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Abstract. We study a new edge stabilization method for the finite
element discretization of the convection-dominated diffusion-convection
equations. In addition to the stabilization of the jump of the normal
derivatives of the solution across the inter-element-faces, we addition-
ally introduce a SUPG/GaLS-like stabilization term but on the domain
boundary other than in the interior of the domain. New stabilization
parameters are also designed. Stability and error bounds are obtained.
Numerical results are presented. Theoretically and numerically, the new
method is much better than other edge stabilization methods and is com-
parable to the SUPG method, and generally, the new method is more
stable than the SUPG method.
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1 Introduction

When discretizing the diffusion-convection equations by the finite element
method, the standard Galerkin variational formulation very often produces oscil-
latory approximations in the convection-dominated case (cf. [3,14]). As is well-
known, this is due to the fact that there lacks controlling the dominating convec-
tion in the stability of the method. For obtaining some stability in the direction
of the convection, over more than thirty years, numerous stabilized methods
have been available. Basically, all the stabilization methods share the common
feature: from some residuals relating to the original problem to get the stability
in the streamline direction. The stabilization method is highly relevant to the
variational multiscale approach [6]: solving the original problem locally (e.g., on
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element level) to find the unresolved component of the exact solution in the
standard Galerkin method. Some extensively used stabilization methods are:
SUPG (Streamline Upwind/Petrov-Galerkin) method or SD (Streamline Diffu-
sion) method (cf. [7,12]), residual-free bubble method (cf. [15]), GaLS method
(cf. [4,9–11,16,22]), local projection method (cf. [2,3]), edge stabilization method
(cf. [17,20]), least-squares method (cf. [5,8,23]), etc. All these stabilization meth-
ods can generally perform well for the convection-dominated problem, i.e., the
finite element solution is far more stable and accurate than that of the standard
method. The edge stabilization method is such method, which uses the jump
residual of the normal derivatives of the exact solution, [[∇u · n]] = 0 across any
inter-element-face F . This method is also known as CIP (continuous interior
penalty) method [1] for second-order elliptic and parabolic problems. In [17],
the edge stabilization method is studied, suitable for the convection-dominated
problem. It has been as well proven to be very useful elsewhere (e.g., cf. [18–21],
etc.).

In this paper, we study a new edge stabilization method, motivated by the
one in [17]. Precisely, letting F int

h be the set of the interior element faces, and
hF the diameter of element face F , and F∂

h the set of the element faces on ∂Ω,
we define the new edge stabilization as follows:

Jh(u, v) =
∑

F∈Fint
h

βτint,F

∫

F

[∇u · n][∇v · n] +
∑

F∈F∂
h

ατ∂,F

∫

F

(−εΔu + b · ∇u)(b · ∇v).

(1.1)

Here α, β are positive constants, and τint,F , τ∂,F are mesh-dependent parameters,
which will be defined later. The role of τint,F , τ∂,F is approximately the same as
h2

F . The new method is consistent in the usual sense (cf. [13,14]), and it allows
higher-order elements to give higher-order convergent approximations, whenever
the exact solution is smooth enough. The first stabilization term on the right
of (1.1) is essentially the same as [17]. However, the additional second term on
the right of (1.1) is crucial. It ensures that the new method can wholly control
the term b · ∇u on every element and can give the same stability as the SUPG
method. Differently, the stabilization in [17] cannot have the same stability. See
further explanations later. We analyze the new method, and give the stability
and error estimates. Numerical experiments are provided to illustrate the new
method, also to compare it with the method in [17] and the SUPG method. As
will be seen from the numerical results, in the presence of boundary and interior
layers, the new edge stabilization method is much better than the method in [17]
and is comparable to the SUPG method. In general, the new edge stabilization
is more stable than the SUPG method.
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2 Diffusion-Convection Equations

We study the following diffusion-convection problem: Find u such that

− εΔu + b · ∇u = f in Ω, u = 0 on ∂Ω. (2.1)

Here ε > 0 denotes the diffusive constant, b the convection/velocity field, and f
the source function. The convection-dominated case means that ε � ||b||L∞(Ω);
or, the dimensionless quantity Peclet number: Pe = V L/ε is very large. Here V
and L are the characteristic velocity and the length scales of the problem. In
this paper, we shall use the standard Sobolev spaces [13]. The standard Galerkin
variational problem is to find u ∈ H1

0 (Ω) such that

A(u, v) := ε(∇u,∇v)L2(Ω) + (b · ∇u, v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω). (2.2)

From (2.2), the finite element method reads as follows: find uh ∈ Uh ⊂ H1
0 (Ω)

such that

A(uh, vh) = (f, vh) ∀vh ∈ Uh. (2.3)

It has been widely recognized whether (2.3) performs well or not depends on
whether the following discrete Peclet number is large or not:

Peh = ||b||L∞(Ω)h/ε discrete Peclet number, (2.4)

where h is the mesh size of the triangulation Th of Ω. We assume that Ω is
partitioned into a family of triangles, denoted by Th for h > 0 and h → 0,
such that Ω̄ = ∪T∈Th

T̄ . The mesh size h := maxT∈Th
hT , where hT denotes the

diameter of the triangle element T ∈ Th. Concretely, letting P� denote the space
of polynomials of degree not greater than the integer 	 ≥ 1.

Uh = {vh ∈ H1
0 (Ω) : vh|T ∈ P�(T ),∀T ∈ Th, vh|∂Ω = 0}. (2.5)

3 Edge Stabilization

In this paper, we shall consider a stabilized Ah(·, ·) by the residual of the normal
derivatives of the exact solution, i.e.,

[[∇u · n]] = 0 ∀F ∈ F int
h , (3.1)

and the residual of the partial differential equation (2.1), i.e.,

− εΔu + b · ∇u − f = 0 ∀T ∈ Th. (3.2)

Corresponding to the new edge stabilization (1.1), we define the right-hand
side as follows:

Lh(v) =
∑

F∈F∂
h

ατ∂,F

∫

F

f(b · ∇v), (3.3)
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where, denoting by hF the diameter of F ,

τint,F :=
h3

F ‖b‖2L∞(F )

‖b‖L∞(F )hF + ε
, τ∂,F :=

h3
F

‖b‖L∞(F )hF + ε
. (3.4)

The stabilizing parameters τ∂,F and τint,F are motivated by [9,10,16].
Now, the new edge stabilized finite element method is to find uh ∈ Uh such

that

Ah(uh, vh) := A(uh, vh) +Jh(uh, vh) = Rh(vh) := (f, vh)L2(Ω) +Lh(vh) ∀vh ∈ Uh.

(3.5)

This method is consistent, i.e., letting u be the exact solution of (2.1), we have

Ah(u, vh) = Rh(vh) ∀vh ∈ Uh. (3.6)

4 Stability and Error Estimates

Without loss of generality, we assume that divb = 0.
Define

|||uh|||2h := ε||∇uh||2L2(Ω) +
∑

T∈Th

τT ||b · ∇uh||2L2(T )

+
∑

F∈Fint
h

βτint,F

∫

F

|[[∇uh · n]]|2 +
∑

F∈F∂
h

ατ∂,F

∫

F

|b · ∇uh|2,

where

τT =
h2

T

||b||L∞(Ω)hT + ε
.

Now we can prove the following Inf-Sup condition.

Theorem 1. ([27]) The Inf-Sup condition

sup
vh∈Uh

Ah(uh, vh)
|||vh|||h

≥ C|||uh|||h ∀uh ∈ Uh

holds, where the constant C is independent of h, ε,b, uh, only depending on Ω
and 	.

The above result crucially relies on the following Lemma 1.
Denote by Wh = {wh ∈ L2(Ω) : wh|T ∈ P�−1(T ),∀T ∈ Th}, and let W c

h =
Wh ∩ H1

0 (Ω) ⊂ Uh. Introduce the jump of v across F ∈ Fh. If F ∈ F int
h , which

is the common side of two elements T+ and T−, denoting the both sides of F
by F+ and F−, we define the jump [[v]] = (v|T+)|F+ − (v|T −)|F − . If F ∈ F∂

h ,
letting T be such that F ⊂ ∂T , we define the jump [[v]] = (v|T )|F .
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Lemma 1. For any wh ∈ Wh, there exists a wc
h ∈ W c

h, which can be constructed
by the averaging approach from wh, such that, for all T ∈ Th,

||wh − wc
h||L2(T ) ≤ Ch

1/2
T

∑

F⊂∂T

||[[wh]]||L2(F ).

For a linear element, the argument for constructing the finite element function
wc

h ∈ W c
h from the discontinuous wh ∈ Wh through a nodal averaging approach

can be found in [25]. For higher-order elements, we refer to [24] (see Theorem
2.2 on page 2378) for a general nodal averaging approach. An earlier reference
is [26], where a similar nodal averaging operator can be found. In [17], a proof is
also given to prove a similar result for any wh|T := hTb ·∇uh for all T ∈ Th, but
there is a fault. In fact, the authors therein made the mistake in those elements
whose sides locate on ∂Ω, e.g., for T ∈ Th with three sides F1, F2, F3, letting
F1 ∈ F∂

h and F2, F3 ∈ F int
h ,

||wc
h − wh||L2(T ) ≤ Ch

1/2
T

∑

F ⊂∂T

F ∈Fint
h

||[[wh]]||L2(F ) = Ch
1/2
T

∑

F2,F3

||[[wh]]||L2(F ).

This result can hold only for wh|∂Ω = 0. In general, it is not necessarily true
that wh = 0 on ∂Ω. Of course, for some problems, say, nonlinear Navier-Stokes
equations of the no-slip Dirichlet velocity boundary condition, the convection
field b is the velocity itself of the flow, trivially b|∂Ω = 0, and consequently, the
result of [17] will be correct. Now, it is clear the reason why we introduce the
second stabilization on ∂Ω on the right of (1.1). With this stabilization, we can
obtain the result in Lemma1 to correct the one of [17] and ensure that the new
method is still consistent as usual. If the method is consistent, for a higher-order
element (applicable when the exact solution is smooth enough), a higher-order
convergence can be obtained.

Theorem 2. ([27]) Let u and uh be the exact solution and finite element solu-
tion of (2.1) and (3.6), respectively. Then,

|||u − uh|||h ≤ C
((

ε1/2h� + (||b||L∞(Ω)h + ε)1/2h�
)
|u|H�+1(Ω)

+(||b||L∞(Ω)h + ε)−1/2||b||L∞(Ω)h
�+1|u|H�+1(Ω) + ε1/2h�+1|Δu|H�(Ω)

)
.

In the case of convection-dominated case, i.e., Peh  1, or ε � ||b||L∞(Ω)h,
we find that

|||u − uh|||h ≤ C(ε1/2h� + ||b||1/2
L∞(Ω)h

�+1/2)|u|H�+1(Ω) + Cε1/2h�+1|Δu|H�(Ω).

Denote by
||v||2SUPG := ε||∇v||2L2(Ω) +

∑

T∈Th

τT ||b · ∇v||2L2(T )

the norm which is often used in the SUPG method or other methods such as
the residual-free bubble method (or which is equivalent to the norms used in the
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literature for the SUPG method and other methods, at least, in the convection-
dominated case of Peh  1). Using this norm, we restate the above error bounds
as follows:

||u − uh||SUPG ≤ (ε1/2h� + ||b||1/2
L∞(Ω)h

�+1/2)|u|H�+1(Ω) + Cε1/2h�+1|Δu|H�(Ω).

In comparison with the SUPG method, here the error bounds are essentially the
same [15], only up to a higher-order error bound Cε1/2h�+1|Δu|H�(Ω). Therefore,
the new edge stabilization method in this paper is theoretically comparable to
the SUPG method. The numerical results will further show that the new edge
stabilization method is comparable to the SUPG method. Moreover, in the new
edge stabilization method, we have more stability than the SUPG method, i.e.,
the stability is measured in the norm ||| · |||h, where the jump of the normal
derivatives of the solution (including the normal derivatives of the solution on
∂Ω) are controlled. Numerically, for some meshes, the new edge stabilization
method is indeed more stable than the SUPG method.

In comparison with the edge stabilization method [17], we have already
observed the advantages of the new method in this paper. Theoretical results
have confirmed the observations. Numerical results will further give the supports.

5 Numerical Experiments

In this section, we give some numerical results for illustrating the performance of
the new edge stabilization method, the SUPG method and the edge stabilization
method [17] for solving the convection-dominated diffusion-convection equations
with boundary and inner layers.

We study two types of meshes as shown in Fig. 1. In the first case (denoted
mesh-1) the square elements are cut into two triangles approximately along the
direction of the convection; in the second case (mesh-2) they are cut almost
perpendicular to the direction of the convection. We choose domain Ω := (0, 1)2,
the convection field |b| = 1 which is constant, f = 0, and nonhomogeneous
boundary condition u|∂Ω = U . The geometry, the boundary conditions and the
orientation of b are shown in Fig. 2. At h = 1/64 and ε = 10−5 and ε = 10−8,
using the linear element, we have computed the finite element solutions using
three methods: SUPG method, BH method [17], New method in this paper. For
mesh-1, the elevations and contours are given by Figs. 3 and 4. For mesh-2, the
elevations and contours are given by Figs. 5 and 6. For mesh-1, from Figs. 3 and
4, we clearly see that the New method is comparable to the SUPG method and
is much better than the BH method. For mesh-2, from Figs. 5 and 6, we clearly
see that the New method is better than the SUPG method and is still much
better than the BH method.
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(a) mesh-1 (b) mesh-2

Fig. 1. Meshes

Fig. 2. Boundary conditions and flow orientation: U = 1 thick edge and U = 0 thin
edge.
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(f) New method

Fig. 3. The elevation and contour of the finite element solution, mesh-1, ε = 10−5,
h = 1/64.
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(f) contour

Fig. 4. The elevation and contour of the finite element solution, mesh-1, ε = 10−8, h =
1/64.
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Fig. 5. The elevation and contour of the finite element solution, mesh-2, ε = 10−5,
h = 1/64.
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Fig. 6. The elevation and contour of the finite element solution, mesh-2, ε = 10−8, h =
1/64.
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