Skip to main content

Electrocochleography

  • Chapter
  • First Online:
Book cover Diagnosis and Treatment of Vestibular Disorders

Abstract

Electrocochleography measures electrical signals produced by the cochlea in response to acoustic stimuli. Over the last 80 years, measurement techniques have advanced rendering electrocochleography more sensitive and less invasive. Electrocochleography is primarily used in the diagnosis of Meniere’s disease, for which it is a specific test with improving sensitivity. However, multiple additional applications for electrocochleography have been developed, including intraoperative monitoring in cochlear implantation and other procedures, evaluation of superior semicircular canal dehiscence, and diagnosis of auditory neuropathy/synaptopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wever EG, Bray CW. Action currents in the auditory nerve in response to acoustical stimulation. Proc Natl Acad Sci U S A. 1930;16:344–50.

    Article  CAS  Google Scholar 

  2. Fromm B, Nylen C, Zotterman Y. Studies in the mechanism of the Wever and Bray effect. Acta Otolaryngol (Stockh). 1935;22:477–86.

    Article  Google Scholar 

  3. Lempert J, Wever EG, Lawrence M. The cochleogram and its clinical application; a preliminary report. Arch Otolaryngol. 1947;45:61–7.

    Article  CAS  Google Scholar 

  4. Eggermont J. Electrocochleography. In: Auditory system. Berlin: Springer; 1976. p. 625–705.

    Chapter  Google Scholar 

  5. Coats AC. The summating potential and Meniere’s disease. I. Summating potential amplitude in Meniere and non-Meniere ears. Arch Otolaryngol. 1981;107:199–208.

    Article  CAS  Google Scholar 

  6. Ferraro JA. Electrocochleography: a review of recording approaches, clinical applications, and new findings in adults and children. J Am Acad Audiol. 2010;21:145–52.

    Article  Google Scholar 

  7. Adunka OF, Giardina CK, Formeister EJ, et al. Round window electrocochleography before and after cochlear implant electrode insertion. Laryngoscope. 2016;126:1193–200.

    Article  Google Scholar 

  8. Fitzpatrick DC, Campbell AP, Choudhury B, et al. Round window electrocochleography just before cochlear implantation: relationship to word recognition outcomes in adults. Otol Neurotol. 2014;35:64–71.

    Article  Google Scholar 

  9. Attias J, Nageris B, Ralph J, et al. Hearing preservation using combined monitoring of extra-tympanic electrocochleography and auditory brainstem responses during acoustic neuroma surgery. Int J Audiol. 2008;47:178–84.

    Article  Google Scholar 

  10. Adams ME, Kileny PR, Telian SA, et al. Electrocochleography as a diagnostic and intraoperative adjunct in superior semicircular canal dehiscence syndrome. Otol Neurotol. 2011;32:1506–12.

    Article  Google Scholar 

  11. Eggermont JJ. Basic principles for electrocochleography. Acta Otolaryngol Suppl. 1974;316:7–16.

    Article  CAS  Google Scholar 

  12. Ruben RJ, Bordley JE, Nager GT, et al. Human cochlea responses to sound stimuli. Ann Otol Rhinol Laryngol. 1960;69:459–79.

    Article  CAS  Google Scholar 

  13. Yoshie N, Ohashi T, Suzuki T. Non-surgical recording of auditory nerve action potentials in man. Laryngoscope. 1967;77:76–85.

    Article  CAS  Google Scholar 

  14. Humphries KN, Ashcroft PB, Douek EE. Extra-tympanic electrocochleography. Acta Otolaryngol. 1977;83:303–9.

    Article  CAS  Google Scholar 

  15. Ferraro JA, Ferguson R. Tympanic ECochG and conventional ABR: a combined approach for the identification of wave I and the I-V interwave interval. Ear Hear. 1989;10:161–6.

    Article  CAS  Google Scholar 

  16. Thornton AR, Coleman MJ. The adaptation of cochlear and brainstem auditory evoked potentials in humans. Electroencephalogr Clin Neurophysiol. 1975;39:399–406.

    Article  CAS  Google Scholar 

  17. Terkildsen K, Osterhammel P, Huis In’t Veld F. Far-field electrocochleography, adaptation. Scand Audiol. 1975;4:215–20.

    Google Scholar 

  18. Ng M, Srireddy S, Horlbeck DM, et al. Safety and patient experience with transtympanic electrocochleography. Laryngoscope. 2001;111:792–5.

    Article  CAS  Google Scholar 

  19. Bonucci AS, Hyppolito MA. Comparison of the use of tympanic and extratympanic electrodes for electrocochleography. Laryngoscope. 2009;119:563–6.

    Article  Google Scholar 

  20. Ferraro JA, City K. Clinical electrocochleography: overview of theories, techniques and applications. In: Audiology Online 2000.

    Google Scholar 

  21. Chung WH, Cho DY, Choi JY, et al. Clinical usefulness of extratympanic electrocochleography in the diagnosis of Meniere’s disease. Otol Neurotol. 2004;25:144–9.

    Article  Google Scholar 

  22. Yoshie N. Clinical cochlear response audiometry by means of an average response computer: non-surgical technique and clinical use. Rev Laryngol Otol Rhinol (Bord). 1971;92(Suppl):646–72.

    Google Scholar 

  23. Lev A, Sohmer H. Sources of averaged neural responses recorded in animal and human subjects during cochlear audiometry (electro-cochleogram). Arch Klin Exp Ohren Nasen Kehlkopfheilkd. 1972;201:79–90.

    Article  CAS  Google Scholar 

  24. Coats AC, Martin JL, Kidder HR. Normal short-latency electrophysiological filtered click responses recorded from vertex and external auditory meatus. J Acoust Soc Am. 1979;65:747–58.

    Article  CAS  Google Scholar 

  25. Montandon PB, Shepard NT, Marr EM, et al. Auditory-nerve potentials from ear canals of patients with otologic problems. Ann Otol Rhinol Laryngol. 1975;84:164–73.

    Article  CAS  Google Scholar 

  26. Durrant JD, Ferraro JA. Analog model of human click-elicited SP and effects of high-pass filtering. Ear Hear. 1991;12:144–8.

    Article  CAS  Google Scholar 

  27. Von Békésy G, Wever EG. Experiments in hearing. New York: McGraw-Hill. 1960;8.

    Google Scholar 

  28. Dallos P. Electrical correlates of mechanical events in the cochlea. Audiology. 1975;14:408–18.

    Article  CAS  Google Scholar 

  29. Spoendlin H, Baumgartner H. Electrocochleography and cochlear pathology. Acta Otolaryngol. 1977;83:130–5.

    Article  CAS  Google Scholar 

  30. Gibson WP, Beagley HA. Electrocochleography in the diagnosis of acoustic neuroma. J Laryngol Otol. 1976;90:127–39.

    Article  CAS  Google Scholar 

  31. Shi W, Ji F, Lan L, et al. Characteristics of cochlear microphonics in infants and young children with auditory neuropathy. Acta Otolaryngol. 2012;132:188–96.

    Article  Google Scholar 

  32. Ruth RA, Lambert PR, Ferraro JA. Electrocochleography: methods and clinical applications. Am J Otol. 1988;9(Suppl):1–11.

    PubMed  Google Scholar 

  33. Ferraro JA, Arenberg IK, Hassanein RS. Electrocochleography and symptoms of inner ear dysfunction. Arch Otolaryngol. 1985;111:71–4.

    Article  CAS  Google Scholar 

  34. Roland PS, Roth L. Interinterpreter variability in determining the SP/AP ratio in clinical electrocochleography. Laryngoscope. 1997;107:1357–61.

    Article  CAS  Google Scholar 

  35. Conlon BJ, Gibson WP. Electrocochleography in the diagnosis of Meniere’s disease. Acta Otolaryngol. 2000;120:480–3.

    Article  CAS  Google Scholar 

  36. Goin DW, Staller SJ, Asher DL, et al. Summating potential in Meniere’s disease. Laryngoscope. 1982;92:1383–9.

    CAS  PubMed  Google Scholar 

  37. Sass K. Sensitivity and specificity of transtympanic electrocochleography in Meniere’s disease. Acta Otolaryngol. 1998;118:150–6.

    Article  CAS  Google Scholar 

  38. Mammarella F, Zelli M, Varakliotis T, et al. Is electrocochleography still helpful in early diagnosis of Meniere disease? J Audiol Otol. 2017;21:72–6.

    Article  Google Scholar 

  39. Gibson WP, Moffat DA, Ramsden RT. Clinical electrocochleography in the diagnosis and management of Meniere’s disorder. Audiology. 1977;16:389–401.

    Article  CAS  Google Scholar 

  40. Kim HH, Kumar A, Battista RA, et al. Electrocochleography in patients with Meniere’s disease. Am J Otolaryngol. 2005;26:128–31.

    Article  Google Scholar 

  41. Al-momani MO, Ferraro JA, Gajewski BJ, et al. Improved sensitivity of electrocochleography in the diagnosis of Meniere’s disease. Int J Audiol. 2009;48:811–9.

    Article  Google Scholar 

  42. Levine S, Margolis RH, Daly KA. Use of electrocochleography in the diagnosis of Meniere’s disease. Laryngoscope. 1998;108:993–1000.

    Article  CAS  Google Scholar 

  43. Durrant JD, Gans D. Biasing of the summating potentials. Acta Otolaryngol. 1975;80:13–8.

    Article  CAS  Google Scholar 

  44. Takeda T, Kakigi A. The clinical value of extratympanic electrocochleography in the diagnosis of Meniere’s disease. ORL J Otorhinolaryngol Relat Spec. 2010;72:196–204.

    Article  Google Scholar 

  45. Ge X, Shea JJ Jr. Transtympanic electrocochleography: a 10-year experience. Otol Neurotol. 2002;23:799–805.

    Article  Google Scholar 

  46. Claes GM, De Valck CF, Van de Heyning P, et al. The Meniere’s disease index: an objective correlate of Meniere’s disease, based on audiometric and electrocochleographic data. Otol Neurotol. 2011;32:887–92.

    Article  Google Scholar 

  47. Oh KH, Kim KW, Chang J, et al. Can we use electrocochleography as a clinical tool in the diagnosis of Meniere’s disease during the early symptomatic period? Acta Otolaryngol. 2014;134:771–5.

    Article  Google Scholar 

  48. Noguchi Y, Nishida H, Tokano H, et al. Comparison of acute low-tone sensorineural hearing loss versus Meniere’s disease by electrocochleography. Ann Otol Rhinol Laryngol. 2004;113:194–9.

    Article  Google Scholar 

  49. Goebel JA. 2015 Equilibrium Committee Amendment to the 1995 AAO-HNS guidelines for the definition of Meniere’s disease. Otolaryngol Head Neck Surg. 2016;154:403–4.

    Article  Google Scholar 

  50. McClellan JH, Formeister EJ, Merwin WH 3rd, et al. Round window electrocochleography and speech perception outcomes in adult cochlear implant subjects: comparison with audiometric and biographical information. Otol Neurotol. 2014;35:e245–52.

    Article  Google Scholar 

  51. Calloway NH, Fitzpatrick DC, Campbell AP, et al. Intracochlear electrocochleography during cochlear implantation. Otol Neurotol. 2014;35:1451–7.

    Article  Google Scholar 

  52. Campbell L, Kaicer A, Sly D, et al. Intraoperative real-time cochlear response telemetry predicts hearing preservation in cochlear implantation. Otol Neurotol. 2016;37:332–8.

    Article  Google Scholar 

  53. Mandala M, Colletti L, Tonoli G, et al. Electrocochleography during cochlear implantation for hearing preservation. Otolaryngol Head Neck Surg. 2012;146:774–81.

    Article  Google Scholar 

  54. Campbell L, Kaicer A, Briggs R, et al. Cochlear response telemetry: intracochlear electrocochleography via cochlear implant neural response telemetry pilot study results. Otol Neurotol. 2015;36:399–405.

    Article  Google Scholar 

  55. Morawski KF, Niemczyk K, Bohorquez J, et al. Intraoperative monitoring of hearing during cerebellopontine angle tumor surgery using transtympanic electrocochleography. Otol Neurotol. 2007;28:541–5.

    PubMed  PubMed Central  Google Scholar 

  56. Schlake HP, Milewski C, Goldbrunner RH, et al. Combined intra-operative monitoring of hearing by means of auditory brainstem responses (ABR) and transtympanic electrocochleography (ECochG) during surgery of intra- and extrameatal acoustic neurinomas. Acta Neurochir. 2001;143:985–95; discussion 95–6

    Article  CAS  Google Scholar 

  57. Lenarz T, Ernst A. Intraoperative monitoring by transtympanic electrocochleography and brainstem electrical response audiometry in acoustic neuroma surgery. Eur Arch Otorhinolaryngol. 1992;249:257–62.

    Article  CAS  Google Scholar 

  58. Prass RL, Kinney SE, Luders H. Transtragal, transtympanic electrode placement for intraoperative electrocochleographic monitoring. Otolaryngol Head Neck Surg. 1987;97:343–50.

    Article  CAS  Google Scholar 

  59. Mullatti N, Coakham HB, Maw AR, et al. Intraoperative monitoring during surgery for acoustic neuroma: benefits of an extratympanic intrameatal electrode. J Neurol Neurosurg Psychiatry. 1999;66:591–9.

    Article  CAS  Google Scholar 

  60. Moller AR. Monitoring auditory function during operations to remove acoustic tumors. Am J Otol. 1996;17:452–60.

    CAS  PubMed  Google Scholar 

  61. Youssef AS, Downes AE. Intraoperative neurophysiological monitoring in vestibular schwannoma surgery: advances and clinical implications. Neurosurg Focus. 2009;27:E9.

    Article  Google Scholar 

  62. Freeman SR, Sanli H, Gibson WP. Intraoperative electrocochleography for monitoring during stapes surgery. J Int Adv Otol. 2009;5:246–52.

    Google Scholar 

  63. Wazen JJ, Emerson R, Foyt D. Intra-operative electrocochleography in stapedectomy and ossicular reconstruction. Am J Otol. 1997;18:707–13.

    CAS  PubMed  Google Scholar 

  64. Silverstein H, Wazen J, Norrell H, et al. Retrolabyrinthine vestibular neurectomy with simultaneous monitoring of eighth nerve action potentials and electrocochleography. Am J Otol. 1984;5:552–5.

    CAS  PubMed  Google Scholar 

  65. Arts HA, Adams ME, Telian SA, et al. Reversible electrocochleographic abnormalities in superior canal dehiscence. Otol Neurotol. 2009;30:79–86.

    Article  Google Scholar 

  66. Meyerhoff WL, Yellin MW. Summating potential/action potential ratio in perilymph fistula. Otolaryngol Head Neck Surg. 1990;102:678–82.

    Article  CAS  Google Scholar 

  67. Gibson WP. Electrocochleography in the diagnosis of perilymphatic fistula: intraoperative observations and assessment of a new diagnostic office procedure. Am J Otol. 1992;13:146–51.

    CAS  PubMed  Google Scholar 

  68. Campbell KC, Savage MM, Harker LA. Electrocochleography in the presence and absence of perilymphatic fistula. Ann Otol Rhinol Laryngol. 1992;101:403–7.

    Article  CAS  Google Scholar 

  69. Starr A, Picton TW, Sininger Y, et al. Auditory neuropathy. Brain. 1996;119(Pt 3):741–53.

    Article  Google Scholar 

  70. Berlin CI, Hood LJ, Morlet T, et al. Absent or elevated middle ear muscle reflexes in the presence of normal otoacoustic emissions: a universal finding in 136 cases of auditory neuropathy/dys-synchrony. J Am Acad Audiol. 2005;16:546–53.

    Article  Google Scholar 

  71. Santarelli R, Starr A, Michalewski HJ, et al. Neural and receptor cochlear potentials obtained by transtympanic electrocochleography in auditory neuropathy. Clin Neurophysiol. 2008;119:1028–41.

    Article  Google Scholar 

  72. Stuermer KJ, Beutner D, Foerst A, et al. Electrocochleography in children with auditory synaptopathy/neuropathy: diagnostic findings and characteristic parameters. Int J Pediatr Otorhinolaryngol. 2015;79:139–45.

    Article  Google Scholar 

  73. Gibson WP. The clinical uses of electrocochleography. Front Neurosci. 2017;11:274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luryi, A.L., Schutt, C.A. (2019). Electrocochleography. In: Babu, S., Schutt, C., Bojrab, D. (eds) Diagnosis and Treatment of Vestibular Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97858-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97858-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97857-4

  • Online ISBN: 978-3-319-97858-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics