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Abstract. A new Monte Carlo algorithm for solving singular linear sys-
tems of equations is introduced. In fact, we consider the convergence of
resolvent operator Rλ and we construct an algorithm based on the map-
ping of the spectral parameter λ. The approach is applied to systems with
singular matrices. For such matrices we show that fairly high accuracy
can be obtained.

Keywords: Monte Carlo · Markov chain · Resolvent operator

1 Introduction

Consider the linear system Tx = b where T ∈ R
n×n is a nonsingular matrix and

b, T are given. If we consider L = I − T , then

x = Lx + b. (1)

The iterative form of (1) is x(k+1) = Lx(k) + b, k = 0, 1, 2.... Let us have now
x0 = 0, L0 = I, we have

x(k+1) = Σk
m=0L

mb. (2)

If ‖L‖ < 1, then x(k) tends to the unique solution x [7]. In fact, the solution of
(1) can be obtained by using the iterations

lim
k→∞

x(k) = lim
k→∞

Σk
m=0L

mb = (I − L)−1b = T−1b = x. (3)

We consider the stochastic approach. Suppose that we have a Markov chain given
by:

α0 → α1 → ... → αk
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where αi, i = 0, 1, 2, 3..., k belongs to the state space {1, 2, ..., n}. Then α, β ∈
{1, 2..., n}, pα = P (α0 = α) is the probability that the Markov chain starts at
state α and pαβ = P (αi+1 = β|αi = α) is the transition probability from state
α to β. The set of all probabilities pαβ defines a transition probability matrix
[pαβ ]. We say that the distribution [p1, p2. . ., pn]t is acceptable for a given vector
h, and the distribution pαβ is acceptable for matrix L, if pα > 0 when hα �= 0,
and pα ≥ 0 when hα = 0, and pαβ > 0 when lαβ �= 0 and pαβ ≥ 0 when lαβ = 0
respectively. We assume

Σn
α=1pα = 1, Σn

β=1pαβ = 1

for all α = 1, 2. . ., n. The random variable whose mathematical expectation is
equal to 〈x, h〉 is given by the following expression

θ(h) =
hα0

pα0

Σ∞
j=0Wjbαj

(4)

where W0 = 1,Wj = Wj−1
lαj−1αj

pαj−1αj
, j = 1, 2, 3.... We use the following notation

for the partial sum:

θi(h) =
hα0

pα0

Σi
j=0Wjbαj

(5)

It is shown that E(θi(h)) = 〈h,Σi
m=0L

mb〉 = 〈h, x(i+1)〉 and E(θi(h)) tends to
〈x, h〉 as i → ∞ [7]. To find rth component of x, we put

h = (0, 0..., 1
︸ ︷︷ ︸

r

, 0, ..., 0).

It follows that
〈h, x〉 = xr.

The number of Markov chain is given by N ≥ (0.6745
ε

‖b‖
(1−‖L‖) )

2. With considering
N paths α0

(m) → α1
(m) → ... → αk

(m), m = 1, 2, 3..., N , on the coefficient
matrix, we have the Monte Carlo estimated solution by

Θi(h) =
1
N

ΣN
m=1θ

(m)
i (h) 
 〈h, x(i+1)〉.

The condition ‖L‖ ≤ 1 is not very strong. In [9,10], it is shown that, it is
possible to consider a Monte Carlo algorithm for which the Neumann series does
not converge.

In this paper, we continue research on resolvent Monte Carlo algorithms
presented in [4] and developed in [2,3,5]. We consider Monte Carlo algorithms
for solving linear systems in the case when the corresponding Neumann series
does not necessarily converge. We apply a mapping of the spectral parameter λ
to obtain a convergent algorithm. First, sufficient conditions for the convergence
of the resolvent operator are given. Then the Monte Carlo algorithm is employed.
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2 Resolvent Operator Approach

2.1 The Convergence of Resolvent Operator

We study the behaviour of the equation

x − λLx = b

depending on the parameter λ. Define nonsingular values of L by

π(L) = {λ| x − λLx = b has a unique solution}.

χ(L) = (π(L))c is called the characteristic set of L. Let X and Y be Banach
spaces and let U = {x ∈ X : ‖x‖ ≤ 1}. An operator L : X → Y is called compact
if the closure of L(U) is compact. By Theorem 4.18 in [8], if dimension the rang
of L is finite, then L is compact. The statement that λ ∈ π(L) is equivalent to
asserting the existence of the two-sided inverse operator (I − λL)−1. It is shown
that for compact operators, λ is a characteristic point of L if and only if 1

λ is an
eigenvalue of L. Also, it is shown that for every r > 0, the disk |λ| < r contains
at most a finite number of characteristic values.

The operator Rλ defined by Rλ = (I − λL)−1 is called the resolvent of L,
and

Rλ = I + L + λL2 + ... + λnLn+1 + . . .

The radius of convergence r of the series is equal to the distance r0 from the
point λ = 0 to the characteristic set χ(L). Let λ1, λ2, . . . be the characteristic
values of L that |λ1| ≤ |λ2| ≤ .... The systematic error of the above presentation
when m terms are used is

O((
|λ|
|λ1| )

m+1mρ−1)

where ρ is multiplicity of roots λ1. This follows that when |λ| ≥ |λ1| the series
does not converge. In this case we apply the analytical method in functional
analysis. The following theorem for the case of compact operators has been
proved in [6].

Theorem 1. Let λ0 be a characteristic value of a compact operator L. Then,
in a sufficiently small neighbourhood of λ0, we have the expansion

Rλ = ...+
L−r

(λ − λ0)r
+ ...+

L−1

(λ − λ0)
+L0+L1(λ−λ0)+ ...+Ln(λ−λ0)n+ ... (6)

Here r is the rank of characteristic value λ0, the operators L−r, ..., L−1 are finite
dimensional and L−r �= 0. The series on the right-hand side of (6) is convergent
in the space of operators B(X,X).
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3 The Convergence of Monte Carlo Method

Let λ1, λ2, .. be real characteristic values of L such that λk ∈ (−∞,−a]. In
this case we may apply a mapping of the spectral parameter λ. We consider
a domain Ω lying inside the definition domain of Rλ as a function of λ such
that all characteristic values are outside of Ω, λ∗ = 1 ∈ Ω, 0 ∈ Ω. Define
ψ(α) = 4aα

(1−α)2 , (|α| < 1), which maps {α : |α| < 1} to Ω described in [1].
Therefore the resolvent operator can be written in the form

Rλb 
 Σm
k=1bkαk = Σm

k=1Σ
k
i=1d

(k)
i ciα

k

= Σm
k=1Σ

m
j=kd

(j)
k αjck = Σm

k=1g
(m)
k ck

where g
(m)
k = Σm

j=kd
(j)
k αj and ck = Lk+1b. In [1], it is shown that d

(j)
k =

(4a)kC2k−1
k+j−1. All in all, in the following theorem, it is shown that the random

variable whose mathematical expectation is equal to 〈h,Σm
k=0L

k〉, is given by
the following expression:

Θ∗
m(h) =

hα0

pα0

Σm
ν=0g

(m)
ν Wνbαν

where W0 = 1,Wj = Wj−1
lαj−1αj

pαj−1αj
, j = 1, 2, 3..., g

(m)
0 = 1 and α0, α1, ... is a

Markov chain with initial probability pα0 and one step transition probability
pαν−1αν

for choosing the element lαν−1αν
of the matrix L [1].

Theorem 2. Consider matrix L, whose Neumann series does not necessarily
converge. Let ψ(α) = 4aα

(1−α)2 be the required mapping, so that the presentation

g
(m)
k exists. Then

E{ lim
m→∞

hα0

pα0

Σm
ν=0g

(m)
ν Wνbαν

} = 〈h, x〉

In [5], authors have analysed the robustness of the Monte Carlo algorithm for
solving a class of linear algebra problems based on bilinear form of matrix powers
〈h,Lkb〉. In [5], authors have considered real symmetric matrices with norms
smaller than one. In this paper, results are extended considerably compared
to cases [3,5]. We consider singular matrices. For matrices that are stochastic
matrices the accuracy of the algorithm is particularly high.

3.1 Numerical Tests

In this section of paper we employed our resolvent Monte Carlo algorithm for
solving systems of singular linear algebraic equations. The test matrices are
randomly generated. The factor of the improvement of the convergence depends
on parameter α. An illustration of this fact is Table 1. We consider randomly
generated matrices of order 100, 1000 and 5000. But more precise consideration
shows that the error decreases with the increasing of the matrix size.
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Table 1. Resolvent Monte Carlo results (number of trajectories N = 105)

Size n Error

n = 100 6.7668× 10−4

n = 500 2.3957× 10−5

n = 1000 1.1487× 10−5

n = 2000 6.3536× 10−6

n = 3000 3.8250× 10−6

n = 4000 3.0871× 10−6

n = 5000 2.2902× 10−6

n = 6000 2.0030× 10−6

4 Conclusion

A new Monte Carlo algorithm for solving singular linear systems of equations
is presented in this paper. The approach is based on the resolvent operator
Rλ convergence. In fact we construct an algorithm based on the mapping of
the spectral parameter λ. The approach is applied to systems with singular
matrices. The initial results show that for such matrices a fairly high accuracy
can be obtained.
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