Skip to main content

Ventilator-Associated Pneumonias

  • Chapter
  • First Online:

Abstract

Ventilator-associated pneumonias (VAP) are the most common complication in the course of intubated patients and are the leading cause of death in critical care settings worldwide, as well as being the first cause of antibiotic prescription in intensive care units (ICUs). As an important cause of increased morbidity and mortality in hospitalized pediatric patients, healthcare systems are now required to report VAPs, among other healthcare-associated infections (HAIs) through the CDC National Healthcare Safety Network (NHSN). Here we will review the revised 2013 CDC/NHSN definitions and surveillance guidelines for ventilator-associated events (VAE) in adult inpatient locations and examine how these guidelines can be applied or adapted in pediatric patients. Additionally, this chapter will provide an overview of VAPs by reviewing the recent data describing the pathogenesis, diagnosis, prevention, and treatment strategies of VAPs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care- associated infections, 2011. N Engl J Med. 2014;370:1198–208.

    Article  CAS  Google Scholar 

  2. Fischer JE, Ramser M, Fanconi S. Use of antibiotics in pediatric intensive care and potential savings. Intensive Care Med. 2000;26(7):959–66.

    Article  CAS  Google Scholar 

  3. Fayon MJ, Tucci M, Lacroix J, Farrell CA, Gauthier M, Lafleur L, et al. Nosocomial pneumonia and tracheitis in a pediatric intensive care unit: a prospective study. Am J Respir Crit Care Med. 1997;155:162–9.

    Article  CAS  Google Scholar 

  4. Fagon JY, Chastre J, Vuagnat A, Trouillet JL, Novara A, Gibert C. Nosocomial pneumonia and mortality among patients in intensive care units. JAMA. 1996;275(11):866–9.

    Article  CAS  Google Scholar 

  5. Gupta S, Boville BM, Blanton R, et al. A multicentered prospective analysis of diagnosis, risk factors, and outcomes associated with pediatric ventilator- associated pneumonia. Pediatr Crit Care Med. 2015;16(3):e65–73.

    Article  Google Scholar 

  6. Bigham MT, Amato R, Bondurrant P, et al. Ventilator-associated pneumonia in the pediatric intensive care unit: Characterizing the problem and implementing a sustainable solution. J Pediatr. 2009;154:582–587.e2.

    Article  Google Scholar 

  7. Brilli RJ, Sparling KW, Lake MR, et al. The business case for preventing ventilator-associated pneumonia in pediatric intensive care unit patients. Jt Comm J Qual Patient Saf. 2008;34:629–38.

    Article  Google Scholar 

  8. Klompas M. Interobserver variability in ventilator-associated pneumonia surveillance. Am J Infect Control. 2010;38:237–9.

    Article  Google Scholar 

  9. Dudeck MA, et al. National Healthcare Safety Network (NHSN) report, data summary for 2012, Device-associated module. Am J Infect Control. 2013;41:1148–66.

    Article  Google Scholar 

  10. Klompas M, et al. Risk of misleading ventilator-associated pneumonia rates with use of standard clinical and microbiological criteria. Clin Infect Dis. 2008;46:1443–6.

    Article  Google Scholar 

  11. Beyersmann J, Gastmeier P, Grundmann H, et al. Use of multistate models to assess prolongation of intensive care unit stay due to nosocomial infection. Infect Control Hosp Epidemiol. 2006;27(5):493–9.

    Article  CAS  Google Scholar 

  12. Safdar N, Dezfulian C, Collard HR, et al. Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Crit Care Med. 2005;33(10):2184–93.

    Article  Google Scholar 

  13. Suka M, Yoshida K, Uno H, et al. Incidence and outcomes of ventilator- associated pneumonia in Japanese intensive care units: the Japanese nosocomial infection surveillance system. Infect Control Hosp Epidemiol. 2007;28(3):307–13.

    Article  Google Scholar 

  14. Cordero L, Ayers LW, Miller RR, et al. Surveillance of ventilator-associated pneumonia in very-low-birth-weight infants. Am J Infect Control. 2002;30(1):32–9.

    Article  Google Scholar 

  15. Emori TG, Edwards JR, Culver DH, et al. Accuracy of reporting nosocomial infections in intensive-care-unit patients to the National Nosocomial Infections Surveillance system: a pilot study. Infect Control Hosp Epidemiol. 1998;19(5):308–16.

    Article  CAS  Google Scholar 

  16. https://www.cdc.gov/nhsn/pdfs/pscmanual/10-vae_final.pdf. Accessed 17 Apr 2018.

  17. Cocoros NM, et al. Ventilator-associated events in neonates and children – a new paradigm. Crit Care Med. 2016;44(1):14–22.

    Article  CAS  Google Scholar 

  18. https://www.cdc.gov/nhsn/pdfs/pscmanual/6pscvapcurrent.pdf. Accessed 17 Apr 2018.

  19. Mhanna MJ. Ventilator-associated events in neonates and children: a single definition for a heterogeneous population. Crit Care Med. 2016;44(1):233–4.

    Article  Google Scholar 

  20. American Thoracic Society. Hospital-acquired pneumonia in adults: diagnosis, assessment of severity, initial antimicrobial therapy, and preventive strategies. A consensus statement, American Thoracic Society, November 1995. Am J Respir Crit Care Med. 1996;153:1711–25.

    Article  Google Scholar 

  21. Pinciroli R, et al. Respiratory therapy device modifications to prevent ventilator-associated pneumonia. Curr Opin Infect Dis. 2013;26:175–83.

    Article  Google Scholar 

  22. Mourani PM, Sontag MK. Ventilator-associated pneumonia in critically ill children: a new paradigm. Pediatr Clin N Am. 2017;64:1039–56.

    Article  Google Scholar 

  23. Foglia E, Meier MD, Elward A. Ventilator-associated pneumonia in neonatal and pediatric intensive care unit patients. Clin Microbiol Rev. 2007;20(3):409–25.

    Article  Google Scholar 

  24. Elward AM. Pediatric ventilator-associated pneumonia. Pediatr Infect Dis J. 2003;22(5):445–6.

    PubMed  Google Scholar 

  25. Guess R, et al. Risk factors for ventilator-associated events in a PICU. Pediatr Crit Care Med. 2018;19:e7–e13.

    Article  Google Scholar 

  26. Cocoros NM. Factors associated with pediatric ventilator-associated conditions in 6 US hospitals: a nested case-control study. Pediatr Crit Care Med. 2017;18(11):e536–45.

    Article  Google Scholar 

  27. Thatrimontrichai A, et al. Outcomes and risk factors of ventilator-associated pneumonia in neonates. World J Pediatr. 2017;13(4):328–34.

    Article  Google Scholar 

  28. Cocoros NM, Priebe GP, Logan LK, et al. A pediatric approach to ventilator-associated events surveillance. Infect Control Hosp Epidemiol. 2017;38:327–33.

    Article  Google Scholar 

  29. Gionfriddo A, et al. Retrospective application of new pediatric ventilator-associated pneumonia criteria identifies a high-risk population. Pediatr Crit Care Med. 2018;19:507. https://doi.org/10.1097/PCC.0000000000001522.

    Article  PubMed  Google Scholar 

  30. Bochicchio GV, Napolitano L, Joshi M, et al. Blood product transfusion and ventilator-associated pneumonia in trauma patients. Surg Infect. 2008;9:415–22.

    Article  Google Scholar 

  31. Kunac A, Sifri ZC, Mohr AM, Horng H, Lavery RF, Livingston DH. Bacteremia and ventilator-associated pneumonia: a marker for contemporaneous extra-pulmonic infection. Surg Infect. 2014;15(2):77–83.

    Article  Google Scholar 

  32. Luna CM, et al. Blood cultures have limited value in predicting severity of illness and as a diagnostic tool in ventilator-associated pneumonia. Chest. 1999;116:1075–84.

    Article  CAS  Google Scholar 

  33. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002;165(7):867–903.

    Article  Google Scholar 

  34. Karakuzu Z, et al. Prognostic risk factors in ventilator-associated pneumonia. Med Sci Monit. 2018;24:1321–8.

    Article  Google Scholar 

  35. Sutherland KR, Steinberg KP, Maunder RJ, Milberg JA, Allen DL, Hudson LD. Pulmonary infection during the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;152:550–6.

    Article  CAS  Google Scholar 

  36. Chastre J, Trouillet JL, Vuagnat A, Joly-Guillou ML, Clavier H, Dombret MC, Gibert C. Nosocomial pneumonia in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1998;157:1165–72.

    Article  CAS  Google Scholar 

  37. Delclaux C, Roupie E, Blot F, Brochard L, Lemaire F, Brun-Buisson C. Lower respiratory tract colonization and infection during severe acute respiratory distress syndrome: incidence and diagnosis. Am J Respir Crit Care Med. 1997;156:1092–8.

    Article  CAS  Google Scholar 

  38. Markowitz P, Wolff M, Djedaini K, Cohen Y, Chastre J, Delclaux C, Merrer J, Herman B, Veber B, Fontaine A, et al. Multicenter prospective study of ventilator-associated pneumonia during acute respiratory distress syndrome. Incidence, prognosis, and risk factors. ARDS Study Group. Am J Respir Crit Care Med. 2000;161:1942–8.

    Article  Google Scholar 

  39. Six S, et al. Hyperoxemia as a risk factor for ventilator-associated pneumonia. Crit Care. 2016;20:195.

    Article  Google Scholar 

  40. Wang L, et al. Semi-recumbent position versus supine position for the prevention of ventilator-associated pneumonia in adults requiring mechanical ventilation. Cochrane Database Syst Rev. 2016;(1):CD009946.

    Google Scholar 

  41. Shorr AF, Zilberberg MD, Micek ST, Kollef MH. Prediction of infection due to antibiotic-resistant bacteria by select risk factors for healthcare-associated pneumonia. Arch Intern Med. 2008;168:2205–10.

    Article  Google Scholar 

  42. Aliberti S, Di Pasquale M, Zanaboni AM, et al. Stratifying risk factors for multidrug-resistant pathogens in hospitalized patients coming from the community with pneumonia. Clin Infect Dis Off Publ Infect Dis Soc Am. 2012;54:470–8.

    Article  Google Scholar 

  43. Shindo Y, Ito R, Kobayashi D, et al. Risk factors for drug-resistant pathogens in community-acquired and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2013;188:985–95.

    Article  CAS  Google Scholar 

  44. Maruyama T, Fujisawa T, Okuno M, et al. A new strategy for healthcare- associated pneumonia: a 2-year prospective multicenter cohort study using risk factors for multidrug-resistant pathogens to select initial empiric therapy. Clin Infect Dis Off Publ Infect Dis Soc Am. 2013;57:1373–83.

    Article  CAS  Google Scholar 

  45. Povoa P, et al. Biomarkers kinetics in the assessment of ventilator-associated pneumonia response to antibiotics – results from the BioVAP study. J Crit Care. 2017;41:91–7.

    Article  CAS  Google Scholar 

  46. Bos LD, Martin-Loeches I, Kastelijn JB, et al. The volatile metabolic fingerprint of ventilator-associated pneumonia. Intensive Care Med. 2014;40:761–2.

    Article  Google Scholar 

  47. Lake JG, et al. Pathogen distribution and antimicrobial resistance among pediatric healthcare-associated infections reported to the National Healthcare Safety Network, 2011-2014. Infect Control Hosp Epidemiol. 2018;39:1–11.

    Article  Google Scholar 

  48. Olsen B, Weinstein RA, Nathan C, et al. Epidemiology of endemic Pseudomonas aeruginosa: why infection control efforts have failed. J Infect Dis. 1984;150:808–16.

    Article  Google Scholar 

  49. Oliveira J, et al. Prevention of ventilator-associated pneumonias. Rev Port Pneumol. 2014;20(3):152–61.

    Article  CAS  Google Scholar 

  50. Baker AM, Meredith JW, Chang M, et al. Bronchoscopically guided management of ventilator-associated pneumonia in trauma patients. J Bronchology. 2003;10:7–16.

    Article  Google Scholar 

  51. Muscedere JC, et al. The adequacy of timely empiric antibiotic therapy for ventilator-associated pneumonia: an important determinant of outcome. J Crit Care. 2012;27:322.e7–322.e14.

    Article  Google Scholar 

  52. Falcone M, Russo A, Giannella M, et al. Individualizing risk of multidrug- && resistant pathogens in community-onset pneumonia. PLoS One. 2015;10:e0119528.

    Article  Google Scholar 

  53. Wilson DF, et al. Pediatric ventilator-associated infections: the ventilator-associated infection study. Pediatr Crit Care Med. 2017;18:e24–34.

    Article  Google Scholar 

  54. Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61–111.

    Article  Google Scholar 

  55. Arthur LE et al. Antibiotics for ventilator-associated pneumonia. Cochrane Database Syst Rev. 2016;(10):CD004267.

    Google Scholar 

  56. Pugh R1, Grant C, Cooke RP, Dempsey G. Short-course versus prolonged-course antibiotic therapy for hospitalacquired pneumonia in critically ill adults. Cochrane Database Syst Rev. 2015;8:1–43.

    Google Scholar 

  57. Metersky ML, Kalil AC. New guidelines for nosocomial pneumonia. Curr Opin Pulm Med. 2017;23(3):211–7.

    Article  Google Scholar 

  58. Lodise TP, Drusano GL. Use of pharmacokinetic/pharmacodynamic systems analyses to inform dose selection of tedizolid phosphate. Clin Infect Dis. 2014;58(Suppl 1):S28–34.

    Article  CAS  Google Scholar 

  59. Bassetti M, et al. New antibiotics for ventilator-associated pneumonia. Curr Opin Infect Dis. 2018;31:177–86.

    CAS  PubMed  Google Scholar 

  60. Sole-Lleonart C, Rouby JJ, Blot S, et al. Nebulization of antiinfective agents in invasively mechanically ventilated adults: a systematic review and meta analysis. Anesthesiology. 2017;126:890–908.

    Article  CAS  Google Scholar 

  61. Niederman MS, Chastre J, Corkery K, et al. BAY41-6551 achieves bactericidal tracheal aspirate amikacin concentrations in mechanically ventilated patients with Gram-negative pneumonia. Intensive Care Med. 2012;38:263–71.

    Article  CAS  Google Scholar 

  62. Kaku N, Morinaga Y, Takeda K, et al. Efficacy and pharmacokinetics of ME1100, a novel optimized formulation of arbekacin for inhalation, com- pared with amikacin in a murine model of ventilator-associated pneumonia caused by Pseudomonas aeruginosa. J Antimicrob Chemother. 2017;72:1123–8.

    CAS  PubMed  Google Scholar 

  63. Falco V, Burgos J, Papiol E, et al. Investigational drugs in phase I and phase II & clinical trials for the treatment of hospital-acquired pneumonia. Expert Opin Investig Drugs. 2016;25:653–65.

    Article  CAS  Google Scholar 

  64. Cabana MD, Rand CS, Powe NR, Wu AW, Wilson MH, Abboud PC, et al. Why don’t physicians follow clinical practice guidelines? A framework for improvement. JAMA. 1999;282:1458–65.

    Article  CAS  Google Scholar 

  65. Marwick C, Davey P. Care bundles: the holy grail of ınfectious risk management in hospital? Curr Opin Infect Dis. 2009;22:364–9.

    Article  Google Scholar 

  66. Institute for Healthcare Improvement. How to guide: prevent ventilator- associated pneumonia. Cambridge, MA. Available from: http://www.ihi.org.

  67. Alcan AO, Korkmaz FD, Uyar M. Prevention of ventilator-associated pneumonia: Use of the care bundle approach. Am J Infect Control. 2016;44:e173–6.

    Article  Google Scholar 

  68. Eom JS, et al. The impact of a ventilator bundle on preventing ventilator-associated pneumonia: a multicenter study. Am J Infect Control. 2014;42:34–7.

    Article  Google Scholar 

  69. Bo L, et al. Probiotics for preventing ventilator-associated pneumonia. Cochrane Database Syst Rev. 2014;(10):CD009066.

    Google Scholar 

  70. Graf JM, Montagnino BA, Hueckel R. McPherson ML. Pediatric tracheostomies: a recent experience from one academic center. 2008;9:96–100.

    Google Scholar 

  71. AHRQ. Agency for healthcare research and quality. HCUP KID database 2012.

    Google Scholar 

  72. McCaleb R, et al. Description of respiratory microbiology of children with long-term tracheostomies. Respir Care. 2016;61(4):447–52.

    Article  Google Scholar 

  73. Craven DE, Hudcova J, Rashid J. Antibiotic therapy for ventilator-associated tracheobronchitis: a standard of care to reduce pneumonia, morbidity and costs? Curr Opin Pulm Med. 2015;21(3):250–9.

    Article  CAS  Google Scholar 

  74. Nseir S, Martin-Loeches I, Makris D, et al. Impact of appropriate antimicrobial treatment on transition from ventilator-associated tracheobronchitis to ventilator-associated pneumonia. Crit Care. 2014;18:R129.

    Article  Google Scholar 

  75. Agrafiotis M, Siempos II, Falagas ME. Frequency, prevention, outcome and treatment of ventilator-associated tracheobronchitis: systematic review and meta-analysis. Respir Med. 2010;104:325–36.

    Article  Google Scholar 

  76. Simpson VS, Bailey A, Higgerson RA, Christie LM. Ventilator-associated tracheobronchitis in a mixed medical/surgical pediatric ICU. Chest. 2013;144:32–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy S. Arrington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arrington, A.S. (2019). Ventilator-Associated Pneumonias. In: McNeil, J., Campbell, J., Crews, J. (eds) Healthcare-Associated Infections in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-98122-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98122-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98121-5

  • Online ISBN: 978-3-319-98122-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics