Skip to main content

Coagulation and Hemostasis in Diabetic Nephropathy

  • Chapter
  • First Online:

Abstract

Diabetes is associated with endothelial dysfunction and a hypercoagulable state of the blood. There is increasing evidence that the hypercoagulability in diabetes patients can be causally linked to microvascular complications, such as diabetic nephropathy.

Coagulation factors and anticoagulants not only play important roles in coagulation but also in inflammatory processes, tissue remodeling, and fibrosis – which are all essential in the pathogenesis of diabetic nephropathy – mainly through interaction with protease-activated receptors (PARs).

In this chapter preclinical and translational studies are discussed, which address the effects of the most relevant elements of the coagulation cascade (tissue factor, coagulation factors Xa and Va, fibrin and the fibrinolytic system, thrombomodulin, von Willebrand factor, and ADAMTS13) as well as anticoagulants (activated protein C, protein S), PARs, and anticoagulant drugs in the context of diabetic nephropathy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev. 2013;93(1):327–58.

    Article  CAS  Google Scholar 

  2. Macfarlane RG. An enzyme Cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature. 1964;202:498–9.

    Article  CAS  Google Scholar 

  3. Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science. 1964;145(3638):1310–2.

    Article  CAS  Google Scholar 

  4. Carr ME. Diabetes mellitus: a hypercoagulable state. J Diabetes Complicat. 2001;15(1):44–54.

    Article  CAS  Google Scholar 

  5. Seligman BG, Biolo A, Polanczyk CA, Gross JL, Clausell N. Increased plasma levels of endothelin 1 and von Willebrand factor in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2000;23(9):1395–400.

    Article  CAS  Google Scholar 

  6. Erem C, Hacihasanoglu A, Celik S, Ovali E, Ersoz HO, Ukinc K, et al. Coagulation and fibrinolysis parameters in type 2 diabetic patients with and without diabetic vascular complications. Med Princ Pract. 2005;14(1):22–30.

    Article  Google Scholar 

  7. Stern DM, Esposito C, Gerlach H, Gerlach M, Ryan J, Handley D, et al. Endothelium and regulation of coagulation. Diabetes Care. 1991;14(2):160–6.

    Article  CAS  Google Scholar 

  8. Bourin MC, Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem J. 1993;289(Pt 2):313–30.

    Article  CAS  Google Scholar 

  9. Morise T, Takeuchi Y, Kawano M, Koni I, Takeda R. Increased plasma levels of immunoreactive endothelin and von Willebrand factor in NIDDM patients. Diabetes Care. 1995;18(1):87–9.

    Article  CAS  Google Scholar 

  10. Kvasnicka J, Skrha J, Perusicova J, Kvasnicka T, Markova M, Umlaufova A, et al. Haemostasis, cytoadhesive molecules (sE-selectin and sICAM-1) and inflammatory markers in non-insulin dependent diabetes mellitus (NIDDM). Sb Lek. 1998;99(2):97–101.

    CAS  PubMed  Google Scholar 

  11. Ibbotson SH, Rayner H, Stickland MH, Davies JA, Grant PJ. Thrombin generation and factor VIII:C levels in patients with type 1 diabetes complicated by nephropathy. Diabet Med. 1993;10(4):336–40.

    Article  CAS  Google Scholar 

  12. Gruden G, Cavallo-Perin P, Romagnoli R, Olivetti C, Frezet D, Pagano G. Prothrombin fragment 1 + 2 and antithrombin III-thrombin complex in microalbuminuric type 2 diabetic patients. Diabet Med. 1994;11(5):485–8.

    Article  CAS  Google Scholar 

  13. Mormile A, Veglio M, Gruden G, Girotto M, Rossetto P, D'Este P, et al. Physiological inhibitors of blood coagulation and prothrombin fragment F 1 + 2 in type 2 diabetic patients with normoalbuminuria and incipient nephropathy. Acta Diabetol. 1996;33(3):241–5.

    Article  CAS  Google Scholar 

  14. Zumbach M, Hofmann M, Borcea V, Luther T, Kotzsch M, Muller M, et al. Tissue factor antigen is elevated in patients with microvascular complications of diabetes mellitus. Exp Clin Endocrinol Diabetes. 1997;105(4):206–12.

    Article  CAS  Google Scholar 

  15. Kario K, Matsuo T, Kobayashi H, Matsuo M, Sakata T, Miyata T. Activation of tissue factor-induced coagulation and endothelial cell dysfunction in non-insulin-dependent diabetic patients with microalbuminuria. Arterioscler Thromb Vasc Biol. 1995;15(8):1114–20.

    Article  CAS  Google Scholar 

  16. Isermann B. Homeostatic effects of coagulation protease-dependent signaling and protease activated receptors. J Thromb Haemost. 2017;15(7):1273–84.

    Article  CAS  Google Scholar 

  17. Matsuda M, Aoki N, Kawaoi A. Localization of urinary procoagulant in the human kidney. Kidney Int. 1979;15(6):612–7.

    Article  CAS  Google Scholar 

  18. Grandaliano G, Gesualdo L, Ranieri E, Monno R, Schena FP. Tissue factor, plasminogen activator inhibitor-1, and thrombin receptor expression in human crescentic glomerulonephritis. Am J Kidney Dis. 2000;35(4):726–38.

    Article  CAS  Google Scholar 

  19. Cunningham MA, Kitching AR, Tipping PG, Holdsworth SR. Fibrin independent proinflammatory effects of tissue factor in experimental crescentic glomerulonephritis. Kidney Int. 2004;66(2):647–54.

    Article  CAS  Google Scholar 

  20. Samad F, Pandey M, Loskutoff DJ. Regulation of tissue factor gene expression in obesity. Blood. 2001;98(12):3353–8.

    Article  CAS  Google Scholar 

  21. Sommeijer DW, Florquin S, Hoedemaker I, Timmerman JJ, Reitsma PH, Ten Cate H. Renal tissue factor expression is increased in streptozotocin-induced diabetic mice. Nephron Exp Nephrol. 2005;101(3):e86–94.

    Article  CAS  Google Scholar 

  22. Takahashi N, Boysen G, Li F, Li Y, Swenberg JA. Tandem mass spectrometry measurements of creatinine in mouse plasma and urine for determining glomerular filtration rate. Kidney Int. 2007;71(3):266–71.

    Article  CAS  Google Scholar 

  23. Li F, Wang CH, Wang JG, Thai T, Boysen G, Xu L, et al. Elevated tissue factor expression contributes to exacerbated diabetic nephropathy in mice lacking eNOS fed a high fat diet. J Thromb Haemost. 2010;8(10):2122–32.

    Article  CAS  Google Scholar 

  24. Oe Y, Hayashi S, Fushima T, Sato E, Kisu K, Sato H, et al. Coagulation factor Xa and protease-activated receptor 2 as novel therapeutic targets for diabetic nephropathy. Arterioscler Thromb Vasc Biol. 2016;36(8):1525–33.

    Article  CAS  Google Scholar 

  25. Sumi A, Yamanaka-Hanada N, Bai F, Makino T, Mizukami H, Ono T. Roles of coagulation pathway and factor Xa in the progression of diabetic nephropathy in db/db mice. Biol Pharm Bull. 2011;34(6):824–30.

    Article  CAS  Google Scholar 

  26. Seligsohn U, Lubetsky A. Genetic susceptibility to venous thrombosis. N Engl J Med. 2001;344(16):1222–31.

    Article  CAS  Google Scholar 

  27. Wang H, Madhusudhan T, He T, Hummel B, Schmidt S, Vinnikov IA, et al. Low but sustained coagulation activation ameliorates glucose-induced podocyte apoptosis: protective effect of factor V Leiden in diabetic nephropathy. Blood. 2011;117(19):5231–42.

    Article  CAS  Google Scholar 

  28. van der Poll T. Thrombin and diabetic nephropathy. Blood. 2011;117(19):5015–6.

    Article  Google Scholar 

  29. Herlihy WG, Nordquist JA, Mandal AK, Llach F. Diabetic nephropathy associated with fibrin formation. Hum Pathol. 1981;12(7):658–60.

    Article  CAS  Google Scholar 

  30. Farquhar A, MacDonald MK, Ireland JT. The role of fibrin deposition in diabetic glomerulosclerosis: a light, electron and immunofluorescence microscopy study. J Clin Pathol. 1972;25(8):657–67.

    Article  CAS  Google Scholar 

  31. Pan L, Ye Y, Wo M, Bao D, Zhu F, Cheng M, et al. Clinical significance of hemostatic parameters in the prediction for type 2 diabetes mellitus and diabetic nephropathy. Dis Markers. 2018;2018:7.

    Article  Google Scholar 

  32. Collen D. The plasminogen (fibrinolytic) system. Thromb Haemost. 1999;82(2):259–70.

    CAS  PubMed  Google Scholar 

  33. Svenningsen P, Hinrichs GR, Zachar R, Ydegaard R, Jensen BL. Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch. 2017;469(11):1415–23.

    Article  CAS  Google Scholar 

  34. Chan JC, Duszczyszyn DA, Castellino FJ, Ploplis VA. Accelerated skin wound healing in plasminogen activator inhibitor-1-deficient mice. Am J Pathol. 2001;159(5):1681–8.

    Article  CAS  Google Scholar 

  35. Lijnen HR. Pleiotropic functions of plasminogen activator inhibitor-1. J Thromb Haemost. 2005;3(1):35–45.

    Article  CAS  Google Scholar 

  36. Eitzman DT, McCoy RD, Zheng X, Fay WP, Shen T, Ginsburg D, et al. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest. 1996;97(1):232–7.

    Article  CAS  Google Scholar 

  37. Ho CH, Jap TS. Relationship of plasminogen activator inhibitor-1 with plasma insulin, glucose, triglyceride and cholesterol in Chinese patients with diabetes. Thromb Res. 1993;69(3):271–7.

    Article  CAS  Google Scholar 

  38. Festa A, Williams K, Tracy RP, Wagenknecht LE, Haffner SM. Progression of plasminogen activator inhibitor-1 and fibrinogen levels in relation to incident type 2 diabetes. Circulation. 2006;113(14):1753–9.

    Article  CAS  Google Scholar 

  39. Xu Y, Hagege J, Mougenot B, Sraer JD, Ronne E, Rondeau E. Different expression of the plasminogen activation system in renal thrombotic microangiopathy and the normal human kidney. Kidney Int. 1996;50(6):2011–9.

    Article  CAS  Google Scholar 

  40. Roelofs JJ, Teske GJ, Bonta PI, de Vries CJ, Meijers JC, Weening JJ, et al. Plasminogen activator inhibitor-1 regulates neutrophil influx during acute pyelonephritis. Kidney Int. 2009;75(1):52–9.

    Article  CAS  Google Scholar 

  41. Lee HS, Park SY, Moon KC, Hong HK, Song CY, Hong SY. mRNA expression of urokinase and plasminogen activator inhibitor-1 in human crescentic glomerulonephritis. Histopathology. 2001;39(2):203–9.

    Article  CAS  Google Scholar 

  42. Nakamura T, Tanaka N, Higuma N, Kazama T, Kobayashi I, Yokota S. The localization of plasminogen activator inhibitor-1 in glomerular subepithelial deposits in membranous nephropathy. J Am Soc Nephrol. 1996;7(11):2434–44.

    CAS  PubMed  Google Scholar 

  43. Paueksakon P, Revelo MP, Ma LJ, Marcantoni C, Fogo AB. Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney Int. 2002;61(6):2142–8.

    Article  CAS  Google Scholar 

  44. Nicholas SB, Aguiniga E, Ren Y, Kim J, Wong J, Govindarajan N, et al. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int. 2005;67(4):1297–307.

    Article  CAS  Google Scholar 

  45. Collins SJ, Alexander SL, Lopez-Guisa JM, Cai X, Maruvada R, Chua SC, et al. Plasminogen activator inhibitor-1 deficiency has renal benefits but some adverse systemic consequences in diabetic mice. Nephron Exp Nephrol. 2006;104(1):e23–34.

    Article  CAS  Google Scholar 

  46. Hagiwara H, Kaizu K, Uriu K, Noguchi T, Takagi I, Qie YL, et al. Expression of type-1 plasminogen activator inhibitor in the kidney of diabetic rat models. Thromb Res. 2003;111(4–5):301–9.

    Article  CAS  Google Scholar 

  47. Lassila M, Fukami K, Jandeleit-Dahm K, Semple T, Carmeliet P, Cooper ME, et al. Plasminogen activator inhibitor-1 production is pathogenetic in experimental murine diabetic renal disease. Diabetologia. 2007;50(6):1315–26.

    Article  CAS  Google Scholar 

  48. Lee HB, Ha H. Plasminogen activator inhibitor-1 and diabetic nephropathy. Nephrology (Carlton). 2005;10(Suppl):S11–3.

    Article  CAS  Google Scholar 

  49. Miyata T, van Ypersele de Strihou C. Translation of basic science into clinical medicine: novel targets for diabetic nephropathy. Nephrol Dial Transplant. 2009;24(5):1373–7.

    Article  Google Scholar 

  50. Huang Y, Border WA, Lawrence DA, Noble NA. Mechanisms underlying the antifibrotic properties of noninhibitory PAI-1 (PAI-1R) in experimental nephritis. Am J Physiol Renal Physiol. 2009;297(4):F1045–54.

    Article  CAS  Google Scholar 

  51. Huang Y, Border WA, Yu L, Zhang J, Lawrence DA, Noble NA. A PAI-1 mutant, PAI-1R, slows progression of diabetic nephropathy. J Am Soc Nephrol. 2008;19(2):329–38.

    Article  Google Scholar 

  52. Esmon CT, Owen WG. The discovery of thrombomodulin. J Thromb Haemost. 2004;2(2):209–13.

    Article  CAS  Google Scholar 

  53. Sadler JE. Thrombomodulin structure and function. Thromb Haemost. 1997;78(1):392–5.

    Article  CAS  Google Scholar 

  54. Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol. 2012;34(1):107–25.

    Article  CAS  Google Scholar 

  55. Ordonez NG. Thrombomodulin expression in transitional cell carcinoma. Am J Clin Pathol. 1998;110(3):385–90.

    Article  CAS  Google Scholar 

  56. Suzuki K, Hayashi T, Nishioka J, Kosaka Y, Zushi M, Honda G, et al. A domain composed of epidermal growth factor-like structures of human thrombomodulin is essential for thrombin binding and for protein C activation. J Biol Chem. 1989;264(9):4872–6.

    CAS  PubMed  Google Scholar 

  57. Walker FJ, Fay PJ. Regulation of blood coagulation by the protein C system. FASEB J. 1992;6(8):2561–7.

    Article  CAS  Google Scholar 

  58. Griffin JH, Zlokovic BV, Mosnier LO. Protein C anticoagulant and cytoprotective pathways. Int J Hematol. 2012;95(4):333–45.

    Article  CAS  Google Scholar 

  59. Li YH, Kuo CH, Shi GY, Wu HL. The role of thrombomodulin lectin-like domain in inflammation. J Biomed Sci. 2012;19:34.

    Article  Google Scholar 

  60. Gabat S, Keller C, Kempe HP, Amiral J, Ziegler R, Ritz E, et al. Plasma thrombomodulin: a marker for microvascular complications in diabetes mellitus. Vasa. 1996;25(3):233–41.

    CAS  PubMed  Google Scholar 

  61. Khairoun M, de Koning EJ, van den Berg BM, Lievers E, de Boer HC, Schaapherder AF, et al. Microvascular damage in type 1 diabetic patients is reversed in the first year after simultaneous pancreas-kidney transplantation. Am J Transplant. 2013;13(5):1272–81.

    Article  CAS  Google Scholar 

  62. von Scholten BJ, Reinhard H, Hansen TW, Schalkwijk CG, Stehouwer C, Parving HH, et al. Markers of inflammation and endothelial dysfunction are associated with incident cardiovascular disease, all-cause mortality, and progression of coronary calcification in type 2 diabetic patients with microalbuminuria. J Diabetes Complicat. 2016;30(2):248–55.

    Article  Google Scholar 

  63. Wang H, Vinnikov I, Shahzad K, Bock F, Ranjan S, Wolter J, et al. The lectin-like domain of thrombomodulin ameliorates diabetic glomerulopathy via complement inhibition. Thromb Haemost. 2012;108(6):1141–53.

    PubMed  Google Scholar 

  64. Yang SM, Ka SM, Wu HL, Yeh YC, Kuo CH, Hua KF, et al. Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF-kappaB/NLRP3 inflammasome-mediated inflammation, enhancement of NRF2 antioxidant activity and inhibition of apoptosis. Diabetologia. 2014;57(2):424–34.

    Article  CAS  Google Scholar 

  65. Oggianu L, Lancellotti S, Pitocco D, Zaccardi F, Rizzo P, Martini F, et al. The oxidative modification of von Willebrand factor is associated with thrombotic angiopathies in diabetes mellitus. PLoS One. 2013;8(1):e55396.

    Article  CAS  Google Scholar 

  66. Tati R, Kristoffersson AC, Stahl AL, Morgelin M, Motto D, Satchell S, et al. Phenotypic expression of ADAMTS13 in glomerular endothelial cells. PLoS One. 2011;6(6):e21587.

    Article  CAS  Google Scholar 

  67. Manea M, Kristoffersson A, Schneppenheim R, Saleem MA, Mathieson PW, Morgelin M, et al. Podocytes express ADAMTS13 in normal renal cortex and in patients with thrombotic thrombocytopenic purpura. Br J Haematol. 2007;138(5):651–62.

    Article  CAS  Google Scholar 

  68. Taniguchi S, Hashiguchi T, Ono T, Takenouchi K, Nakayama K, Kawano T, et al. Association between reduced ADAMTS13 and diabetic nephropathy. Thromb Res. 2010;125(6):e310–6.

    Article  CAS  Google Scholar 

  69. Rurali E, Noris M, Chianca A, Donadelli R, Banterla F, Galbusera M, et al. ADAMTS13 predicts renal and cardiovascular events in type 2 diabetic patients and response to therapy. Diabetes. 2013;62(10):3599–609.

    Article  CAS  Google Scholar 

  70. Dhanesha N, Doddapattar P, Chorawala MR, Nayak MK, Kokame K, Staber JM, et al. ADAMTS13 retards progression of diabetic nephropathy by inhibiting intrarenal thrombosis in mice. Arterioscler Thromb Vasc Biol. 2017;37(7):1332–8.

    Article  CAS  Google Scholar 

  71. Esmon CT. The protein C pathway. Chest. 2003;124(3 Suppl):26S–32S.

    Article  CAS  Google Scholar 

  72. Mosnier LO, Zlokovic BV, Griffin JH. The cytoprotective protein C pathway. Blood. 2007;109(8):3161–72.

    Article  CAS  Google Scholar 

  73. Schouten M, van 't veer C, Roelofs JJ, Gerlitz B, Grinnell BW, Levi M, et al. Recombinant activated protein C attenuates coagulopathy and inflammation when administered early in murine pneumococcal pneumonia. Thromb Haemost. 2011;106(6):1189–96.

    CAS  PubMed  Google Scholar 

  74. Lattenist L, Jansen MP, Teske G, Claessen N, Meijers JC, Rezaie AR, et al. Activated protein C protects against renal ischaemia/reperfusion injury, independent of its anticoagulant properties. Thromb Haemost. 2016;116(1):124–33.

    Article  Google Scholar 

  75. Isermann B, Vinnikov IA, Madhusudhan T, Herzog S, Kashif M, Blautzik J, et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med. 2007;13(11):1349–58.

    Article  CAS  Google Scholar 

  76. Bock F, Shahzad K, Wang H, Stoyanov S, Wolter J, Dong W, et al. Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc. Proc Natl Acad Sci U S A. 2013;110(2):648–53.

    Article  CAS  Google Scholar 

  77. Gil-Bernabe P, D’Alessandro-Gabazza CN, Toda M, Boveda Ruiz D, Miyake Y, Suzuki T, et al. Exogenous activated protein C inhibits the progression of diabetic nephropathy. J Thromb Haemost. 2012;10(3):337–46.

    Article  CAS  Google Scholar 

  78. Lattenist L, Ochodnicky P, Ahdi M, Claessen N, Leemans JC, Satchell SC, et al. Renal endothelial protein C receptor expression and shedding during diabetic nephropathy. J Thromb Haemost. 2016;14(6):1171–82.

    Article  CAS  Google Scholar 

  79. Waasdorp M, Duitman J, Florquin S, Spek CA. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice. Sci Rep. 2016;6:33030.

    Article  CAS  Google Scholar 

  80. Hafizi S, Dahlback B. Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. FEBS J. 2006;273(23):5231–44.

    Article  CAS  Google Scholar 

  81. Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C, et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell. 1995;80(4):661–70.

    Article  CAS  Google Scholar 

  82. Linger RM, Keating AK, Earp HS, Graham DK. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res. 2008;100:35–83.

    Article  CAS  Google Scholar 

  83. Lemke G, Rothlin CV. Immunobiology of the TAM receptors. Nat Rev Immunol. 2008;8(5):327–36.

    Article  CAS  Google Scholar 

  84. Wu J, Ekman C, Jonsen A, Sturfelt G, Bengtsson AA, Gottsater A, et al. Increased plasma levels of the soluble Mer tyrosine kinase receptor in systemic lupus erythematosus relate to disease activity and nephritis. Arthritis Res Ther. 2011;13(2):R62.

    Article  CAS  Google Scholar 

  85. Ochodnicky P, Ahdi M, Claessen N, Leemans JC, Satchell SC, Saleem MA, et al. Increased circulating and urinary levels of soluble TAM receptors in diabetic nephropathy. Am J Pathol. 2016.; accepted for publication

    Google Scholar 

  86. Gambaro G, van der Woude FJ. Glycosaminoglycans: use in treatment of diabetic nephropathy. J Am Soc Nephrol. 2000;11(2):359–68.

    CAS  PubMed  Google Scholar 

  87. Li J, Wu HM, Zhang L, Zhu B, Dong BR. Heparin and related substances for preventing diabetic kidney disease. Cochrane Database Syst Rev. 2010;9:CD005631.

    Google Scholar 

Download references

Acknowledgments

The work of Dr. Roelofs is supported by grants from the Netherlands Organisation for Scientific Research NWO (Clinical Fellowship Grant 40-00703-97-12480) and the Dutch Kidney Foundation (grant KJP10.017).

Figure 17.1 is modified and reproduced from Wikimedia Commons, according to the Creative Commons Attribution-ShareAlike 3.0 Unported license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris J. Roelofs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roelofs, J.J. (2019). Coagulation and Hemostasis in Diabetic Nephropathy. In: Roelofs, J., Vogt, L. (eds) Diabetic Nephropathy. Springer, Cham. https://doi.org/10.1007/978-3-319-93521-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93521-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93520-1

  • Online ISBN: 978-3-319-93521-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics