to the class corre-
sponding to the enclosing hyper-box. The results of the two training algorithms
are illustrated in Fig. 10 and 11, respectively. In both cases, all patterns were
used for both training and test, and classification was 100% correct, as expected.

For comparison, Fig. 12 depicts the results after training a classical MLP on
the same data set. The dotted lines represent the decision boundaries learned
after 2000 epochs by a two-layer MLP with 13 nodes in the hidden layer us-
ing backpropagation as training algorithm. Figure 12 shows that the separation
surfaces learned by the MLP are open, in contrast to the separation surfaces of
SLMPs, which are guaranteed to result closed. Furthermore, convergence of the
MLP is much slower than the SLMP’s counterpart, even for this small data set
of 20 patterns.

5 Remarks on Fuzzy Computing and Inhibitory Neurons

In our SLMP model the values of the output neurons are always crisp, i.e. having
either value 1 or 0. In many application domains it is often desirable to have
fuzzy valued outputs in order to describe such terms as very tall, tall, fairly
tall, somewhat tall, and not tall at all. Obviously, the boundaries between these
concepts cannot be exactly quantified. In particular, we would like to have output
values yj(x) such that 0 ≤ yj(x) ≤ 1, where yj(x) = 1 if x is a clear member

10 G.X. Ritter, L. Iancu, and G. Urcid

✲

✻

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

Fig. 10. The shaded are is the class C1 region learned by the merging version of the
SLMP training algorithm applied to this two nonlinearly separable classes problem.
Patterns of the two classes are marked with • and ◦, respectively. The algorithms grows
20 dendrites (19 excitatory and 1 inhibitory, dashed); recognition is 100% correct

of class Cj and yj(x) = 0 whenever x has no relation to class Cj . However, we
would like to say that x is close to full membership of class Cj the closer the
value of yj(x) is to value 1. To illustrate how the SLMP can be extended to
produce fuzzy outputs, we reconsider Example 1 of Section 3.

Suppose we would like to have every point in the interval [a, b] ⊂ IR to be
classified as belonging to class C1 and every point outside the interval [a α, b+α]
as having no relation to class C1, where α > 0 is a specified fuzzy boundary
parameter. For a point x ∈ [a α, a] or x ∈ [b, b+ α] we would like y(x) to be
close to 1 when x is close to a or b, and y(x) close to 0 whenever x is close to a α
or b+ α. In this case we simply convert the input x ∈ IR to a new input format
x
α . If w

0
1 = b and w1

1 = a denote the weights found either by inspection or the

aforementioned algorithms for input x, then set v0
1 = w0

1
α 1 and v1

1 = w1
1

α +1
for the weights of the new input x

α and use the ramp activation function

f(z) =



1 if z ≥ 1
z if 0 ≤ z ≤ 1
0 if z ≤ 0

. (6)

Computing τ x
α

)
we obtain τ x

α

)
= x

α + v1
1

) ∧ x
α + v0

1

)
=

[
1
α (x a) + 1

]
∧ [

1
α (x b) + 1

]
. Thus,

f
[
τ

(x

α

)]
=



1 if x ∈ [a, b]
0 ≤ τ x

α

)
< 1 if x /∈ [a, b]

0 if x /∈ [a α, b+ α]
. (7)

The Equation (7) is illustrated in Fig. 13 and the network in Fig. 14. By
choosing fuzzy factors αi for each xi, it is intuitively clear how this example
generalizes to pattern vectors x = (x1, . . . , xn) ∈ IRn.

11Neurons, Dendrites, and Pattern Classification

✲

✻

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

Fig. 11. The same problem as in Fig. 10, this time solved using the elimination version
of the SLMP training algorithm. Only 4 dendrites of the class C1 output neuron are
sufficient to partition the pattern space similarly to the partitioning learned by a 13-
hidden unit MLP, but with closed surfaces. Recognition is again 100% correct

One assumption made in our model is that a neuron Ni can provide both
excitatory as well as inhibitory input to a neuron Mj . This assumption has no
foundation in biology. In real neural networks, a neuron can send only excitatory
or only inhibitory signals to other neurons. Neurons that act as inhibitors on
other neurons are called inhibitory neurons. It is interesting to observe that all
the examples given in this exposition can be expressed in terms of networks
consisting entirely of excitatory and inhibitory neurons. As an illustration, let
us again consider Example 1 of Section 3. In this case there are several ways of
adding an inhibitory neuron. For example, we can add an inhibitory neuronN2 so
that we now have two input neurons N1 and N2, one sending only excitatory and
the other only inhibitory inputs to the output neuron M , as shown in Fig. 15(a).
In this case the axonal weights of the excitatory and inhibitory neuron are w1

1 =
a and w0

1 = b, respectively. Obviously, τ(x) = (x a)∧ (x b) ≥ 0 ⇐⇒ a ≤
x ≤ b and, therefore, the output of M is 1 if and only if x ∈ [a, b]. The downside
of this approach is that the network topology has become a bit more complex
in that we are now dealing with two input neurons. If only one input neuron is
desired, then N2 can be partially hidden as illustrated in Fig. 15(b). In this case,
N1 sends excitatory signals to M and N2, and N2 sends inhibitory signals to M .
Since N2 is not an input neuron, its states are binary, the activation function
for N2 is a hard limiter of form

g(z) =
{
1 if z > 0
0 if z ≤ 0 (8)

and its axonal weight is w0
2 = .5. The weights of the input neuron’s dendritic

fibers are w1
12 = a and w1

21 = b, which terminate on the single dendrites of
N2 and M , respectively. If τ(x) and τ2(x) denote the total received inputs of M
and N2, then M fires if and only if τ(x) = (x a)∧ [

g τ2(x)
)

0.5
] ≥ 0. Thus,

12 G.X. Ritter, L. Iancu, and G. Urcid

Fig. 12. Decision boundaries learned by a two-layer perceptron with 13 nodes in the
hidden layer, using backpropagation. The thin space between the boundaries represents
a region of uncertainty. Note that the separation surfaces are open, and compare with
the regions learned by an SLMP in Fig. 10 and 11

Fig. 13. Illustration of computing fuzzy output values

the output of M has value 1 if and only if a ≤ x ≤ b. Although this network also
solves the problem of having only excitatory and inhibitory neurons, it is again
more complex than the two-neuron model of Example 1. Even considering more
complex pattern recognition problems, we have seen no mathematical advantage
thus far in using inhibitory neurons. This does not imply that future research will
not discover more powerful neural networks with dendritic structures consisting
of only excitatory and inhibitory neurons. This facet of our investigations remains
an active area of research.

6 Conclusions

We presented a new paradigm for neural computation that is based on lattice
algebra and takes into account synaptic responses as well as computations in
dendrites. The training algorithms that we developed grow new axonal fibers
as well as dendritic structures during the learning phase. These facets of our
model are more in agreement with current understanding of cerebral neural
networks than current fashionable ANNs. The theorems that we established as

13Neurons, Dendrites, and Pattern Classification

Fig. 14. The modified network of Example 1

Fig. 15. Examples of two different SLMPs using only excitatory and inhibitory neu-
rons. In (a) two input neurons are required, while in (b) a semi-hidden neuron is
required

well as the examples presented in this paper make it obvious that an SLMP with
just one output neuron is far more powerful as a pattern recognizer than the
traditional single layer perceptron with one output neuron or a perceptron with
one output neuron and one hidden layer. In fact, our training algorithms always
draw a closed surface around the training set, thus preventing the problems of
traditional perceptrons discussed in the Introduction.

We also indicated how our model can be generalized to include fuzzy compu-
tation. This remains an area of further research and applications. Additionally,
we discussed the problem of employing only excitatory and inhibitory neurons
in our model. As mentioned, this remains an active area of research and we hope
that other researchers will join us in further exploration of these problems in
order to bring ANNs into closer relationship with biological neural networks.

References

1. Eccles, J.C.: The Understanding of the Brain. McGraw-Hill, New York (1977)

2. Koch, C., Segev, I. (eds.): Methods in Neuronal Modeling: From Synapses to Net-
works. MIT Press, Boston (1989)

3. Segev, I.: Dendritic Processing. In: Arbib, M. (ed.): The Handbook of Brain Theory
and Neural Networks. MIT Press, Boston (1998) 282–289

4. Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks. MIT
Press, Boston (1998)

14 G.X. Ritter, L. Iancu, and G. Urcid

5. Holmes, W.R., Rall, W.: Electronic Models of Neuron Dendrites and Single Neuron
Computation. In: McKenna, T., Davis, J., Zornetzer, S.F. (eds.): Single Neuron
Computation. Academic Press, San Diego (1992) 7–25

6. McKenna, T., Davis, J., Zornetzer, S.F. (eds.): Single Neuron Computation. Aca-
demic Press, San Diego (1992)

7. Mel, B.W.: Synaptic Integration in Excitable Dendritic Trees. J. of Neurophysiol-
ogy 70 (1993) 1086–1101

8. Rall, W., Segev, I.: Functional Possibilities for Synapses on Dendrites and Dendritic
Spines. In: Edelman, G.M., Gall, E.E., Cowan, W.M. (eds.): Synaptic Function.
Wiley, New York (1987) 605–636

9. Shepherd, G.M.: Canonical Neurons and their Computational Organization. In:
McKenna, T., Davis, J., Zornetzer, S.F. (eds.): Single Neuron Computation. Aca-
demic Press, San Diego (1992) 27–55

10. Gori, M., Scarselli, F.: Are Multilayer Perceptrons Adequate for Pattern Recogni-
tion and Verification? IEEE Trans. on Pattern Analysis and Machine Intelligence
20(11) (1998) 1121–1132

11. Davidson, J.L.: Simulated Annealing and Morphological Neural Networks. In: Im-
age Algebra and Morphological Image Processing III. Proc. SPIE 1769, San Diego,
CA (July 1992) 119–127

12. Davidson, J.L., Hummer, F.: Morphology Neural Networks: An Introduction with
Applications. IEEE Systems and Signal Processing 12(2) (1993) 177–210

13. Davidson, J.L., Srivastava, R.: Fuzzy Image Algebra Neural Network for Template
Identification. Second Annual Midwest Electro-Technology Conference. Ames, IA
(April 1993) 68–71

14. Davidson, J.L., Talukder, A.: Template Identification Using Simulated Anneal-
ing in Morphology Neural Networks. Second Annual Midwest Electro-Technology
Conference. Ames, IA (April 1993) 64–67

15. Ritter, G.X., Sussner, P.: Associative Memories Based on Lattice Algebra. IEEE
Inter. Conf. Systems, Man, and Cybernetics. Orlando, FL (October 1997) 3570–
3575

16. Ritter, G.X., Sussner, P., Diaz de Leon, J.L.: Morphological Associative Memories.
IEEE Trans. on Neural Networks 9(2) (March 1998) 281–293

17. Ritter, G.X., Diaz de Leon, J.L., Sussner, P.: Morphological Bidirectional Associa-
tive Memories. Neural Networks 12 (March 1999) 851–867

18. Ritter, G.X., Urcid, G., Iancu, L.: Reconstruction of Noisy Patterns Using Mor-
phological Associative Memories. J. of Mathematical Imaging and Vision 19(5)
(2003) 95–111

19. Suarez-Araujo, C.P., Ritter, G.X.: Morphological Neural Networks and Image Al-
gebra in Artificial Perception Systems. In: Image Algebra and Morphological Image
Processing III. Proc. SPIE 1769, San Diego, CA (July 1992) 128–142

20. Sussner, P.: Observations on Morphological Associative Memories and the Kernel
Method. Neurocomputing 31, Elsevier (2000) 167–183

21. Won, Y., Gader, P.D.: Morphological Shared Weight Neural Network for Pattern
Classification and Automatic Target Detection. Proc. 1995 IEEE International
Conference on Neural Networks, Perth, Western Australia (November 1995)

22. Won, Y., Gader, P.D., Coffield,P.: Morphological Shared-Weight Networks with
Applications to Automatic Target Recognition. IEEE Trans. on Neural Networks
8(5) (1997) 1195–1203

23. Ritter, G.X., Urcid, G.: Lattice Algebra Approach to Single Neuron Computation.
IEEE Trans. on Neural Networks 14(2) (March 2003) 282–295

15Neurons, Dendrites, and Pattern Classification

24. Ritter, G.X., Iancu, L.: Morphological Perceptrons. Preprint submitted to IEEE
Trans. on Neural Networks.

25. Lang, K.J., Witbrock, M.J.: Learning to Tell Two Spirals Apart. In: Touretzky, D.,
Hinton, G., Sejnowski, T. (eds.): Proc. of the 1988 Connectionist Model Summer
School. Morgan Kaufmann, San Mateo, CA (1988) 52–59

26. Wasnikar, V.A., Kulkarni, A.D.: Data Mining with Radial Basis Functions. In:
Dagli, C.H., et al. (eds.): Intelligent Engineering Systems Through Artificial Neural
Networks. ASME Press, New York (2000)

16 G.X. Ritter, L. Iancu, and G. Urcid

	1 Introduction
	2 Morphological Perceptrons Based on Dendritic Computation
	3 Examples
	4 Computational Capability of an SLMP
	5 Remarks on Fuzzy Computing and Inhibitory Neurons
	6 Conclusions

