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Abstract. In this paper, we study a dynamic fluid-structure interaction
(FSI) problem involving a rotational elastic turbine, which is modeled
by the incompressible fluid model in the fluid domain with the arbitrary
Lagrangian-Eulerian (ALE) description and by the St. Venant-Kirchhoff
structure model in the structure domain with the Lagrangian description,
and the application to a hemodynamic FSI problem involving an artificial
heart pump with a rotating rotor. A linearized rotational and deformable
structure model is developed for the rotating rotor and a monolithic
mixed ALE finite element method is developed for the hemodynamic
FSI system. Numerical simulations are carried out for a hemodynamic
FSI model with an artificial heart pump, and are validated by comparing
with a commercial CFD package for a simplified artificial heart pump.
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1 Introduction

Fluid-structure interaction (FSI) problems remain among the most challenging
problems in computational mechanics and computational fluid dynamics. The
difficulties in the simulation of these problems stem from the fact that they rely
on the coupling of models of different nature: Lagrangian in the solid and Eule-
rian in the fluid. The so-called Arbitrary Lagrangian Eulerian (ALE) method
[7,9] copes with this difficulty by adapting the fluid solver along the deforma-
tions of the solid medium in the direction normal to the interface. These meth-
ods allow us to accurately account for continuity of stresses and velocities at
the interface, where the body-fitted conforming mesh is used and the surface
mesh is accommodated to be shared between the fluid and solid, and thus to
automatically satisfy the interface kinematic condition. In this paper, we use the
ALE method to reformulate and solve fluid equations on a moving fluid mesh
which moves along with structure motions through the interface.

In contrast to a large amount of FSI literatures which are dedicated to either
a rigid structure [8,11], or a non-rotational structure [4,7], or a stationary fluid
domain (thus the interface) [5,13], few works are contributed to FSI problems
with a rotational and deformable structure. This is mainly due to the fact that
the corresponding mathematical and mechanical model is lacking. Some rele-
vant models arise from the field of graphics and animation applications for the
co-rotational linear elasticity [14], but still far away from our need. To simulate
such a FSI problem with a more realistic operating condition, we first derive a
linearized constitutive model of structure combining the elastic deformation with
the rotation, then present its weak formulation and develop a specific ALE map-
ping technique to deal with the co-rotational fluid and structure. Furthermore,
we describe an efficient monolithic iterative algorithm and ALE-type mixed finite
element method to solve the hydrodynamic/hemodynamic FSI problem.

The application of our developed monolithic ALE finite element method in
this paper is to study the numerical performance of an artificial heart pump
running in the hemodynamic FSI system. It has been always significant to study
efficient and accurate numerical methods for simulating hemodynamic FSI prob-
lems in order to help patients being recovered from a cardiovascular illness, espe-
cially from a heart failure. The statistical data tell us about 720,000 people in
the U.S. suffer heart attacks each year, in which about 2,000–2,300 heart trans-
plants are performed annually in the United States [1]. The vast majority of
these patients are unsuitable to take the heart transplantation, or, are waiting
for the proper human heart to transplant. Under such circumstance, the artificial
heart pump is thus the only choice to sustain their lives. Since 1980s, the left
ventricle auxiliary device (LVAD), also usually called the artificial heart pump,
has become an effective treatment by breaking the vicious cycle of heart failure.
Currently, although a massive amount of heart failure patients need the artificial
heart to assistant their treatment, an individually designed artificial heart for
a specially treated patient is still lacking since such individual design heavily
relies on an accurate modeling and solution of the artificial heart-bloodstream-
vascular interactions, which may tell the doctors the accurate shape and size of
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the artificial heart pump to be manufactured, and the exact location to implant
it into the cardiovascular system in order to help on saving the patients’ lives
from their heart failure illnesses [2].

The goal of this paper is to develop advanced modeling and novel numerical
techniques for hemodynamic FSI problems in order to effectively perform stable,
precise and state of the art simulation for the cardiovascular interactions between
the artificial heart pump and blood flow. In our case, the artificial heart pump
is equipped with a rotating impeller that may bear a small deformation under
the bloodstream impact but large rotations, simultaneously, interacting with the
incompressible blood flow through the interface transmissions.

2 Model Description of FSI Problems

Let us consider a deformable elastic structure in Ωs that is immersed in an
incompressible fluid domain Ωf . Ωf ∪ Ωs = Ω ∈ Rd, Ωf ∩ Ωs = ∅. The interface
of fluid and structure is Γ = ∂Ωs. As shown in Fig. 1, the Eulerian coordinates
in the fluid domain are described with the time invariant position vector x;
the solid positions in the initial configuration Ω̂s and the current configuration
Ωs are represented by X and x(X, t), respectively. We use vf to denote the
velocity of fluid, pf the pressure of fluid, vs the velocity of solid structure, and
us the displacement of structure. Thus, us(x(X, t), t) = ûs(X, t) = x − X,
and vs = dx

dt = ∂us
∂t . The Jacobian matrix F = ∂x

∂X describes the structure
deformation gradient.

Fig. 1. Schematic domain of FSI problem.

Fluid Motion in Eulerian Description

ρf

(
∂vf

∂t
+ vf · ∇vf

)
= ∇ · σf + ρfff , in Ωf (1)

∇ · vf = 0, in Ωf (2)

σf = −pfI + μf

(
∇vf + (∇vf)

T
)
, (3)

vf = vB, on ∂Ω (4)
vf(x, 0) = vf0, in Ωf (5)
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Solid Motion in Lagrangian Description

ρs
∂2ûs

∂t2
= ∇ · (JσsF

−T ) + ρsf̂s, in Ω̂s (6)

ûs(X, 0) = ûs0, and
∂ûs

∂t
(X, 0) = v̂s0, in Ω̂s (7)

where the stress tensor σs in the reference configuration X, denoted by
σ̂s, is defined by the first Piola-Kirchhoff stress tensor, P , as σ̂s = P =
JσsF

−T = FS, where S = JF −1σsF
−T denotes the second Piola-Kirchhoff

stress tensor. For a compressible St. Venant-Kirchhoff (STVK) material [10],
σs(x) = 1

J F (2μsE + λs(trE)I)F T , thus S = 2μsE + λs(trE)I, where E is
the Green-Lagrangian finite strain tensor, defined as E = (F T F − I)/2 =
[∇X us + (∇X us)T + (∇X us)T ∇X us]/2. λs, μs are the Lamé’s constants.

Interface Conditions

vf = vs, on Γ (8)
σf · n = σs · n, on Γ (9)

which are called the kinematic and dynamic lateral interface conditions, respec-
tively, describing the continuities of velocity and of normal stress.

ALE Mapping Technique. Define A(·, t) = At : Ω̂(X) �→ Ω(x) is an arbitrary
diffeomorphism, satisfying the following conventional ALE (harmonic) mapping:

⎧⎨
⎩

−ΔA = 0, in Ω̂f ,

A = 0, on ∂Ω̂f\Γ̂ ,

A = ûs, on Γ̂ ,

(10)

where A is the displacement of fluid grid which equals to the structure displace-
ment on the interface, resulting in a moving fluid grid according to the structure
motion and further fulfilling the kinematic interface condition.

Fluid Motion in ALE Description. The momentum equation of fluid motion (1)
in ALE description is given as

ρf∂
A
t vf + ρf((vf − w) · ∇)vf = ∇ · σf + ρfff , (11)

where w = ∂A
∂t ◦ A−1

t denotes the velocity of fluid grid and

∂A
t vf |(x,t) :=

∂ [vf (A(X, t), t)]
∂t

∣∣∣∣
(X ,t)=(A−1

t (x),t)
=

∂vf

∂t
+ (w · ∇)vf

is the ALE time derivative. For the simplicity of notation, in what follows, we
suppose ff = fs = 0 by assuming no external force is acted on fluid and structure.
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3 A Monolithic Weak Formulation of FSI

Introduce V̂s = {v̂s ∈ (H1(Ω̂s))d|v̂s(X) = vf(x(X, t)) ◦ A on Γ̂}, Vf = {vf ∈
(H1(Ωf))d|vf = vB on ∂Ω}, Wf = L2(Ωf), Q̂f = {A ∈ (H1(Ω̂f))d|A =
0 on ∂Ω̂f ∩ ∂Ω̂, and A = ûs on Γ̂}, we define a monolithic ALE weak formula-
tion of FSI model as follows: find (v̂s,vf , p,A) ∈ (V̂s⊕Vf ⊕Wf ⊕Q̂f)×L2([0, T ])
such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρs

∂v̂s

∂t
, φ

)
+

(
σ̂s

(
û0
s +

∫ t

0

v̂ (τ) dτ

)
, ε (φ)

)

+
(
ρf∂

A
t vf , ψ

)
+ (ρf (vf − w) · ∇vf , ψ) + (σf , ε (ψ)) = 0,

(∇ · vf , q) = 0,
(∇A,∇ξ) = 0,

∀φ ∈ V̂s, ψ ∈ Vf , q ∈ Wf , ξ ∈ Q̂f ,

(12)

where ε(u) = 1
2

(
∇u + (∇u)T

)
. The boundary integrals that arise from the

integration by parts for fluid and structure equations are cancelled due to the
continuity of normal stress condition (9). To efficiently implement the kinematic
condition (8), we employ the master-slave relation technique, namely, two sets
of grid nodes are defined on the interface, one belongs to the fluid grid and
the other one belongs to the structure grid, both share the same position and
the same degrees of freedom of velocity on the interface. The usage of structure
velocity v̂s instead of the displacement ûs as the principle unknown in (12) has
an advantage to precisely apply the master-slave relation, where, v̂s = ∂ûs

∂t or
ûs = û0

s +
∫ t

0
v̂s(τ)dτ , then (8) becomes v̂s(X) = vf(x(X, t)) ◦ A on Γ̂ .

4 FSI Problem Involving a Rotating Elastic Structure

Based on the constitutive law of STVK material, we rewrite the structure equa-
tion in Lagrangian description (6) as follows

ρs
∂2ûs

∂t2
= ∇ · (λs(trE)F + 2μsFE) . (13)

Suppose X0 is the structure centroid in statics, but the center of mass in dynam-
ics, we define the structure displacement with regard to X0 as [6]

x − X0 = R(X + ûd − X0), (14)

where ûd is the deformation displacement in the local coordinate system whose
origin is X0, R is the rotator from the base configuration C0 to the corotated
configuration CR, given by R = TRT T

0 , here T0 and TR are the global-to-local
displacement transformations [6]. TR, T0 and R are all orthogonal matrices. We
specialize one case of which the rotation of axis is Z-axis, resulting in

R(θ) =

⎛
⎝ cos(θ − θ0) − sin(θ − θ0) 0

sin(θ − θ0) cos(θ − θ0) 0
0 0 1

⎞
⎠ , (15)
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where θ0 is a fixed initial angle from the globally-aligned configuration CG in C0

and θ = θ(t) is a time-dependent angle from CG in CR. Without loss of generality,
we let θ0 = 0. Hence, the total structure displacement, ûs, can be defined as

ûs = x − X = (R − I)(X − X0) + Rûd = ûθ + Rûd, (16)

where ûθ = (R − I)(X − X0) is the rotational displacement of the structure.
From (14), we obtain F = R(I + Φ), where Φ = ∇ûd. Then, E = (F T F −

I)/2 = (Φ+ΦT +ΦT Φ)/2. Thus, the first Piola-Kirchhoff stress P = F (λs(trE)+
2μsE), leading to a function of Φ as follows

P (Φ) = R(I + Φ)
[
1
2
λs

(
trΦ + trΦT + tr

(
ΦT Φ

))
+ μs

(
Φ + ΦT + ΦT Φ

)]
.

The following linear approximation is then derived by Taylor expansion at Φ = 0,

P ≈ 1
2
λsR

(
trΦ + trΦT

)
+ μsR

(
Φ + ΦT

)
= R (λstr (ε (ûd)) I + 2μsε (ûd)) ,

where ε(ûd) = 1
2 (∇ûd +(∇ûd)T ) is the linear approximation of E(ûd). We may

equivalently rewrite σ̂s = RDε(ûd), where D denotes the constitutive matrix
in terms of the Young’s modulus E and Poisson’s ratio ν [3]. Thus, (13) is
approximated by the following co-rotational linear elasticity model

ρs
∂2ûs

∂t2
= ∇ · (RDε (ûd)) . (17)

The weak formulation of (17) is defined as: find ûs ∈ L2([0, T ]; V̂s) such that
(

ρs
∂2ûs

∂t2
, φ

)
+

(
Dε (ûd) , ε

(
RT φ

))
=

∫
∂Ωs

σsnsφ ds, ∀φ ∈ V̂s. (18)

Due to (16), we have Rûd = ûs − ûθ, thus ε(ûd) = ε(RT ûs) − ε(RT ûθ).
Note that ûθ = (R − I)(X − X0), then Dε(RT ûθ) = Dε((I − RT )(X − X0)).
Therefore, (18) is rewritten as
(

ρs
∂2ûs

∂t2
, φ

)
+

(
Dε

(
RT ûs

)
, ε

(
RT φ

))
=

(
Dε((I − RT )(X − X0)), ε(RT φ)

)

+
∫

∂Ωs
σsnsφ ds, ∀φ ∈ V̂s, (19)

where, the stiffness term on the L.H.S. is symmetric positive definite, the first
term on the R.H.S. is the body force contribution from the rotation, the bound-
ary integral term shall be canceled later due to the continuity condition of normal
stress (9). The remaining unknown quantity in (19) is the rotational matrix R if
the structure rotation is passive. In the following we introduce two propositions
to the computation of R by means of the structure velocity v̂s, both proofs are
relatively easy and thus are omitted here.
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Proposition 1. The angular velocity ω(t) = (ω1, ω2, ω3)T satisfies

Iω =
∫

Ωs

ρsr × v̂s dX, (20)

where, I =
∫

Ωs
ρsr

2 dX is the inertia, r is the position vector to the rotation of
axis which has the following relation with ω

dr

dt
= ω × r = ω̃r =

⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠

⎛
⎝ r1

r2
r3

⎞
⎠ , and v̂s =

∂ûs

∂t
=

dr

dt
. (21)

Proposition 2. R satisfies the following O.D.E.

dR

dt
= ω̃R, and R(0) = R0. (22)

Now, by iteratively solving (19), (20), and (22) together, we are able to
sequentially obtain the structure velocity v̂s, the angular velocity ω, then the
rotational matrix R, further, the structure displacement ûs.

5 Algorithm Description

We first split Ωf = Ωsf ∪ Ωrf , where Ωrf is an artificial buffer zone containing
the rotating elastic structure inside, which could be a disk in 2D or a cylinder
in 3D, as shown in Fig. 2. And, the size of Ωrf which is characterized by the
radius of its cross section is usually taken as the middle between the outer
boundary of the flow channel and the rotating structure in order to guarantee
the mesh quality inside and outside of the artificial buffer zone Ωrf . Both Ωrf

and Ωs suppose to rotate about the same rotation of axis with the same angular
velocity under the circumstance of a small strain arising from the structure.
Suppose all the necessary solution data from the last time step are known: vn−1

f ,
v̂n−1
s , ûn−1

s , Rn−1, wn−1, An−1, and the mesh on the last time step, Tn−1
h =

Tsf,h ∪ T
n−1
rf,h ∪ T̂s,h, where T̂s,h is the Lagrangian structure mesh in Ω̂s which is

always fixed, Tsf,h is the mesh in the stationary fluid domain Ωsf which is also
fixed, and Trf,h is the mesh in the rotational fluid domain Ωrf which needs to be
computed all the time. Thus, we decompose the displacement of the rotational
fluid mesh Trf,h to two parts: the rotational part uθ and the deformation part
A which is attained from a specific ALE mapping defined in (26), where A is
only subject to a structure deformation displacement ûs−uθ on Γ̂ , and the local
adjustment of the mesh nodes on ∂Ωrs = ∂Ωrf∩∂Ωsf for the sake of a conforming
fluid mesh across ∂Ωrs. Such specific ALE mapping always guarantees a shape-
regular fluid mesh in Ωrf , and still conforms with the stationary fluid mesh in
Ωsf through ∂Ωrs.

In the following, we define an implicit relaxed fixed-point iterative scheme for
the FSI simulation at the current n-th time step, i.e., we first iteratively solve the
implicit nonlinear momentum equations of both fluid and structure on a known
fluid mesh Tf,h obtained from the previous step and the fixed structure mesh
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Fig. 2. An illustration of the rotational part (a buffer zone) of the fluid (green) sepa-
rates the structure (blue) from the stationary part of the fluid (red) in 2D & 3D. (Color
figure online)

T̂s,h until the convergence, then compute a new fluid mesh Tf,h based on the
newly obtained structure velocity, and start another inner iteration to solve the
momentum equations on the new fluid mesh. Continue this fixed-point iteration
until the fluid mesh is converged, then march to the next time step. The detailed
algorithms are described in Algorithms 1–3.

Algorithm 1. ALE method for FSI:
On the n-th time step, let wn,0 = wn−1, Rn,0 = Rn−1, Tn,0

f,h = T
n−1
f,h .

For j = 1, 2, · · · until convergence, do

1. (vn,j
f ,pn,j , v̂n,j

s , ûn,j
s ) ← Momentum(vn−1

f , v̂n−1
s , wn,j−1, Rn,j−1, ûn−1

s ,
T

n,j−1
f,h )

2. (wn,j ,Rn,j ,An,j ,Tn,j
f,h ) ← Mesh(v̂n,j

s , ûn,j
s ,Rn−1,An−1,wn−1)

Algorithm 2. Momentum Solver:
(vn,j

f , pn,j , v̂n,j
s , ûn,j

s ) ← Momentum(vn−1
f , v̂n−1

s ,wn,j−1,Rn,j−1, ûn−1
s ,Tn,j−1

f,h )

1. Find (vn,j
f , pn,j , v̂n,j

s ) ∈ Vf ⊕ Wf ⊕ V̂s such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(

ρf
v
n,j
f −vn−1

f
Δt

, ψ

)

+
(
ρf(v

n,j
f − wn,j−1) · ∇vn,j

f , ψ
)

+
(
μfε(v

n,j
f ), ε(ψ)

)

− (
pn,j , ∇ · ψ

)
+

(
ρs

v̂n,j
s −v̂n−1

s
Δt

, φ
)

+ Δt
2

(
Dε((Rn,j−1)T v̂n,j

s ), ε((Rn,j−1)T φ)
)

= −Δt
2

(
Dε((Rn,j−1)T v̂n−1

s ), ε((Rn,j−1)T φ)
) − (

Dε((Rn,j−1)T ûn−1
s ),

ε((Rn,j−1)T φ)
)

+
(
Dε((I − (Rn,j−1)T )(X − X0)), ε((R

n,j−1)T φ)
)
,

(∇ · vn,j
f , q

)
= 0, ∀φ ∈ V̂s, ψ ∈ Vf , q ∈ Wf ,

(23)

where the convection term (ρfvn,j
f · ∇vn,j

f , ψ) can be linearized by Picard’s
or Newton’s method.

2. ûn,j
s ← ûn−1

s + Δt
2 (v̂n,j

s + v̂n−1
s ).
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In Algorithm 2, the ALE time derivative, ∂A
t vf , is discretized as

∂A
t vf ≈ vf (x, tn) − vf (An−1 ◦ A−1

n (x), tn−1)
Δt

, (24)

where An−1 ◦ A−1
n (x) is on the corresponding grid node at t = tn−1 as long as

x is on one grid node at t = tn. Thus the interpolation between different time
levels is avoided due to the mesh connectivity that is guaranteed by the ALE
mapping.

Algorithm 3. Mesh Update:
(wn,j ,Rn,j ,An,j ,Tn,j

f,h ) ← Mesh(v̂n,j
s , ûn,j

s ,Rn−1,An−1,wn−1)

1. Calculate Iω =
∫

Ωs
ρr × v̂n,j

s dX for ω then obtain ω̃.
2. Solve (I − Δt

2 ω̃)Rn,j = (I + Δt
2 ω̃)Rn−1 for Rn,j , which is the Crank-Nicolson

scheme of (22), and preserves the orthogonality of Rn,j .
3. ûn,j

θ ← (Rn,j − I)(X − X0) and T
n,j
rf,h ← X + ûn,j

θ .
4. By locally moving the mesh nodes of Tn

rf,h on ∂Ωrs to match with the mesh
nodes of Tn

sf,h on ∂Ωrs, find the extra fluid mesh displacement ûn,j
m on ∂Ωrs

other than the rotational part ûn,j
θ .

5. Update the displacements on the interface position by relaxation:

ûn,j
s,∗ = (1 − ω)ûn,j−1

s + ωûn,j
s , on Γ̂ , (25)

ûn,j
θ,∗ = (1 − ω)ûn,j−1

θ + ωûn,j
θ , on Γ̂ ,

where, ω ∈ [0, 1] is the relaxation number that is tuned based upon the perfor-
mance of nonlinear iteration: if the iterative errors are smoothly decreasing,
then the value of ω is taken closer to 1; otherwise, if the iterative errors are
not dramatically decreasing but keep oscillating, then the value of ω shall be
closer to 0.

6. Solve the following ALE mapping for An,j

⎧⎪⎨
⎪⎩

−ΔAn,j = 0, in Ω̂rf ,

An,j = ûn,j
s,∗ − ûn,j

θ,∗ , on Γ̂ ,

An,j = ûn,j
m , on ∂Ω̂rs.

(26)

7. ûn,j
f ← ûn,j

θ,∗ + An,j , Tn,j
rf,h ← X + ûn,j

f .

8. wn,j ← un,j
f −un−1

f
Δt .

6 Application to the Artificial Heart Pump

To test our model and numerical method, in this section we study the hemody-
namic interaction of blood flow with an artificial heart pump which is embedded
into the blood vessel and immersed in the blood flow. The artificial heart pump
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to be studied in this paper consists of three parts: the rotating rotor in the mid-
dle and the unmoving head guide and tail guide on two terminals. It locates close
to the inlet of the vascular lumen and its rotation of axis is fixed, as illustrated
in Fig. 3. In principle, the pump rotor plays a role of impeller to increase the
blood pressure when the blood flows through it, the head/tail guides are used
to stabilize the incoming and outgoing blood flow, altogether helping the failing
human heart to propel a stable blood flow through the entire human body.

Fig. 3. Computational meshes – Left: the artificial heart pump (3 parts from the left
end to the right end: head guide, rotor and tail guide); Right: the blood flow mesh in a
vascular lumen, where the rotational part that immerses the pump rotor is separated
from the stationary part by two discs between the pump rotor and the tail/head guide
of the pump. The meshes on two discs are shown in Fig. 4.

To apply our ALE finite element method to the above specific artificial heart
pump, we need to separate the entire computational domain shown on the right
of Fig. 3 to three parts: the rotational part containing the pump rotor and the sur-
rounding fluid area, and two stationary parts including the unmoving head/tail
guide of the pump and surrounding fluid regions. Two discs with particular
meshes shown in Fig. 4 are made between the head/tail guide and the rotor to
fulfill this purpose. The mesh on each disc is made along a series of concentric
circles, by which the local adjustment of the mesh motion on the interface of
the rotational fluid region (Ωrf) and the stationary fluid region (Ωsf), ∂Ωrs, can
then be easily calculated.

To start the artificial heart pump, the rotor is always given an initial angular
velocity, ω, in the unit of revolution per minute (rpm), starting from ω = 1000
rpm then running up to ω = 8000 rpm to work as an impeller of the blood flow by
increasing the blood pressure to normal level. In turn, the artificial heart pump
itself bears a relatively tiny deformation due to its nearly rigid structure material
(the Young’s modulus is up to 1.95 × 1011 Pa), thus the developed co-rotational
linear elasticity model (17) works well for the artificial heart pump. We will
simulate such a hemodynamic FSI process by carrying out Algorithms 1–3 with
a stable Stokes-pair (e.g. P 2P 1 or MINI mixed finite element) or a stabilized
scheme (e.g. P 1P 1 mixed element with pressure-stabilization).

It is worth mentioning that our numerical simulations are carried out on
Tianhe-1A which locates in the National Supercomputing Center, Tianjin,
China, and each node of which has two Intel Xeon X5670 CPUs of six cores
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Fig. 4. Interface meshes on ∂Ωrs between the stationary fluid and the rotational fluid
regions.

and 24 GB memory. The mesh we used in the computation has 473,403 vertices,
2,614,905 cells, and 10 boundary layers are attached on the rotor blades and the
wall near them. With P 2P 1 mixed finite element, the total number of DOFs is
11,296,137. The time step is chosen to be 5×10−5 s to reach a rotational steady
state at t = 0.13 s. The linear system is solved by the additive Schwartz method,
and on each processor, the local linear system is solved with the direct solver
MUMPS. As for the timing issue, 1024 cores is used in our computation, and
each time step cost about 47 s, the total time of the simulation cost about 33 h.

Considering the Reynolds number of blood flow near the high-speed rotating
rotor surface is higher than elsewhere, behaving like a turbulence flow, we then
also employ the Reynolds-Averaged Simulation (RAS) turbulence model [12] to
replace the laminar fluid model in (1) if ω > 4000 rpm. We conduct a comparison
computation and show a large difference between the RAS model and the laminar
model, as elucidated in Fig. 5, the convergence history of the pressure drop from
the inlet to the outlet obtained by the RAS model is much stabler while the result
of laminar model is oscillatory. Under a prescribed angular velocity ω = 6000 rpm
of the rotor and the incoming flow velocity 3 L/min (about 0.2 m/s) at the inlet,
we obtain numerical results as shown in Figs. 6 and 7 for the artificial heart pump
simulation with both rotating rotor and unmoving guides are interacting with
the surrounding blood flow. We can see that the pressure is greatly increased
after the blood flow passes through the pump, inducing the blood flow being
propelled further forward along with the time marching as shown in Fig. 7 with
a reasonable velocity vector field near and behind the high-speed rotating pump
rotor.

To validate our numerical results, we attempt to rebuild the above FSI simu-
lation in a commercial CFD package (Star-CCM+), and compare the obtained
numerical results with ours. However, the commercial CFD package cannot
deal with the fluid-rotating structure interaction problem with the co-existing
rotational fluid/structure regions and stationary fluid/structure regions, which
is incomparable with our developed numerical method. In order to compare
with the commercial CFD package, we therefore simplify the original setup of
the artificial heart pump to let it consist of the rotor only, and remove all
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Fig. 5. Comparison of convergence history of pressure drop between RAS turbulence
model and the laminar model with higher angular velocity ω.

Fig. 6. Cross-sectional results of velocity magnitude and pressure in flow direction
developing at 0.02 s, 0.09 s and 0.13 s from the left to the right.

Fig. 7. The velocity vector field.
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Fig. 8. Comparisons of velocity magnitude (top) and pressure (bottom) between our
method (left) and the commercial package (right).

Fig. 9. Comparison of convergence history of pressure drop vs iteration steps between
our method and the commercial package (Star-CCM+).

unmoving parts of the pump. Then, we let the blood flow inside the entire vascu-
lar lumen rotates together with the pump rotor. Figure 8 illustrates that numeri-
cal results obtained from both the commercial package and our method are com-
parable in regard to the profile and the value range of the velocity magnitude
and the pressure. Though, a detailed observation over Fig. 8 shows a slight dif-
ference between the results of our method and the commercial package, e.g.,
our velocity is smaller near the head guide and tail guide but larger near the
rotor, our pressure is a bit larger near the head guide. That is because some
numerical techniques used in our method are still different from the commercial
CFD package in many ways. For instance, we use the streamline-diffusion finite
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element method versus the upwind finite volume method in the CFD package, and
a different way to generate the boundary layer meshes, etc.

In addition, we also compare the convergence history of the pressure-drop
field with the commercial CFD package, the comparison is shown in Fig. 9 which
illustrates that our result matches well with that of the commercial package,
moreover, our method even shows a smoother and stabler convergence process.
On the other hand, considering that our ALE finite element method is also able
to deal with a realistic artificial heart pump that contains both rotating rotor
and unmoving head/tail guide and their surrounding blood flow which, however,
the commercial CFD package cannot do, we can say that our well developed
method is more capable and more powerful in realistic applications to many
kinds of fluid-rotating structure interaction problems.

7 Conclusions

We build a Eulerian-Lagrangian model for fluid-structure interaction problem
with the rotating elastic body based on the arbitrary Lagrangian-Eulerian app-
roach. The kinematic interface condition is easily dealt with by adopting the
velocity as the principle unknown of structure equation and the master-slave
relation technique. The dynamic interface condition vanishes in the finite element
approximation of a monolithic scheme. Our well developed iterative algorithm
demonstrates a satisfactory numerical result for a hemodynamic FSI problem
involving a rotating artificial heart pump, where, the RAS turbulence model is
employed in our FSI simulation to tackle the turbulent flow behavior near the
high-speed rotating rotor. Comparisons with the commercial CFD package val-
idate our numerical results and further our numerical methods, also illustrates
that the developed numerical techniques are efficient and flexible to explore the
interaction between fluid and a rotational elastic structure.
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