
LDP-DL: A Language to Define
the Design of Linked Data Platforms

Noorani Bakerally(B), Antoine Zimmermann(B) , and Olivier Boissier(B)

Univ Lyon, IMT Mines, Saint-Étienne, CNRS,
Laboratoire Hubert Curien UMR 5516, 42023 Saint-Étienne, France

{noorani.bakerally,antoine.zimmermann,olivier.boissier}@emse.fr

Abstract. Linked Data Platform 1.0 (LDP) is the W3C Recommenda-
tion for exposing linked data in a RESTful manner. While several imple-
mentations of the LDP standard exist, deploying an LDP from existing
data sources still involves much manual development. This is because
there is currently no support for automatizing generation of LDP on
these implementations. To this end, we propose an approach whose core
is a language for specifying how existing data sources should be used
to generate LDPs in a way that is independent of and compatible with
any LDP implementation and deployable on any of them. We formally
describe the syntax and semantics of the language and its implementa-
tion. We show that our approach (1) allows the reuse of the same design
for multiple deployments, or (2) the same data with different designs,
(3) is open to heterogeneous data sources, (4) can cope with hosting
constraints and (5) significantly automatizes deployment of LDPs.

Keywords: RDF · Linked data · Linked data platform

1 Introduction

In the context of open data, data sets are made available through Web data
portals with the intention to offer innovative third party developers the oppor-
tunity to provide new services to end users. In particular, today’s smart cities
usually publish urban data openly. However, exploitation of urban open data
is made very difficult by the current heterogeneity of data sets. The problem
becomes even more prominent when considering multiple data portals from sev-
eral metropolises.

Semantic Web technologies are largely addressing heterogeneity issues, with
a uniform identification mechanism (URIs), a uniform data model (RDF), and
a standard ontology language (OWL). Recently, a new standard was added to
provide a uniform data access mechanism for linked data, based on RESTful
principles: the Linked Data Platform 1.0 standard (LDP [18]). Considering the
alledged advantages of the Semantic Web and Linked Data, we believe that
LDPs can ease the path towards achieving Tim Berners-Lee’s 5-star1 open data
scheme.
1 http://5stardata.info/en/, last accessed 23 March 2018.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Gangemi et al. (Eds.): ESWC 2018, LNCS 10843, pp. 33–49, 2018.
https://doi.org/10.1007/978-3-319-93417-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93417-4_3&domain=pdf
http://orcid.org/0000-0003-1502-6986
http://5stardata.info/en/

34 N. Bakerally et al.

Yet, while LDPs greatly simplify the work of data users (developers, analysts,
journalists, etc.), it puts a heavy burden on the data publishers, who have to
make use of these new, unfamiliar technologies. The move towards LDPs requires
a redesign of how the data is organized and published. Moreover, current LDP
implementations are in their early stage and provide no automatic support for
deploying data whether it is static, dynamic or heterogeneous. This paper is an
attempt to provide a solution targeted towards data publishers to facilitate the
use and deployment of linked data platforms conforming with the LDP standard
from existing data sources.

We start by identifying requirements that any solution to the problem should
satisfy (Sect. 2.1), then show how the state of the art is failing to satisfy them
(Sect. 2.2), and subsequently propose a general approach to more easily design
and deploy LDPs (Sect. 2.3). An important and central part of the approach is to
provide a language, LDP Design Language (LDP-DL), for declaratively defining
the design of data organization and deployment. This paper is mostly focused
on describing this language, with Sect. 3.3 dedicated to its abstract syntax and
Sect. 3.4 to its semantics. Our implementation is explained in Sect. 4.1 followed
by Sect. 4.2 that describes what experiments we conducted to highlight the
requirements that the approach satisfies. Finally, immediate directions towards
overcoming the limitations are presented in the concluding section (Sect. 5).

2 Foundations and Motivations

In order to better understand the problem that we consider, we start by list-
ing the requirements that the automatic generation of LDP from existing data
sources should satisfy (cf. Sect. 2.1). To that aim, we will use the motivating
example of LDP deployment in smart cities that we are considering in the
OpenSensingCity project2. However, let’s keep in mind that these requirements
are also relevant for other application domains as well. We analyze and point cur-
rent limitations in the current approaches with respect to these requirements (cf.
Sect. 2.2). We end this section then by presenting a global view of the approach
that we propose in this paper (cf. Sect. 2.3).

2.1 Requirements

To better explain the requirements on automatic LDP generation, let’s take the
example of a city governmental institution that decides to expose the data (open
or not) produced in the city, in order to enable their exploitation by smart city
applications to support citizens in their activities in the city.

To that aim, it decides to deploy a data platform. In order to enhance interop-
erability and homogenize access, the choice has been made to use a data platform
which is compliant with Semantics Web standards including the LDP standard.
However, in order to deploy such a Linked Data Platform in this context, the
following requirements must be satisfied:
2 http://opensensingcity.emse.fr/.

http://opensensingcity.emse.fr/

LDP-DL: A Language to Define the Design of Linked Data Platforms 35

– Handling heterogeneous data sources (Heterogeneity). A city is a
decentralized and open ecosystem where data come from different organiza-
tions that are normally heterogeneous. As such, the city LDP may have to
exploit and aggregate data from these sources and must be therefore open to
heterogeneous data sources.

– Handling hosting constraints (Hosting Constraints). Smart city and
open data consist of data sources whose exploitation can give rise to host-
ing constraints that prevent from hosting a copy of the data in a third-party
environment. Such constraints can be on the data itself (e.g. license restric-
tions), or it can be a limitation of the third-party software environment (e.g.
bandwidth or storage limitations to continuously verify and maintain fresh
copies of dynamic or real-time data). Thus, the city LDP has to be able to
cope with hosting constraints.

– Reusable design (Reusability). If LDPs are spreading in different cities,
one can easily imagine that there may be a city wishing to reuse the design
of another city LDP to expose their data in a similar way. One potential
reason for doing so may be to enhance integration and access of their date to
cross-city applications. Such applications may exploit any city LDP as long
as the LDPs use both a design and vocabulary known by the application.

– Automated LDP generation (Automatization). Finally, the use of
existing LDP implementations (discussed in next section) necessitates much
manual development and thus requires time and expertise that the city may
not want to invest when putting in place its LDP. Also, having automated
solutions may help organizations wishing to open their data in conformance
to Semantic Web standards via LDPs.

2.2 LDP Overview and Current Limitations of Existing Approaches

The LDP standard provides a model to organize data resources known as LDP
resources and an interaction model to interact (read-write) with them. Two
types of LDP resources exist: LDP RDF Sources (LDP-RS) and LDP Non-RDF
Sources. These resources can be organized in LDP containers and as such are
known as member resources. An LDP container is itself an LDP-RS. Three
types of containers exist, but currently in our work, we only consider LDP Basic
Containers (LDP-BC) in which members are limited to Web documents. Note
that among current LDP implementations (discussed below), most support LDP-
BCs and fewer support other types of containers. In this paper, we want facilitate
the way LDP resources are organized in term of their IRIs, the content and
organization in LDP containers and the content of LDP-RSs.

There are existing solutions for deploying linked data that do not conform
with the LDP standard. Although we would like to take advantage of the homo-
geneous access mechanism of LDP, some non-LDP-conformant tools partially
cover our requirements. Pubby3, D2R Server [5], Virtuoso4 and Triplify [2] are

3 http://wifo5-03.informatik.uni-mannheim.de/pubby/ on 18 May 2017.
4 https://virtuoso.openlinksw.com on 19 July 2017.

http://wifo5-03.informatik.uni-mannheim.de/pubby/
https://virtuoso.openlinksw.com

36 N. Bakerally et al.

such examples. Triplify and D2R, have been designed to expose relational data
as linked data and are focused on mappings. The final steps of publishing linked
data only involves ensuring resources can be dereferenced with RDF. Virtuoso
goes a step forward by doing the latter as well as providing a linked data interface
to its triple store. Pubby can provide a linked data interface both to SPARQL
endpoints and static RDF documents. Pubby and Virtuoso are the only tools for
directly publishing RDF data as linked data in a highly automatized way. How-
ever, most design decisions are fixed and cannot be parameterized. Moreover,
these solutions implement their own interpretation of the linked data principles,
where data access and the content of RDF sources are neither standardized nor
customizable. For instance, Pubby uses DESCRIBE queries to provide the con-
tent of RDF resources, which is a feature whose implementation varies from a
SPARQL query engine to another. In summary, these tools offer the automati-
zation that we require, but with little flexibility, and lacking the standard data
access mechanism of LDP.

Concerning LDP implementations, they are mostly referenced in the standard
conformance report5 with the exception of Cavendish6 which, to our knowledge,
is the only one not referenced. We categorize them into LDP resource manage-
ment systems (Cavendish, Callimachus, Carbon LDP, Fedora Commons, Apache
Marmotta, Gold, rww-play, LDP.js) and LDP frameworks (Eclipse Lyo, LDP4j).
LDP resource management systems can be seen as a repository for resources on
top of which read and write operations conforming to the LDP standard are
allowed. Currently, they do not satisfy our requirements because their deploy-
ment requires hardcoding most design decisions into appropriate write requests
to an already deployed platform. On the other hand, LDP frameworks can be
used to build custom applications which implement LDP interactions. While
they are more flexible than management systems, they are not satisfying our
requirements because their use involves much manual development. In summary,
current LDP implementations are in their early stages as there is little to no sup-
port for automating the generation and deployment of LDPs from existing data,
even if it is already in RDF.

Besides existing implementations, the current scientific literature about LDP
is itself limited. To our knowledge four works [12,14–16] have a focus on LDP.
Among them, only [16] provides an approach for automatizing generations of
LDPs from relational data using simple R2RML mapping (no SQL view, no
multiple mappings to a class/property). While it minimally address the Het-
erogeneity requirement, it is rigid as it is not possible to customize the design
of the output LDP. Apart from this, we find no other work that attempts to
automatize the generation of LDPs.

2.3 Our Approach: The LDP Generation Workflow

In order to satisfy the requirements listed in Sect. 2.1, we provide an app-
roach based on model-driven engineering that involves using models as first-class
5 https://www.w3.org/2012/ldp/hg/tests/reports/ldp.html on 19 July 2017.
6 https://github.com/cavendish-ldp/cavendish on 07 July 2018.

https://www.w3.org/2012/ldp/hg/tests/reports/ldp.html
https://github.com/cavendish-ldp/cavendish

LDP-DL: A Language to Define the Design of Linked Data Platforms 37

entities and transforming them into running systems by using generators or by
dynamically interpreting the models at run-time [9]. Doing so enables separation
of concerns thus guaranteeing higher reusability of systems’ models [20].

LDP
POST

 Requests

LDPizer LDP Server

design
document

LDP Dataset

LDP Dataset
Deployer

Deployment Parameters

LDP-DLwritten in

LDP Dataset Server

Data
sources

Fig. 1. General overview of our LDP generation workflow proposal

Figure 1 shows a general overview of the approach. The LDP generation work-
flow includes two processes: LDPization and deployment. In the former process,
the LDPizer consumes a design document written in our language, LDP-DL,
that we use as a domain-specific language, a core component of model-driven
engineering, to explicitly describe LDP design models. Doing so enables us to
consider our Reusability requirement as the models are standalone, independent
and separate from any implementation. The LDPizer interprets the model and
exploits the data sources to generate what we call an LDP dataset (defined in
Sect. 3), which is a structure to store LDP resources introduced to abstract ways
from how current implementations store resources. The Heterogeneity require-
ment is handled by the possibility to specify mappings between non-RDF data
to RDF graphs. The deployment process involves configuring the LDP and load-
ing the LDP dataset into it. It can be done in two ways based on the nature of
the LDP server. First, if the LDP server accepts POST requests, an LDP Dataset
Deployer can generate and send such requests for each resource contained in the
LDP dataset. Second, using an LDP server that can directly consume the LDP
dataset and expose resources from it. Such a server can generate the content
of requested resources at query time thus enable considering the Hosting Con-
straint requirement by avoiding the need for storing content of LDP resources.
For now, our approach only requires the design document from which the entire
LDP can be automatically generated (Automatization requirement).

In our approach, we exploit possibilities of model-driven engineering by per-
forming model-to-model transformation when generating an LDP dataset from a
design document in the LDPization process and by performing model-to-system
transformation by generating an LDP from an LDP dataset in the deployment
process.

38 N. Bakerally et al.

3 LDP Design Language

In this section, we describe our language LDP-DL. We start with a gen-
eral overview of its key concepts and provide its abstract syntax and formal
semantics.

3.1 Illustrative Example

Figure 2 shows an illustrative example that will be used throughout this section
and later on. It comprises of an RDF graph that uses the DCAT vocabulary [13],
shown in Fig. 2(a). The graph shows how the data appear on the original data
portal from which we want to generate an LDP. Figure 2(b) shows how we want
to organize the data in the LDP, displaying the nesting of containers. In the
DCAT vocabulary, data catalogs have datasets that are associated with themes
and distributions. The organization of resources in the LDP in Fig. 2(b) uses a
structure similar to DCAT where there are containers for describing catalogs that
contains other containers for describing their datasets. The dataset containers
in turn contain two containers for grouping non-containers that describe their
distributions and themes. In this case, we want the resources identified under
the namespace ex: to be described in an LDP available at the namespace dex:.
On the LDP, we would like, e.g., that resources dex:parking and dex:pJSON
be dereferenceable to obtain, respectively, the graphs shown in Fig. 2(c) and (d).
Thus, dex:parking is an LDP resource that describes ex:parking with an graph
that contains a subset of the original RDF graph in Fig. 2(a). What the design
language must describe is how we can exploit the graph in Fig. 2(a) to generate
the container hierarchy of Fig. 2(b), and make available the descriptions of the
resources as RDF graphs found in Fig. 2(c) and (d).

3.2 Overview of the Language

As mentioned in Sect. 2.2, in this paper, we restrict ourselves only to LDPs where
all containers are basic and exclude non-RDF sources. From an abstract point of
view, the data in such an LDP can be described as an LDP dataset, a structure
where each LDP resource is assigned a URL and has an associated RDF graph,
and a set of members if it is a container. In it, pairs (url, graph) representing a
non-container, formalize the fact that accessing the URL on the LDP returns the
graph, whereas triples (url, graph,M) indicates that not only access to the URL
returns the graph but the resource is a container whose members are in M . For
example, in Fig. 2(b), dex:parking is the URL of a container associated with the
graph in Fig. 2(c) and having members dex:distributions and dex:themes.
Furthermore, dex:pJSON is the URL of a non-container in Fig. 2(b) with its
graph in Fig. 2(d).

In a nutshell, LDP-DL provides constructs for describing the generation of
an LDP dataset from existing data sources. In general, data sources may not
be in RDF or may contain resources whose IRIs do not dereference to the LDP.
Therefore, associated LDP resources within the LDP namespace may have to

LDP-DL: A Language to Define the Design of Linked Data Platforms 39

Fig. 2. Example of structure of an LDP with its data source and graphs

be generated to describe resources from the original data sources. For example,
dex:parking, from Fig. 2(b), has been generated for the resource ex:parking
from Fig. 2(a). ex:parking cannot be used directly as an LDP resource. Doing
so may violate the LDP standard with respect to the lifecycle of the resource
as the standard states that “a contained LDPR cannot be created (. . .) before
its containing LDPC exists” [17, Sect. 2].7 This is why in LDP-DL, to expose
a resource from the data source via an LDP, a new LDP-RS is always gener-
ated to describe it. The resource for which an LDP-RS is generated is called
the related resource. Thus, the related resource of the LDP-RS dex:parking
is ex:parking. Let us note that an LDP-RS may not have a related resource,
such as dex:pDistributions from Fig. 2(b). This is because it describes the set
of distributions of ex:parking and such set is not itself identified as a proper
resource in the data source. Figure 3 shows an overview of the language in UML
that we further describes in the next section.

Fig. 3. Overview of the main constructs of LDP-DL in UML notation.

7 “LDPR” means LDP resource and “LDPC” means LDP container in the standard.

40 N. Bakerally et al.

3.3 Abstract Syntax

Hereafter, we assume familiarity with the concepts of IRIs, RDF graphs, named
graphs, query variables, query patterns, construct queries, graph template, solu-
tion mappings from RDF [7] and SPARQL [10]. We assume the existence of an
infinite set D whose elements are documents and write IRI the set of all IRIs,
V the set of query variables, G the set of all RDF graphs.

Following the diagram of Fig. 3, we can abstract a design document as a
pair 〈CM,NM〉, where CM is a set of ContainerMaps and NM is a set of
NonContainerMaps. A NonContainerMap is a pair 〈unm,RM〉 where unm is an
IRI and RM is a set of ResourceMaps. A ContainerMap is a tuple 〈ucm,RM,
CM,NM〉 where ucm is an IRI, RM is a set of ResourceMaps, CM is a set of
ContainerMaps, and NM is a set of NonContainerMaps. A ResourceMap is a
tuple 〈urm, qp, cq,DS〉 where urm is an IRI, qp is a SPARQL query pattern, cq
is a CONSTRUCT query, and DS is a set of DataSources. There are several ways
of describing a DataSource that our concrete language covers (see details in the
language specification [3]). Here, we only consider the cases of a pair 〈uds, uloc〉
or a triple 〈uds, uloc, ulr〉 where uds, uloc and ulr are IRIs that respectively refer
to a data source, its location and an RDF lifting rule.

As we can see, all components of a design document in LDP-DL have an
IRI. Given a ∗Map or DataSource x, we refer to the IRI of x as iri(x). In a
ResourceMap, qp is used to extract a set of related resources from DataSources,
and cq is used to generate the graph of the LDP-RSs associated with the related
resources. In a DataSource, uloc corresponds to the location of the source file,

Fig. 4. Example of an LDP-DL document in the abstract syntax.

LDP-DL: A Language to Define the Design of Linked Data Platforms 41

whereas ulr is the location of what we call a lifting rule, used to generate an RDF
graph from non-RDF data.

We assume the existence of an infinite set of variables Vr = {ρ, ν, π1, . . . ,
πi, . . . } ⊆ V called the reserved variables, such that V \ Vr is infinite.
ResourceMaps may use the reserved variables but these have a special semantics
as explained in the next section. However, due to undesirable consequences, we
forbid the use of variable ν in the WHERE clause of the CONSTRUCT query cq.

Figure 4 shows a simple example of a design document8 in the abstract syntax
of the language. An arrow with the label cm, nm or rm indicates that the
construct has a ContainerMap, NonContainerMap or ResourceMap in its CM,
NM or RM respectively. Also, though not shown in the figure, in the DS of all
ResourceMaps, there is a DataSource (ex:ds, ex:paris) which is actually the
RDF graph in Fig. 2(a).

3.4 Overview of the Formal Semantics

The aim of the formal semantics is to associate an LDP dataset (as described in
Sect. 3.2) to a design document. To this end, we define a notion of interpretation
and a notion of satisfaction in a model-theoretic way. Several interpretations
may satisfy a given design document, leading to different evaluations of it. This
approach allows developers to implement the language in different ways, leading
to different results, depending on whether they implement optional or alternative
parts of the standard, yet have a non-ambiguous way to check the correctness
of an implementation output.

LDP-DL Interpretation. An LDP-DL interpretation determines which IRIs
denote ContainerMaps, NonContainerMaps, ResourceMaps, DataSources, or
something else. Then, each ContainerMap (resp. NonContainerMap) is inter-
preted as a set of triples (url, graph,M) (resp., a set of pairs (url, graph)) wrt
a list of ancestors. A list of ancestors is a finite sequence of elements that can
be IRIs or a special value ε �∈ IRI that indicates an absence of related resource.
Formally, an ancestor list is an element of IRI∗ =

⋃

n>=0
(IRI∪{ε})n and ∅ being

the empty list (IRI ∪ {ε})0. We use the notation #»p to denote an ancestor list
and use len(#»p) to denote the length of the list. Also #»p ::r denotes appending
element r to #»p .

Definition 1 (LDP-DL Interpretation). An LDP-DL interpretation I is a
tuple 〈ΔI , C,N ,R,S, ·I , IC , IN , IR, IS〉 such that:

– ΔI is a non empty set (the domain of interpretation);
– C, N , R, S are subsets of ΔI ;
– ·I : IRI → ΔI is the interpretation function;
– IC : C × IRI∗ → 2IRI×G×2IRI

;
– IN : N × IRI∗ → 2IRI×G;
8 Design document in concrete syntax https://tinyurl.com/y8n9cls2.

https://tinyurl.com/y8n9cls2

42 N. Bakerally et al.

– IR : R × IRI∗ → 2IRI×IRI∪{ε}×G such that (n, r1, g1) ∈ IR(u1,
#»p1) ∧

(n, r2, g2) ∈ IR(u2,
#»p2) =⇒ r1 = r2 ∧ g1 = g2 (unicity constraint);

– IS : S → G.
C (resp. N , R, S) represents the container maps (resp., non container maps,

resource maps, data sources) according to the interpretation. That is, if the
interpretation function I maps an IRI to an element of C, it means that this
interpretation considers that the IRI is the name of a container map. For a given
ContainerMap cm ∈ C and an ancestor list #»p , 〈n, g,M〉 ∈ IC(cm, #»p) means
that, in the context of #»p , cm must map the data sources to containers where
n is the IRI of a container, g is the RDF graph obtained from dereferencing n,
and M is the set of IRIs referring to the members of the container. Similarly, for
a NonContainerMap nm ∈ N , 〈n, g〉 ∈ IN (nm, #»p) means that nm must map to
resources where n is the IRI of a non-container LDP-RS that provides g when
dereferenced. For a DataSource ds ∈ S, IS(ds) is an RDF graph representing
what can be obtained from the data source.

Informal Description of the Satisfaction. We describe satisfaction |= relat-
ing interpretations to syntactic constructs that they validate. Due to space
restriction, we only provide an overview of the definitions, that are formally
given in our technical report [4] with more explanations. The rest of this section
informally explains the semantics of LDP-DL constructs. To do so, we use Fig. 4,
which is a design in LDP-DL for building the LDP9 having the structure shown
in Fig. 2(b), using the data source in Fig. 2(a).

In principle, a DataSource provides information to retrieve an RDF graph,
using parameters that can take several forms. Here, we define only two forms
of DataSources, ds = 〈uds, uloc〉 that provides a URL to an RDF document
directly, and ds = 〈uds, uloc, ulr〉 that provides an additional URL to an arbitrary
document with a transformation script to generate an RDF graph. We call such
a script a lifting rule and can be seen as a function lr : D → G. Our semantics
is flexible enough to be extended to more complex such as for access rights,
content negotiation etc. For example, the retrieval of the RDF graph in Fig. 2(a)
could be described by a DataSource ds1 = 〈uds1 , uloc1〉 where IS(uI

ds1) is the
RDF graph located at uloc1 . Similarly, for a DataSource ds2 = 〈uds2 , uloc2 , ulr2〉,
IS(uI

ds1) is the RDF graph obtained by executing the lifting rule found at ulr2

on the document found at uloc2 .
At the top level of the design document, the ContainerMap :catalog uses

the ResourceMap :rm1 to generate the top level containers. The DataSource
used by :rm1 is interpreted as the RDF graph of Fig. 2(a). At this level,
:rm1 is evaluated with an empty ancestor list. Using its query pattern, related
resources extracted from the source are DCAT catalogs ex:paris-catalog
and ex:toulouse-catalog. For each of them, an IRI is generated, namely
dex:paris-catalog and dex:toulouse-catalog. Also, to satisfy the map :rm1,
the RDF graph associated with the container IRI is obtained using its CONSTRUCT

9 http://opensensingcity.emse.fr/ldpdfend/catalogs/ldp.

http://opensensingcity.emse.fr/ldpdfend/catalogs/ldp

LDP-DL: A Language to Define the Design of Linked Data Platforms 43

query, where the variable ρ is bound to the related resource IRI, and ν to the IRI
of the new LDP resource. For example, when doing so for dex:paris-catalog,
ρ is bound to ex:paris-catalog, and ν to dex:paris-catalog. Finally, new
containers generated from :catalog must define their members as well, and
is thus satisfied only if its members correspond to the resources generated by
their underlying ContainerMaps and NonContainerMaps (in this case, :dataset
only).

The ContainerMap :dataset is used to generate members for containers
generated from :catalog. Let us consider the case for dex:paris-catalog. Its
related resource is ex:paris-catalog and its members must only have related
resources that are DCAT datasets from this catalog. This is why the extrac-
tion of these resources is parameterized by the parent variable π1 in the query
pattern :rm2. π1 is binded to the first element of the ancestor list which at
this stage is ex:paris-catalog. The evaluation of :dataset generates two con-
tainers, dex:parking and dex:busStation, that are added to the members of
dex:paris-catalog.

The map :distribs is used to generate members for containers generated
by :dataset. Consider the case of doing so for dex:parking whose related
resource is ex:parking. In this context, the aim of using :distribs is to gen-
erate a container to describe the set of distributions of ex:parking. Note that
in the data source, there is no explicit resource to describe this set. This is
why, in the ResourceMap :rm3, the query pattern returns a single result where
ρ is unbound. Although the query pattern does not use any ancestor variable,
it is evaluated using the ancestor list (ex:paris-catalog, ex:parking) and
thus ancestor variables π1 and π2 are bound. The evaluation of :distribs in
the context of dex:parking generates a single container dex:pDistributions.
:distribs is satisfied when a single container is generated without a related
resource.

Finally, the NonContainerMap :distrib is used to generate non-containers
for each distribution of a DCAT dataset. Consider the case of doing so for
dex:pDistributions with ancestor list (ex:paris-catalog, ex:parking, ∅). In
this context, the proper related resource that must be used to extract the relevant
distributions is associated with the grand parent container. This is why the query
pattern of :rm4 uses π2, bound to ex:parking, rather than π1. Using the result
(ex:pJSON and ex:pCSV) of this query pattern, two non-containers dex:pJSON
and dex:pCSV in dex:pDistributions are generated using :distrib. In gen-
eral, any ancestor’s related resources can be referenced through the ancestor
variables πi simultaneously, even when they are unbound.

Evaluation of a Design Document Using an Interpretation. With an
interpretation, we have a way of assigning an LDP dataset (as described in
Sect. 3.2) to a design document, using the interpretations of the ContainerMaps
and NonContainerMaps that appear in the document. We call this an evaluation
of the document. Formally, it takes the form of a function that builds an LDP
dataset given an LDP-DL interpretation and a document δ. We formalize the
notion of LDP dataset as follows:

44 N. Bakerally et al.

Definition 2 (LDP dataset). An LDP dataset is a pair 〈NG,NC〉 where
NG is a set of named graphs and NC is a set of named container, that is a set
of triples 〈n, g,M〉 such that n ∈ IRI (called the container name), g ∈ G and
M ∈ 2IRI, and such that:

– no IRI appears more than once as a (graph or container) name;
– for all 〈n, g,M〉 ∈ NC, and for all u ∈ M , there exists a named graph or

container having the name u.

Having the notion of LDP dataset, the maps of the design document are
evaluated wrt an ancestor list as follows:

Definition 3 (Evaluation of a map). The evaluation of a ContainerMap or
NonContainerMap m wrt an interpretation I and an ancestor list #»p s.t. I, #»p |=
m is:

[[m]]
#»p
I =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

IN (iri(m)I , #»p), if m is a NonContainerMap

IC(iri(m)I , #»p) ∪ ⋃

rm∈RM

〈n,r,g〉∈IR(iri(rm)I , #»p)
m′∈NM∪CM

[[m′]]
#»p ::r
I , if m = 〈ucm,RM,CM,NM〉 is a ContainerMap

The evaluation of a map yields an LDP dataset. Indeed, the first condition of
Definition 2 is satisfied because of the unicity constraint from Definition 1, and
the second condition is satisfied because I, #»p |= m. Now we can define the
evaluation of a design document wrt an interpretation:

Definition 4 (Evaluation of a design document). Let I be an interpreta-
tion and δ = 〈CM,NM〉 a design document. The evaluation of δ wrt I is

[[δ]]I =
⋃

m∈CM∪NM

[[m]]∅I

In practice, an LDP-DL processor will not define an explicit interpretation,
but will build an LDP dataset from a design document. Hence, we want to
define a notion of conformity of an algorithm wrt the language specification
given above. To this aim, we first provide a definition of a valid LDP dataset for
a design document.

Definition 5 (Valid). An LDP dataset D is valid wrt a design document δ if
there exists an interpretation I that satisfies δ, such that [[δ]]I = D.

The validity of LDP dataset is an important property used in our implementation
when generating and deploying LDPs. Finally, we can define the correctness of
an algorithm that implements LDP-DL.

Definition 6 (Correct). An algorithm that takes an LDP-DL document as
input and returns an LDP dataset is correct if for all document δ, the output of
the algorithm on δ is valid wrt δ.

If an algorithm evaluates LDP-DL documents, the formal semantics given
in [4] should be used to prove its correctness.

LDP-DL: A Language to Define the Design of Linked Data Platforms 45

4 Implementation and Evaluation

This section describes the implementation of the tools participating in the LDP
generation workflow described in Sect. 2.3. Then, we evaluate our approach with
respect to our requirements outlined in Sect. 2.1 by performing experiments to
deploy real datasets on LDPs. A detailed description of the tools and the exper-
iments we conducted are available on GitHub10 (Fig. 5).

LDP POST
 Requests

ShapeLDP LDP Servers

design
document

Static LDP Dataset

POSTerLDP

Deployment Parameters

LDP Design
Language

written in

SPARQL
Generate

Dynamic LDP Dataset

HubbleLDP

InterLDP
Data

sources

Fig. 5. Implementation of our LDP generation workflow proposal

4.1 Implementation of LDP Generation Workflow

ShapeLDP11 is an LDPizer that interprets design documents and generate the
LDP dataset from them. The concrete syntax in RDF is described in [3] and
the algorithms we use are described in [4]. To enhance modularity, the design
model may be split and written in different documents that are merged before
processing. To exploit heterogeneous data sources, for now it can use lifting
rules specified for DataSources in SPARQL-Generate [11]. Future versions may
consider other languages such as RML [8], XSPARQL [1] and others. ShapeLDP
can process design documents in two modes: static evaluation and dynamic eval-
uation. In both modes, the output uses relative IRIs without an explicit base
and act only as an intermediary document from which the LDP dataset should
be constructed. In static evaluation (resp. dynamic evaluation), a static LDP
dataset (resp. dynamic LDP dataset) is generated in TriG format [6]. The final
LDP dataset is obtained from a static LDP dataset by adding a base IRI at
deployment time. The result stays valid wrt to the sources as long as the eval-
uation of the query patterns and CONSTRUCT queries of all ResourceMaps from
the design document do not change. The LDP dataset obtained from a dynamic
LDP dataset stays valid wrt the sources as long as the evaluation of the quert
patterns of all ResourceMaps do not change, but the result of CONSTRUCT queries
may change from one request to the next. A dynamic LDP dataset is a struc-
ture somewhat similar to the LDP dataset that store all containers and non-
containers and a CONSTRUCT query to generate their RDF graphs at request

10 https://github.com/noorbakerally/LDPDatasetExamples.
11 https://github.com/noorbakerally/ShapeLDP.

https://github.com/noorbakerally/LDPDatasetExamples
https://github.com/noorbakerally/ShapeLDP

46 N. Bakerally et al.

time. The CONSTRUCT query is obtained when evaluating ResourceMaps by using
the bindings of the reserved variables.

InterLDP12 is an LDP server which can directly consume an LDP dataset (static
or dynamic) and expose resources from it. It was validated against the confor-
mance tests of the LDP read interactions.13 To cater for hosting constraints,
it uses the dynamic LDP dataset to generate the RDF graph of the requested
resource at query time.

POSTerLDP14 is the implementation of the LDP deployer on existing implemen-
tations of the LDP standard. It consumes a static LDP dataset and deployment
parameters: base URL of LDP server and optionally the username and pass-
word for basic authentication on the server. Currently, it deploys resources only
on one server at a time but future versions may consider replication or parti-
tioning schemes described in a particular deployment language. Moreover, it is
independent of any particular LDP implementations. It generates standard LDP
requests and thus, it is compatible with any LDP server. Finally, we provide a
browser, HubbleLDP15 which can be used to browse resources on an LDP and
view their content. An instance of it is running at http://bit.ly/2BGYl9X.

4.2 Evaluation

We evaluate our approach by performing the following five experiments, that
show the main requirements they satisfy.

Experiment 1: The input data sources correspond to 22 RDF datasets from city
data portals, structured per the DCAT vocabulary. Five design documents have
been defined and used to automatize the generation of 110 LDPs from the 22
datasets. This demonstrate the Reusability requirement through the use of the
same design document on all input data sources. It also shows the flexibility as we
are able to generate different platforms by applying different design documents
on the same data source.

Experiment 2: The aim is to show the compatibility of our approach with existing
implementations. To that aim, an LDP dataset is automatically generated from
one input data source and the design document from Experiment 1. We use
POSTerLDP to automatize its deployment over LDP servers that are instances
of Apache Marmotta and Gold, both of them being referenced implementation.
This experiment shows also the loose coupling of our approach as we are able to
reproduce the two platforms with the same design on different LDP servers.

12 https://github.com/noorbakerally/InterLDP.
13 The conformance report is available at https://w3id.org/ldpdl/InterLDP/execution-

report.html.
14 https://github.com/noorbakerally/POSTerLDP.
15 https://github.com/noorbakerally/HubbleLDP.

http://bit.ly/2BGYl9X
https://github.com/noorbakerally/InterLDP
https://w3id.org/ldpdl/InterLDP/execution-report.html
https://w3id.org/ldpdl/InterLDP/execution-report.html
https://github.com/noorbakerally/POSTerLDP
https://github.com/noorbakerally/HubbleLDP

LDP-DL: A Language to Define the Design of Linked Data Platforms 47

Experiment 3: To show the ability of our approach to consider the Heterogeneity
requirement, a design document is used with a lifting rule to deal with original
data sources, one in CSV and the other in JSON format. ShapeLDP uses the
embedded SPARQL-Generate engine and the lifting rules to automatically gen-
erate the respective RDF data that is then deployed via an LDP.

Experiment 4: To evaluate satisfaction of the Hosting Constraints requirement,
we use ShapeLDP in dynamic evaluation mode: a dynamic LDP dataset is gen-
erated first, from which we can deploy an LDP that offers dynamic results gen-
erated at request time from real-time data sources. Generating responses from
the platform takes more time because their content are generated at query time.

Experiment 5: For now, we do not automatically generate design models, but
we provide 2 generic design documents that organize data according to the class
hierarchy of an ontology. We believe that this is a typical design that many data
providers would choose, such that they would not have to rewrite the design
document. In this experiment, we deploy LDPs using the generic designs from
all data sources used in Experiment 1. For now, the generic designs can be reused
on all RDFS/OWL vocabularies that do not have cycles in the class hierarchy.

The results of the above experiments and the requirements they fulfilled is
shown in the Table 1.

Table 1. Summary of experiments and requirements fulfilled

Requirements

Heterogeneity Hosting Constraints Reusability Automatization

Experiment 1 � �
Experiment 2 �
Experiment 3 � �
Experiment 4 � � �
Experiment 5 � �

Contribution to Existing Implementations: Our approach benefits both cate-
gories of LDP implementation described in Sect. 2.2. Using our tools, an LDP
dataset can be generated from static, dynamic or heterogenous data sources from
a custom-written design or a generic design we provided. In the case of LDP
management system, it is possible to deploy the LDP dataset via an existing
LDP implementation using POSTerLDP. With LDP frameworks, it is possible
to develop complex applications using the LDP dataset (static or dynamic) and
thus avoiding boilerplate code for retrieving data resources from their sources
and transforming them into LDP resources.

48 N. Bakerally et al.

Performance Test: Finally, a simple performance test was carried on ShapeLDP
using one design document in Experiment 1. Random DCAT datasets were gen-
erated with a maximum size of one million triples and were used as input data
sources. We find that the performance is approximately linear16. However, more
tests have to be made in this regard using different types of designs. The gener-
ation of the datasets, all scripts and the results are given on the GitHub page
with all explanations.

5 Conclusion and Future Work

Linked Data Platforms can potentially ease the work of data consumers, but
there is not much support from implementations to automate the generation
and deployment of LDPs. Considering this, we proposed a language for describ-
ing parts of the design of an LDP. Such a description can be processed to generate
and deploy LDPs from existing data sources regardless of the underlying imple-
mentation of the LDP server. We demonstrated the flexibility, effectiveness, and
reusability of the approach to cope with heterogeneity and dynamicity of data
sources.

For now, LDP-DL is restricted only to some design aspects. Yet, due to its
flexibility and some original features, it can fulfill the requirements that we iden-
tified. We intend to consider other aspects in our future work. First, we want
to support non-RDF sources and other types of LDP containers. Second, we
want to generate LDPs that supports paging [19], which is a desired feature
for large datasets. Third, we want to extend LDP-DL to allow the description
of deployment design, security design, transaction model, etc. Our long term
objective is to have a complete design language for LDPs. Finally, from a theo-
retical perspective, we want to analyze formal properties of the language, such
as design compatibility, design containment, design merge, parallelizability, and
so on, based on the formal semantics.

Acknowledgments. This work is supported by grant ANR-14-CE24-0029 from
Agence Nationale de la Recherche for project OpenSensingCity. We are thankful to
the reviewers who helped very much improving this paper.

References

1. Akhtar, W., Kopecký, J., Krennwallner, T., Polleres, A.: XSPARQL: traveling
between the XML and RDF worlds – and avoiding the XSLT pilgrimage. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 432–447. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68234-9 33

2. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: light-
weight linked data publication from relational databases. In: Proceedings of the
18th International Conference WWW. ACM (2009)

16 https://github.com/noorbakerally/PerformanceTestShapeLDP.

https://doi.org/10.1007/978-3-540-68234-9_33
https://doi.org/10.1007/978-3-540-68234-9_33
https://github.com/noorbakerally/PerformanceTestShapeLDP

LDP-DL: A Language to Define the Design of Linked Data Platforms 49

3. Bakerally, N.: LDP-DL: RDF syntax and mapping to abstract syntax. Technical
report, Mines Saint-Étienne (2018). https://w3id.org/ldpdl

4. Bakerally, N., Zimmermann, A., Boissier, O.: LDP-DL: a language to define the
design of linked data platforms. Technical report, Mines Saint-Étienne (2018).
http://w3id.org/ldpdl/technical report.pdf

5. Bizer, C., Cyganiak, R.: D2R server-publishing relational databases on the seman-
tic web. In: Poster at the 5th ISWC, vol. 175 (2006)

6. Carothers, G., Seaborne, A.: RDF 1.1 TriG, RDF dataset language, W3C recom-
mendation, 25 February 2014. Technical report, W3C (2014)

7. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax,
W3C recommendation, 25 February 2014. Technical report, W3C (2014)

8. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous
data. In: LDOW (2014)

9. France, R.B., Rumpe, B.: Model-driven development of complex software: a
research roadmap. In: FOSE (2007)

10. Harris, S., Seaborne, A.: SPARQL 1.1 query language, W3C recommendation, 21
March 2013. Technical report, W3C (2013)

11. Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for generat-
ing RDF from heterogeneous formats. In: Blomqvist, E., Maynard, D., Gangemi, A.,
Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 35–50.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5 3

12. Loseto, G., Ieva, S., Gramegna, F., Ruta, M., Scioscia, F., Sciascio, E.: Linking the
Web of things: LDP-CoAP mapping. In: ANT/SEIT Workshops (2016)

13. Maali, F., Erickson, J.: Data catalog vocabulary (DCAT), W3C recommendation,
16 January 2014. Technical report, W3C (2014)

14. Mihindukulasooriya, N., Garcia-Castro, R., Gutiérrez, M.E.: Linked data platform
as a novel approach for enterprise application integration. In: COLD (2013)

15. Mihindukulasooriya, N., Gutiérrez, M.E., Garćıa-Castro, R.: A linked data plat-
form adapter for the Bugzilla issue tracker. In: ISWC Posters & Demo, pp. 89–92
(2014)

16. Mihindukulasooriya, N., Priyatna, F., Corcho, O., Garćıa-Castro, R., Esteban-
Gutiérrez, M.: morph-LDP: an R2RML-based linked data platform implementa-
tion. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A.
(eds.) ESWC 2014. LNCS, vol. 8798, pp. 418–423. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11955-7 59

17. Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0. Technical report,
W3C, 26 February 2015

18. Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0, W3C recommen-
dation, 26 February 2015. Technical report, W3C (2015)

19. Speicher, S., Arwe, J., Malhotra, A.: Linked data platform paging 1.0 W3C working
group note, 30 June 2015. Technical report, W3C (2015)

20. Stahl, T., Volter, M., Bettin, J., Haase, A., Helsen, S.: Model-driven software devel-
opment: technology, engineering, management. Pitman (2006)

https://w3id.org/ldpdl
http://w3id.org/ldpdl/technical_report.pdf
https://doi.org/10.1007/978-3-319-58068-5_3
https://doi.org/10.1007/978-3-319-11955-7_59
https://doi.org/10.1007/978-3-319-11955-7_59

	LDP-DL: A Language to Define the Design of Linked Data Platforms
	1 Introduction
	2 Foundations and Motivations
	2.1 Requirements
	2.2 LDP Overview and Current Limitations of Existing Approaches
	2.3 Our Approach: The LDP Generation Workflow

	3 LDP Design Language
	3.1 Illustrative Example
	3.2 Overview of the Language
	3.3 Abstract Syntax
	3.4 Overview of the Formal Semantics

	4 Implementation and Evaluation
	4.1 Implementation of LDP Generation Workflow
	4.2 Evaluation

	5 Conclusion and Future Work
	References

