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Abstract Product-Service Systems (PSS) and the Internet of Things (IoT) are two
related concepts. This chapter describes an approach to manage PSS along its life
cycle. It includes a design methodology for PSS and a systems modelling method.
The former supports designers in defining PSSs that incorporate monitoring, control,
optimization or autonomy. It includes a newmethod to assess a product’s functional-
ity in terms of the data needed for its realization. The latter adopts life cycle thinking
and employs amodelling language to outline the PSS and its various components and
actors. A life cycle performance analysis could benefit from the model by extract-
ing cost information from it for further analysis. This chapter highlights challenges
related to PSS life cycle management observed during the Manutelligence project.
They concern the design methodology and the applied life cycle modelling method.
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3.1 Product-Service Systems and the Internet of Things

A PSS is an integrated product and service offering that delivers value in use to the
customer. There are several potential benefits of PSSs. First, there is an increase
of revenues, because services tend to have higher profit margins and can provide a
stable source of revenues. Second, they are means to differentiate offers in mass-
markets, which are typically characterized by commodities and technologies. Third,
services bring a decrease of variability and volatility of cash flow throughout the life
of a product resulting in a higher shareholder value [1]. PSS is a complex concept,
because it is composed of several parts that need to be managed: a product and one
or more related services, a network of stakeholders and a supporting infrastructure
[2]. The different product aspects, such as the concept and design phases and the
life cycle, have been analyzed deeper by many authors [3], while the service topic is
more recent and first attempts exist for structuring the service design [4].

The IoT technologies promote the business model of PSS. They enable new ser-
vices related to the connectivity and the usage of environmental data. Connected
smart products offer expanding opportunities for new functionality, greater reliabil-
ity, higher product utilization and capabilities that cut across and transcend traditional
product boundaries [5]. Terms like Cyber-Physical Systems (CPS), IoT and Virtual
Reality have become ordinary in industries. IoT products raise a new set of strategic
choices related to

• how value is created and captured,
• how the amount of data they generate is utilized and managed, and
• what role companies should play as industry boundaries are expanded [5].

Smart products have threemain components: physical components, smart compo-
nents and connectivity components. Smart components are directly connected with
services related to the physical parts, while connectivity allows exchanging informa-
tion between the product and its environment, and enables services to exist outside
the physical product itself [5].

Intelligence and connectivity enable an entirely new set of product functions and
capabilities, which can be grouped into four areas: monitoring, control, optimization,
and autonomy [5]. A product can potentially incorporate all four. Each capability is
valuable in its own right and sets the stage for the next level. For example, monitoring
capabilities are the foundation for product control, optimization, and autonomy.

• Monitoring: smart, connected products enable the monitoring of a product’s
condition, operation and external environment through sensors and external data
sources. A product can alert users or others stakeholders to changes in circum-
stances or performance. Monitoring also allows companies and customers to track
a product’s operating characteristics and history. It improves the understanding
of how the product is actually used. The collected data has implications for: (1)
design by reducing over-engineering and improving market segmentation through
the analysis of usage patterns by customer type; (2) after-sale service by allowing
the dispatch of the right technician with the right part to improve the first-time fix
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rate. Monitoring data may also reveal warranty compliance issues, as well as new
sales opportunities, such as the need for additional product capacity because of
high utilization.

• Control: smart, connected products can be controlled through remote commands
or algorithms that are built into the device or reside in the product cloud.Algorithms
are rules that direct the product to respond to specific changes in its condition or
environment (for example, “if pressure gets too high, shut off the valve” or “when
traffic in a parking garage reaches a certain level, turn the overhead lighting on or
off”). Control through software embedded in the product or the cloud allows the
customization of product performance to a degree that was not cost effective or
often even possible before. The same technology also enables users to control and
personalize their interaction with the product in many new ways. For example,
users can adjust their smart light bulbs via smartphone, turning them on and off,
programming them to blink red if an intruder is detected, or dimming them slowly
at night.

• Optimization: smart, connected products can apply algorithms and analytics to in-
use or historical data to improve output, utilization, and efficiency. Inwind turbines,
for instance, a local microcontroller can adjust each blade on every revolution
to capture maximum wind energy. Each turbine can be adjusted to improve its
performance and to minimize its impact on the efficiency of those nearby. The rich
flow ofmonitoring data from smart, connected products, coupled with the capacity
to control product operation, allows companies to optimize product performance
in numerous ways, many of which have not been previously possible.

• Autonomy: monitoring, control and optimization capabilities combine to allow
smart, connected products to achieve a previously unattainable level of autonomy.
At the simplest level an autonomous product does operation using sensors and
software on real time. More-sophisticated products are able to learn about their
environment, self-diagnose their own service needs, and adapt to users’ prefer-
ences. Autonomy not only can reduce the need for operators, but it can improve
safety in dangerous environments and facilitate operation in remote locations.
Autonomous products can also act in coordination with other products and sys-
tems. The value of these capabilities can grow exponentially as more and more
products become connected.

Connected products require the design of a new technology infrastructure made
of multiple layers. It is necessary to identify sensors, software, data storage, user
interfaces as well as ports, protocols and kind of connections to design the PSS.

The IoT could underpin the PSS design by using information feedback at any
stage of the Product-Service life cycle. Moreover, IoT provides information for con-
tinuous improvement, closer relationship with stakeholders, resource efficiency and
the ability to meet sustainability. IoT provides the opportunity to obtain informa-
tion about some relevant parts of the system in real time, during all the life cycle
processes, thus representing a differential in order to build, design, implement and
improve a PSS.
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3.2 Life Cycle Thinking, Modelling and Management

The following paragraphs adopt the findings of a literature survey published in the
International Journal for Product Life cycle Management [6]. The study investigated
the constituents of life cycle models.

Life cycle is a concept used in Biology where it describes the recurring change
of states for certain organisms (see [7] for biological life cycle). In engineering, the
organisms are exchanged for tangible goods (products). Processes, such as design,
production, use, repair, recycling anddisposal substitute the organism’s state changes.
From theperspective of business economics, the concept of the product life cycleswas
introduced by Theodore Levitt in the 1960s [8]. Levitt’s approach describes the life
cycle of products by four phases: introduction into the market, rapid growth of sales
volume, market saturation and market decline. The introduction of Levitt’s product
life cycle model supports the strategic management of products. Manutelligence
focused on the engineering life cycle.

Life cycle thinkingmeans that people have a life cycle model in mind that affects
the scope of their activities during, for instance, system development and production.
In Manutelligence, a life cycle model describes activities related to a PSS in a sim-
plified way. It consists of elements that represent the transformation of the product,
software or service over time, whereas the notion of ‘transformation’ is adopted from
operations management [9]. A transformation changes inputs (e.g. rawmaterial) into
outputs (e.g. machine) of a higher quality and a higher value. Processes and/or the
stakeholders performing specific processes represent the transformation.

Technological advances, such as the IoT, resulted in developments that influence
life cycle thinking. Effects of these developments and common characteristics of a
PSS’s life cycle are summarized in Table 3.1. The presented concepts are not meant
to be comprehensive.

Examples for the influence of life cycle thinking on engineering are Life Cycle
Assessment and Life Cycle Costing. The adoption of life cycle thinking in industry
and academia led to the emergence of a plethora of different life cycle models as
investigated by Wellsandt et al. [6]. Manutelligence focused on the flow of codified
information along the life cycle.

Life cycle management, in the Manutelligence project, focuses on the manage-
ment of information along the PSS life cycle. The specialization on PSS is a rather
new discipline, because the adoption of Servitization, Intelligent Products and the
Internet of Things is not very high in most industries. Consequently, the experience
with this PSS life cycle management is low, compared to the information manage-
ment for tangible products or software. One of the challenges of PSS life cycle
management is the fact that a PSS consists of integrated hardware, software and ser-
vice components. This is especially true, if the PSS has connectivity-based features.
In this context, integration has several meanings, for example, the:

1 Integration of ICT into traditional products (Intelligent/Smart Products).
2 Integration of hard- and software development (Concurrent Engineering).
3 Integration of PSS software into third party software (Interoperability).
4 Integration of services into existing business processes.
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Table 3.1 Concepts of PSS life cycles

Name Description

Processes and
stakeholders

The cornerstones of the life cycle model are processes and the stakeholders
being affected by them

Flows and
stocks

Information, material and energy are the constituents that are exchanged
between processes to create value and quality

Process
abstraction

The life cycle model consists of different process abstraction levels. In
Manutelligence, three layers of abstraction were differentiated. These are life
cycle phase, process, and activity

System
abstraction

Complex systems consist of sub-systems. They can be represented on
different abstraction layers in a life cycle model. A common system
abstraction is the differentiation of product, assembly and component

Information
abstraction

A system class describes systems with shared characteristics. It represents a
high level of abstraction. An instance describes an entity that features a
unique characteristic, such as a product identifier. It is the lowest abstraction
layer for products used in Manutelligence

Product states A product’s state is described by using item-level information, collected at a
specific time and place [10]. Each state consists of a set of relevant “state
characteristics” measured at specific checkpoints during the life cycle

Structure Life cycle processes can be structured as a linear or circular sequence. If two
linear life cycles share a process, a cross structure is established

Nesting A system’s life cycle can be described as a nested structure of sub-system life
cycles. This way, a complex structure of several related life cycle models is
created

Each of these integrations represents a complex problem with many variables that
can relate to each other. The problems are dynamic because they change with the
rapid advances in ICT technology (e.g. the fast spread of Blockchain technology).
Solving the integration problems benefits from an extensive understanding of, for
instance, the PSS’s components and stakeholders. For this reason, one assumption
of Manutelligence was that life cycle modelling helps developers and other stake-
holders to understand the complexity of a PSS during the design phase. The actual
modelling task is a supplement to standard procedures in product design. These pro-
cedures include, for instance, the collection and analysis of requirements, and the
development of system components and their interfaces.

The Manutelligence partners developed an approach to support the design of IoT-
related PSSs. It consists of a PSS design methodology and the concurrent life cycle
modelling. Figure 3.1 illustrates this approach.

The following sub-chapters describe the proposed design approach. It starts with
the new design method for the IoT Assessment. This chapter omits a description
of the Business Model Canvas (BMC) and Quality Function Deployment (QFD)
methods, because literature has plenty of descriptions for them already [11, 12]. The
second part of this chapter introduces the life cycle modelling and the life cycle
performance analysis approach.
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Fig. 3.1 Manutelligence PSS design approach

3.3 Approach to Design IoT-Related PSS

3.3.1 Design Methodology

This part of the chapter is based on the Manutelligence public Deliverable 2.2 [13].
The main goal of the methodology is to structure the PSS’s concept and design pro-
cesses with a focus on the identification of the IoT technologies needed to catch and
elaborate data for customer need satisfaction, and for the design of suitable services.
The idea is to connect different activities and methods, to elicit data and information.
The methodology is modular, different activities are optional, and they do not need
to be performed in a specific order. Within these main activities, we include the defi-
nition of the business model, the definition of the stakeholders’ requirements and the
definition of the IoT capabilities. Besides these three tasks, there are other tasks to be
considered, especially concerning the design of the actual solution components. The
main activities should be completed and integrated with other important information,
as well as the addition of hard and software functionalities and business processes.

We will focus on the definition of the IoT capabilities, which represents the inno-
vative part of the methodology developed during the Manutelligence project.

3.3.2 IoT Assessment Support

This activity represents the core part of the proposedmethodology, since it defines the
bases for the PSS design phase. The outputs of this process will be the Bill ofMaterial
(BOM) of the product, the definition of the connected services and the identification
of data, information and knowledge that should be managed and analyzed during the
Product-Service life cycle. Connect products require the design of a new technology
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infrastructuremade up ofmultiple layers. It is necessary to identify sensors, software,
data storage, user interfaces as well as ports, protocols and kind of connections to
design the PSS. Furthermore, it is necessary to satisfy the stakeholders’ requirements,
which should be previously analyzed, for instance with a QFD.

Usually the Product Design and the Service Design processes are separately per-
formed within specialized teams. This produces solutions that often are not really
integrated. The innovation of the Manutelligence methodology aims to improve the
integration between Product and Service Design, in order to give to customers the
best PSS solution.

Starting from the requirements defined in a previous phase, the team will imple-
ment the Product-Service Design with the primary aim of defining the IoT capabili-
ties that should be integrate in the product life cycle, in order to properly design the
connected services.

The idea is to develop a graphical tool that can be used by designers to identify
and classify the IoT capabilities that should be embedded in the product. This tool
has to include:

• The classification of the capabilities of the smart product, which can be grouped
into four areas [5]: monitoring, control, optimization and autonomy. This classi-
fication specifies the kind of service a company wants to implement thanks to the
IoT technology.

• The definition of data destination. It is necessary to define the stakeholder who
needs a specific kind of information (e.g. customer, designer, andmaintainer). This
is important also to identify the format with which data or analysis results should
be shown and the support that must be used, in order to read and share data and
results. For example, customers would like to have access to data directly from
their smartphone.

• The identification of the product parts in which sensors should be installed in order
to collect data.

To implement the graphical tool, we exploit the BOM, which should be developed
in the Product Design phase. The BOM is particularly useful to identify the product’s
parts. Parts and components define a specific number of details and levels. For each
of these levels, we design a specific graphic structure. For instance, for a smart car,
at level 0 we have the vehicle. Level 1 composes of the Power Unit, the Gear Box
and the Car Body (Fig. 3.2).

For each level, the product’s parts are reported as input for the designed table.
The first column identifies the data destination and the stakeholders involved in the
service. The entries of the table are colored following the capabilities classification
(i.e. monitoring is green colored, control is yellow colored, optimization is orange
colored and autonomy is red colored,) and the entries are filled indicating the variable.
If a box remains white, this means that no IoT capabilities are defined for that entry.
The IoTcapability is selected, in order to satisfy the product and service requirements.
This classification is an important initial stage, since a specific IoT capability defines
the correspondent technology to select, for example, sensors or data storage systems
and clarify the kind of connection that must be developed.
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Fig. 3.2 Illustration of the IoT graphical tool

3.4 Life Cycle Modelling Support

This chapter is based on a journal paper published in the International Journal for
Product Life Cycle Management [6] and the Manutelligence public Deliverable 2.1.
The paper’s goal was to investigate life cycle models and identify common elements
and structures of these models. For this purpose, 71 models from literature were
investigated leading to the aforementioned concepts of PSS life cycle models.

A modelling language that supports many of the concepts described in Table 3.2
was used for the actualmodelling task of the use cases. For this purpose, the Lifecycle
Modelling Language (LML) was selected in Manutelligence [14]. It is a derivative
of the Systems Modelling Language (SysML). LML introduces an Ontology that
describes the system life cyclewith specified entities and their relations amongst each
other. The modelling task was supported by the browser-based systems engineering
tool Innoslate (https://www.innoslate.com/). It has native support for LML—the soft-
ware provider appears to be involved in the development of the LML standard. LML’s
features and the capabilities of the modelling tool Innoslate were mapped against the
aforementioned life cycle concepts. A summary of this mapping is presented in
Table 3.2.

LML suggests 12 entities and several visualization techniques for system life
cycle modelling. The Innoslate-functions used in Manutelligence mainly base on the
entities defined in LML. Instances of the entities build the life cycle model. Some
Innoslate-functions relate to visual techniques used by the software (e.g. abstraction
layers). The mapping between life cycle concepts and LML is mainly achieved
by using existing entities and their relations from the LML Ontology. Process and
system abstraction is achieved through the relations between activities and assets
(e.g. decomposes and decomposed of). Different structures of a life cycle can be
created by linking activities through an activity diagram. No support was identified
in LML for the nesting concept. Innoslate allows users to name a process as “life

https://www.innoslate.com/


3 Life Cycle Management for Product-Service Systems 37

Table 3.2 Mapping between life cycle concepts, LML and Innoslate

Life cycle concept LML features Innoslate functions

Processes and stakeholders Activity and Asset Via LML

Flows and stocks Input/Outputs and Activities Via LML

Process abstraction Relation between Activities Visual abstraction layers

System abstraction Relation between Assets Visual abstraction layers

Information abstraction No support identified No support identified

Product states No support identified No support identified

Structure Activity diagram Via LML

Nesting No support identified Visual separation of processes

cycle” and decompose it. In this case, several life cycle containers can be created
with related Activity entities. A shortcoming of LML and Innoslate is the lacking
support for item level information. This also limits the support for the product state
concept. LML and Innoslate can be replaced by other modelling approaches that
support the concepts presented in Table 3.1.

3.4.1 Life Cycle Analysis Support

This chapter is based on a conference paper for the International Conference on
Engineering, Technology and Innovation held 2017 [15]. The paper’s goal was to
present and discuss an approach for life cycle analysis using a shared life cyclemodel.
Life cycle analysis for traditional products includes methods, such as “Life Cycle
Costing” (LCC) and “Life Cycle Impact Assessment” (LCA). These methods were
selected for Manutelligence, because they represent widely acknowledged life cycle
analyses.

Life Cycle Costing (LCC) is an accounting method, which considers every cost
flow throughout the life cycle of a product [16].LifeCyclePerformanceAssessment
(LCPA) enhances the LCC-approach by extending the assessment to cash inflows.
The key performance indicator of the LCPA-approach is the net-present value. It
reflects the point of time of each considered cash flow throughout the life cycle.
Consequently, the cash flows of the assessed object discount with an interest rate
depending on its specific point in time. Moreover, LCPA pursues an approach that
allows to compare investments with each other.

The quality of LCPA results depends on the input data quantity and quality. Every
cash flow throughout the life cycle has to be identified with its cash flow type and
its point in time in the life cycle. Usually, the information needs to be tied to a
specific life cycle phase and quantified with its time-based value. In many cases, this
requirement leads to a time series of cash flows, which needs to be archived in the
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ex-post perspective or forecasted in the ex-ante perspective. In the next steps, the
gathered data has to be translated into a software-tool to perform the LCPA.

The general LCPA approach can be adapted for the assessment of PSS. Besides
the relevant input data for products, such as investments, energy costs, maintenance
and other operating costs, the analysis of the service part requires input data that
is more focused on, for instance, personnel costs, equipment usage to perform the
service, travel costs, as well as service fees as revenues. As a result, the comparative
LCPA approach enables the evaluation of different PSS concepts with each other.

The main reference to carry out a Life Cycle Impact Assessment (LCA) is the
ISO 14000 family of standards. They provide a set of international guidelines quite
stable, subjected to periodic updates, internationally recognized and used as reference
at global level. The identified and renowned structure of an LCA study is organized
into four phases:

• Definition of the goal and scope of LCA. It defines why the LCA is performed
and what the system boundaries are.

• Life Cycle Inventory (LCI) analysis. The exchanged natural elements and their
quantities of the resources and emissions entering (e.g. raw material, energy and
ancillary material) and leaving the system of interest (e.g. emission, waste, prod-
ucts and co-products) have to be defined. This step is complex and time consuming,
since it involves data collection from several different actors and related processes
along the supply network. The allocation process of shared resources is a critical
point and has an impact on the final result.

• Life Cycle Impact Assessment (LCIA). It is meant to calculate the impacts on
the environment generated by the identified LCI data.

• Interpretation. In thefinal phase, the reportwith the quantified impacts is prepared
and the critical review of the LCA results is performed.

The ISO 14050 standard has been developed with a physical product focus, even
though the provided definition of “product” states “any good or service“. This means
that services are conceptually considered, yet the PSS concept is not considered
explicitly. For this reason, the ISO-based LCA approach might not be applicable
to the PSS context directly. The main difficulty when carrying out an LCA for a
PSS is how to integrate the service component into the LCI. Corti et al. proposed an
approach to support the LCI phase for PSSs [17]. It could formalize the integration
of information related to the service part of the offer. Categories of information and
their positioning along the life cycle of the PSS are taken into consideration showing
the backbone structure that is recommended to carry out the LCI for a PSS. The life
cycle divides into its three main phases, namely Beginning of Life (BOL), Middle of
Life (MOL) and End of Life (EOL), whilst the data categories are related to either
the product component or the service component.

Guidelines for gathering the information to support the LCA methodology are
still missing [18, 19]. Dal Lago et al. propose a conceptual work in this direction
[20]. The authors develop a set of guidelines to gather the information needed to
instantiate and support an LCA analysis from a PSS life cycle perspective.
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Table 3.3 Approach for model-based life cycle analysis for PSS

Step Realized

Identify elements needed for analysis Manual task

Create life cycle model Modelling tool

Export model into xml file Modelling tool

Import model from xml file Analysis tool

Run analysis Analysis tool

A shared life cycle model supports the PSS life cycle analyses in Manutelligence.
Table 3.3 summarizes the proposed approach.

The proposed approach is most efficient, if multiple analyses refer to the same
life cycle model. In this case, redundant information collection and modelling is
avoided. The first step of a model-based life cycle analysis for PSS is the iden-
tification of relevant elements from the PSS life cycle. Relevance depends on the
necessity to represent an element in the analyses. For instance, it might be necessary
to differentiate a product and its components, stakeholders, and activities during the
usage phase. In some cases, it could be relevant to omit activities from the PSS life
cycle, because their expected influence on cost or environmental impact is low in
the targeted application case. The second step is the creation of a life cycle model
that contains information about the analysis elements. Manutelligence realized this
through a model grounded on the LML Ontology. It was developed and maintained
in Innoslate. The tool features an xml-file export of the entire model and the Ontol-
ogy—this effectively represents the third step of the proposed approach. Once the
model is in a common data format, it can be imported into the actual analysis tool.
The import of the life cycle model represents the fourth step. Finally, the analysis
is initialized with the information stored in the imported life cycle model. This fifth
step is the final one of the proposed approach for model-based life cycle analysis of
PSS. The approach was tested with an LCPA tool.

3.5 Challenges for Product-Service Systems Management

This chapter partially bases on a conference paper for the International Conference on
Engineering, Technology and Innovation held 2017 [15]. The following paragraphs
cover different challenges concerning PSS life cycle management. The first parts
summarize issues encountered during the evaluation of IoT components of a PSS.
Challenges related to creation of life cycle models follow it. Each of the paragraphs
aims to provide suggestions how the encountered challenges could be addressed in
the future.
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3.5.1 IoT Assessment

The IoT assessment method is the original contribution of our methodology, since
other phases are actually well-knownmethodologies already used in several different
fields [11, 12]. The IoT assessment graphical tool should be able to design how
information and data collected through IoT technologies have to be integrated along
the PSS life cycle. We present a list of questions that the IoT assessment tool should
be able to answer and we identify which points need further developments and
improvements.

Why? Why we want to use IoT technologies? Which is the service we want to
develop? Which particular function we want to perform? Even if these points should
come straightforward from the HoQ requirements, the IoT assessment should high-
light these goals, in order to keep focus on them. The graphical tool registers the IoT
capabilities that should be implemented in the PSS, as suggested in [5].

Who?Who is involved, which are the different stakeholders that take part in this
process?The actual graphical tool, during its application toManutelligence use cases,
turned out to be a little bit confusing, since we have put as data destination designers,
maintenance, applications and software. Actually, the presence of hardware and
software is always mandatory, because data are collected and analyzed with software
support. Only after these first steps, processed data could be visualized/used by
someone else, for example, designers could use analytics results to improve product
design and product development.

What?Whatwewant tomeasure?Whichdata and informationwewant to collect?
Looking at the graphical support, we have no information regarding which variables
and data should be collected along the process.

Where? Where we have to insert and install sensors? Which components of the
product are involved in the collection of information? We answer to this question
using information coming from the BOM. At this moment we investigate all the
different BOM levels, but how it turned out from its application to Manutelligence
use cases, this could request too much effort than what is really needed. For example,
the level of details in a car’s BOM could be deep and even unnecessary for this aim.
In principle, the BOM could be used only to identify and take note of parts involved
in the data collection process.

When? Which phase of the product life cycle is involved? When information
is collected? When information and data could be used? It could be necessary to
highlight, which are the PSS life cycle phases involved in the process, also to easily
identify stakeholders and different flows of data and information between them. For
example, data collected from machine-embedded sensors (MOL phase) could be
sent to maintainers to realize predictive maintenance (MOL phase). Data collected
during the product usage (MOL phase) could be sent to designers, in order to improve
product design and product development (BOL phase).

With What? What kind of technology should be developed? What about hard-
ware and software installed and used to collect, analyze and share data? Which data
analysis should be performed? In the graphical tool, we do not mention the tech-
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nologies that should be put in place, in order to collect data and allow connectivity
(hardware, ports, protocols and kind of connections) even if this point is important,
in order to check if all the different devices are able to be connected one with each
other. As some of the use cases have highlighted during project development, it is
also important to perform a feasibility analysis, to compare benefits and costs of the
technology investment. The graphical tool should also contain an initial definition of
the statistical techniques that should be used to analyze data.Whenmachine learning
techniques are implemented from some software, data are directly processed from
an algorithm and results are made available for further analysis (for example, after
Cluster Analysis it could be decided to perform a Classification Rules Analysis). In
some cases, the presence of a data scientist could be requested, which could take
some raw or processed data and perform further analysis or post processing oper-
ations, in order to organize the output such that it is easily understandable. Only
after these intermediary steps, data could be available to be read and used by other
stakeholders.

3.5.2 Life Cycle Modelling

Model complexity. Complexity refers to the number of elements and relations in
a life cycle model. The investigated use cases in Manutelligence feature around
100 elements and more than 100 relations (using the LML Ontology). The required
number of elements depends on the model’s purpose and on the PSS. A support of
multiple life cycle analyses (and other tasks) may lead to the need to include addi-
tional elements and relations. Higher complexity will likely make the management
of the model more difficult (e.g. adding, removing and updating elements). Adding
elements to the life cycle model can be avoided if two or more tasks share an element.
Additional relations, however, might be necessary in the case of element sharing.

Model dynamics. The concept of dynamics refers to the need that a model’s
elements and relations may evolve over time (depending on the model’s purpose).
In the course of the PSS design and operations, for instance, the model is subject
to extension or reduction. Elements and relations change depending on the needs of
the decision makers involved in the related tasks. This is especially the case when
the model is also used as a PSS planning tool—as experienced in Manutelligence.
Maintaining a life cycle model, i.e. keeping it updated to the most recent planning
state, can be a time consuming task. The time needed to maintain a model depends,
among others, on the complexity of themodel. For instance, it is a difficult task to add
an element and its relations to a model with several hundreds of elements and even
more relations. In the case of Manutelligence, the maintenance of the model was not
experienced as difficult. Possibly, because the model is not yet complex enough to
affect maintenance.

Modelling tools. Creation and maintenance of a life cycle model can be difficult
tasks that should be supported with software tools. The decision to use LML for our
study limits the number of tools to support this task. The only tool that integrates it
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“out of the box” is called Innoslate. Key persons from the company behind this tool
are contributors to the LML specification. The logic of LML may be replicated with
other tools, such as Enterprise Architect and the ARIS toolbox. Life cycle modelling
tools should, in general, satisfy the needs of the stakeholders involved in the PSS life
cycle. In the case of life cycle analysis, the stakeholders (analysts) need to access
(read) life cycle model information that is relevant for their analysis task. A complete
model export with subsequent file parsing, as realized in Manutelligence, is only a
temporary solution. This is, amongst other reasons, because the parsing could miss
an element that is not following the convention of the parsing mechanism. A simple
example is a typo in the element name. In order to solve this and other data quality
problems, a reliable life cycle model exchange mechanism is needed.
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