Skip to main content

Cochlear Vascular Pathology and Hearing Loss

  • Chapter
  • First Online:

Abstract

Normal vascular function is essential for hearing. Abnormal blood flow to the cochlea is an etiologic factor contributing to various hearing disorders and vestibular dysfunctions, including noise-induced hearing loss, sudden deafness, presbyacusis, genetically-linked hearing loss, and endolymphatic hydrops such as Meniere’s disease. Progression in blood flow pathology can parallel progression in hair cell loss and hearing impairment. To sustain hearing acuity, a healthy blood flow must be maintained. The blood supply not only provides oxygen and glucose to the hearing organ, it is also responsible for transporting hormones and neurotrophic growth factors to the tissue critical for organ health. Study of the vascular system in the inner ear has a long and rich history. There is a large body of evidence demonstrating a relationship between disturbances in cochlear microcirculatory homeostasis and decreased auditory sensitivity. This chapter focuses on recent discoveries relating the physiopathology of the microvasculature in the cochlear lateral wall to hearing function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7:41–53.

    Article  CAS  PubMed  Google Scholar 

  • Adams J. Immunocytochemical traits of type IV fibrocytes and their possible relations to cochlear function and pathology. J Assoc Res Otolaryngol. 2009;10:369–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams JC, Seed B, Lu N, Landry A, Xavier RJ. Selective activation of nuclear factor kappa B in the cochlea by sensory and inflammatory stress. Neuroscience. 2009;160:530–9.

    Article  PubMed  CAS  Google Scholar 

  • Ågrup C, Luxon LM. Immune-mediated inner-ear disorders in neuro-otology. Curr Opin Neurol. 2006;19:26–32.

    Article  PubMed  Google Scholar 

  • Aksoy F, Dogan R, Ozturan O, Yildirim YS, Veyseller B, Yenigun A, Ozturk B. Betahistine exacerbates amikacin ototoxicity. Ann Otol Rhinol Laryngol. 2015;124:280–7.

    Article  PubMed  Google Scholar 

  • Angelborg C, Axelsson A, Larsen H-C. Regional blood flow in the rabbit cochlea. Arch Otolaryngol. 1984;110:297–300.

    Article  PubMed  CAS  Google Scholar 

  • Axelsson A. The vascular anatomy of the cochlea in the guinea pig and in man. Acta Otolaryngol. 1968;Suppl 243:3+.

    Google Scholar 

  • Axelsson A, Dengerink H. The effects of noise on histological measures of the cochlear vasculature and red blood cells: a review. Hear Res. 1987;31:183–91.

    Article  PubMed  CAS  Google Scholar 

  • Axelsson A, Vertes D. Histological findings in cochlear vessels after noise, new perspectives on noise-induced hearing loss. New York: Raven Press; 1982. p. 49–68.

    Google Scholar 

  • Blank M, Barzilai O, Shoenfeld Y. Molecular mimicry and auto-immunity. Clin Rev Allergy Immunol. 2007;32:111–8.

    Article  PubMed  Google Scholar 

  • Block ML, Hong J-S. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76:77–98.

    Article  PubMed  CAS  Google Scholar 

  • Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69.

    Article  PubMed  CAS  Google Scholar 

  • Brown JN, Nuttall AL. Autoregulation of cochlear blood flow in guinea pigs. Am J Physiol Heart Circ Physiol. 1994;266:H458–67.

    Article  CAS  Google Scholar 

  • Brown JN, Miller JM, Nuttall AL. Age-related changes in cochlear vascular conductance in mice. Hear Res. 1995;86:189–94.

    Article  PubMed  CAS  Google Scholar 

  • Bush WD, Simon JD. Quantification of Ca2+ binding to melanin supports the hypothesis that melanosomes serve a functional role in regulating calcium homeostasis. Pigment Cell Res. 2007;20:134–9.

    Article  PubMed  CAS  Google Scholar 

  • Cable J, Steel KP. Identification of two types of melanocyte within the stria vascularis of the mouse inner ear. Pigment Cell Res. 1991;4:87–101.

    Article  PubMed  CAS  Google Scholar 

  • Cadoni G, Fetoni AR, Agostino S, Santis AD, Manna R, Ottaviani F, Paludetti G. Autoimmunity in sudden sensorineural hearing loss: possible role of anti-endothelial cell autoantibodies. Acta Otolaryngol. 2002;122:30–3.

    Article  Google Scholar 

  • Campbell KC, Meech RP, Rybak LP, Hughes LF. D-Methionine protects against cisplatin damage to the stria vascularis. Hear Res. 1999;138:13–28.

    Article  PubMed  CAS  Google Scholar 

  • Canlon B. Acoustic overstimulation alters the morphology of the tectorial membrane. Hear Res. 1987;30:127–34.

    Article  PubMed  CAS  Google Scholar 

  • Canlon B. The effect of acoustic trauma on the tectorial membrane, stereocilia, and hearing sensitivity: possible mechanisms underlying damage, recovery, and protection. Scand Audiol Suppl. 1988;27:1–45.

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.

    Article  PubMed  CAS  Google Scholar 

  • Cardinaal RM, de Groot JC, Huizing EH, Veldman JE, Smoorenburg GF. Dose-dependent effect of 8-day cisplatin administration upon the morphology of the albino guinea pig cochlea. Hear Res. 2000;144:135–46.

    Article  PubMed  CAS  Google Scholar 

  • Carraro M, Harrison RV. Degeneration of stria vascularis in age-related hearing loss; a corrosion cast study in a mouse model. Acta Otolaryngol. 2016;136:385–90.

    Article  PubMed  Google Scholar 

  • Carraro M, Park AH, Harrison RV. Partial corrosion casting to assess cochlear vasculature in mouse models of presbycusis and CMV infection. Hear Res. 2016;332:95–103.

    Article  PubMed  Google Scholar 

  • Carraro M, Almishaal A, Hillas E, Firpo M, Park A, Harrison RV. Cytomegalovirus (CMV) infection causes degeneration of cochlear vasculature and hearing loss in a mouse model. J Assoc Res Otolaryngol. 2017;18:263–73.

    Article  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiological reviews 1979;59:527–605.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Ingham N, Kelly J, Jadeja S, Goulding D, Pass J, Mahajan VB, Tsang SH, Nijnik A, Jackson IJ. Spinster homolog 2 (spns2) deficiency causes early onset progressive hearing loss. PLoS Genet. 2014;10(10):e1004688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause K-H, Mallat M. Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci. 2008;28:12039–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cuadros MA, Navascués J. The origin and differentiation of microglial cells during development. Prog Neurobiol. 1998;56:173–89.

    Article  PubMed  CAS  Google Scholar 

  • Cui Q, Yin Y, Benowitz L. The role of macrophages in optic nerve regeneration. Neuroscience. 2009;158:1039–48.

    Article  PubMed  CAS  Google Scholar 

  • Dai C, Gan RZ. Change in cochlear response in an animal model of otitis media with effusion. Audiol Neurootol. 2010;15:155–67.

    Article  PubMed  Google Scholar 

  • Dai M, Shi X. Fibro-vascular coupling in the control of cochlear blood flow. PLoS One. 2011;6:e20652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai M, Shi X. Fibro-vascular coupling in the control of cochlear blood flow. PloS One. 2011;6(6):e20652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai CF, Steyger PS. A systemic gentamicin pathway across the stria vascularis. Hear Res. 2008;235:114–24.

    Article  CAS  PubMed  Google Scholar 

  • Dai M, Nuttall A, Yang Y, Shi X. Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament. Hear Res. 2009;254:100–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding D, McFadden SL, Woo JM, Salvi RJ. Ethacrynic acid rapidly and selectively abolishes blood flow in vessels supplying the lateral wall of the cochlea. Hear Res. 2002;173:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Ding D, Jiang H, Wang P, Salvi R. Cell death after co-administration of cisplatin and ethacrynic acid. Hear Res. 2007;226:129–39.

    Article  PubMed  CAS  Google Scholar 

  • Ding D, Allman BL, Salvi R. Review: ototoxic characteristics of platinum antitumor drugs. Anat Rec. 2012;295:1851–67.

    Article  CAS  Google Scholar 

  • Doherty JK, Linthicum FH Jr. Spiral ligament and stria vascularis changes in cochlear otosclerosis: effect on hearing level. Otol Neurotol. 2004;25:457–64.

    Article  PubMed  Google Scholar 

  • Dore-Duffy P, Katychev A, Wang X, Van Buren E. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. 2006;26:613–24.

    Article  PubMed  CAS  Google Scholar 

  • Dräger U. Calcium binding in pigmented and albino eyes. Proc Natl Acad Sci U S A. 1985;82:6716–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekdahl C, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience. 2009;158:1021–9.

    Article  PubMed  CAS  Google Scholar 

  • Frank RN, Dutta S, Mancini MA. Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest Ophthalmol Vis Sci. 1987;28:1086–91.

    PubMed  CAS  Google Scholar 

  • Franz P, Helmreich M, Stach M, Franz-Italon C, Böck P. Distribution of actin and myosin in the cochlear microvascular bed. Acta Otolaryngol. 2004;124:481–5.

    Article  PubMed  CAS  Google Scholar 

  • Freyer L, Aggarwal V, Morrow BE. Dual embryonic origin of the mammalian otic vesicle forming the inner ear. Development. 2011;138:5403–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res. 2006;83:575–83.

    Article  PubMed  CAS  Google Scholar 

  • Fujioka M, Okano H, Ogawa K. Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss. Front Pharmacol. 2014;5:287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gatehouse S, Lowe G. Whole blood viscosity and red cell filterability as factors in sensorineural hearing impairment in the elderly. Acta Otolaryngol. 1991;111:37–43.

    Article  Google Scholar 

  • Gates GA, Mills JH. Presbycusis. Lancet. 2005;366:1111–20.

    Article  PubMed  Google Scholar 

  • Goldwyn BG, Quirk WS. Calcium channel blockade reduces noise-induced vascular permeability in cochlear stria vascularis. Laryngoscope. 1997;107:1112–6.

    Article  PubMed  CAS  Google Scholar 

  • Goodall AF. Current understanding of the pathogenesis of autoimmune inner ear disease: a review. Clin Otolaryngol. 2015;40(5):412–9.

    Article  PubMed  CAS  Google Scholar 

  • Gratton MA, Schmiedt RA, Schulte BA. Age-related decreases in endocochlear potential are associated with vascular abnormalities in the stria vascularis [corrected and republished article originallly printed in Hear Res 1996 May;94(1–2):116–24]. Hear Res. 1996;102:181–90.

    Article  PubMed  CAS  Google Scholar 

  • Gratton MA, Schulte BA, Smythe NM. Quantification of the stria vascularis and strial capillary areas in quiet-reared young and aged gerbils. Hear Res. 1997;114:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Greco A, Gallo A, Fusconi M, Marinelli C, Macri G, De Vincentiis M. Meniere’s disease might be an autoimmune condition? Autoimmun Rev. 2012;11:731–8.

    Article  PubMed  CAS  Google Scholar 

  • Greenhalgh SN, Iredale JP, Henderson NC. Origins of fibrosis: pericytes take centre stage. F1000Prime Rep. 2013;5:37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenhalgh SN, Conroy KP, Henderson NC. Healing scars: targeting pericytes to treat fibrosis. QJM. 2015;108:3–7.

    Article  PubMed  CAS  Google Scholar 

  • Greif DM, Eichmann A. Vascular biology: brain vessels squeezed to death. Nature. 2014;508:50–1.

    Article  PubMed  CAS  Google Scholar 

  • Gyo K. Experimental study of transient cochlear ischemia as a cause of sudden deafness. World J Otorhinolaryngol. 2013;3:1–15.

    Article  Google Scholar 

  • Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508:55–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanisch U-K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins JE Jr. The role of vasoconstriction in noise-induced hearing loss. Ann Otol Rhinol Laryngol. 1971;80:903–13.

    Article  PubMed  Google Scholar 

  • Hawkins J. Comparative otopathology: aging, noise, and ototoxic drugs, otophysiology. Karger Publishers; 1973. p. 125–41.

    Google Scholar 

  • Hawkins J. Microcirculation in the labyrinth. Eur Arch Otorhinolaryngol. 1976;212:241–51.

    Article  Google Scholar 

  • Hess DC, Abe T, Hill WD, Studdard AM, Carothers J, Masuya M, Fleming PA, Drake CJ, Ogawa M. Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol. 2004;186:134–44.

    Article  PubMed  CAS  Google Scholar 

  • Hibino H, Nin F, Tsuzuki C, Kurachi Y. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflugers Arch. 2010;459:521–33.

    Article  PubMed  CAS  Google Scholar 

  • Hilger JA. The common ground of allergy, autonomic dysfunction and endocrine imbalance. Trans Am Acad Ophthalmol Otolaryngol. 1952;57:443–6.

    Google Scholar 

  • Hillerdal M, Sperber G, Bill A. The microsphere method for measuring low blood flows: theory and computer simulations applied to findings in the rat cochlea. Acta Physiol. 1987;130:229–35.

    Article  CAS  Google Scholar 

  • Hirose K, Discolo CM, Keasler J, Ransohoff R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol. 2005;489(2):180–94.

    Article  PubMed  Google Scholar 

  • Hirose K, Hartsock JJ, Johnson S, Santi P, Salt AN. Systemic lipopolysaccharide compromises the blood-labyrinth barrier and increases entry of serum fluorescein into the perilymph. J Assoc Res Otolaryngol. 2014;15:707–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Honkura Y, Matsuo H, Murakami S, Sakiyama M, Mizutari K, Shiotani A, Yamamoto M, Morita I, Shinomiya N, Kawase T. Nrf2 is a key target for prevention of noise-induced hearing loss by reducing oxidative damage of cochlea. Sci Rep. 2016;6:19329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes G, Kinney S, Barna B, Calabrese L. Autoimmune reactivity in Meniere’s disease: a preliminary report. Laryngoscope. 1983;93:410–7.

    Article  PubMed  CAS  Google Scholar 

  • Hukee MJ, Duvall AJ III. Cochlear vessel permeability to horseradish peroxidase in the normal and acoustically traumatized chinchilla: a reevaluation. Ann Otol Rhinol Laryngol. 1985;94:297–303.

    PubMed  CAS  Google Scholar 

  • Hultcrantz E, Nuttall AL. Effect of hemodilution on cochlear blood flow measured by laser-Doppler flowmetry. Am J Otolaryngol. 1987;8:16–22.

    Article  PubMed  CAS  Google Scholar 

  • Ingham NJ, Carlisle F, Pearson S, Lewis MA, Buniello A, Chen J, Isaacson RL, Pass J, White JK, Dawson SJ. S1PR2 variants associated with auditory function in humans and endocochlear potential decline in mouse. Sci Rep. 2016;6:28964.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishibashi T, Takumida M, Akagi N, Hirakawa K, Anniko M. Changes in transient receptor potential vanilloid (TRPV) 1, 2, 3 and 4 expression in mouse inner ear following gentamicin challenge. Acta Otolaryngol. 2009;129:116–26.

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama G, Lopez IA, Ishiyama P, Vinters HV, Ishiyama A. The blood labyrinthine barrier in the human normal and Meniere’s disease macula utricle. Sci Rep. 2017;7:253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jabba SV, Oelke A, Singh R, Maganti RJ, Fleming S, Wall SM, Everett LA, Green ED, Wangemann P. Macrophage invasion contributes to degeneration of stria vascularis in Pendred syndrome mouse model. BMC Med. 2006;4:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jamesdaniel S, Hu B, Kermany MH, Jiang H, Ding D, Coling D, Salvi R. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J Proteomics. 2011;75:410–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang Z-G, Shi X-R, Guan B-C, Zhao H, Yang Y-Q. Dihydropyridines inhibit acetylcholine-induced hyperpolarization in cochlear artery via blockade of intermediate-conductance calcium-activated potassium channels. J Pharmacol Exp Ther. 2007;320:544–51.

    Article  PubMed  CAS  Google Scholar 

  • Juhn SK, Rybak LP. Labyrinthine barriers and cochlear homeostasis. Acta Otolaryngol. 1981;91:529–34.

    Article  PubMed  CAS  Google Scholar 

  • Juhn SK, Hunter BA, Odland RM. Blood-labyrinth barrier and fluid dynamics of the inner ear. Int Tinnitus J. 2001;7:72–83.

    PubMed  CAS  Google Scholar 

  • Kamogashira T, Fujimoto C, Yamasoba T. Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. Biomed Res Int. 2015;2015:617207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karasawa T, Steyger PS. Intracellular mechanisms of aminoglycoside-induced cytotoxicity. Integr Biol. 2011;3:879–86.

    Article  CAS  Google Scholar 

  • Karasawa T, Wang Q, Fu Y, Cohen DM, Steyger PS. TRPV4 enhances the cellular uptake of aminoglycoside antibiotics. J Cell Sci. 2008;121:2871–9.

    Article  PubMed  CAS  Google Scholar 

  • Kaur T, Mukherjea D, Sheehan K, Jajoo S, Rybak LP, Ramkumar V. Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis. 2011;2:e180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kellerhals B. Acoustic trauma and cochlear microcirculation. An experimental and clinical study on pathogenesis and treatment of inner ear lesions after acute noise exposure. Adv Otorhinolaryngol. 1972;18:91.

    PubMed  CAS  Google Scholar 

  • Kikuchi T, Adams JC, Miyabe Y, So E, Kobayashi T. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc. 2000;33:51–6.

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kim JY, Lee HJ, Gi M, Kim BG, Choi JY. Autoimmunity as a candidate for the etiopathogenesis of Meniere’s disease: detection of autoimmune reactions and diagnostic biomarker candidate. PLoS One. 2014;9(10):e111039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim JM, Hong K-S, Song WK, Bae D, Hwang I-K, Kim JS, Chung H-M. Perivascular progenitor cells derived from human embryonic stem cells exhibit functional characteristics of pericytes and improve the retinal vasculature in a rodent model of diabetic retinopathy. Stem Cells Transl Med. 2016;5:1268–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohn S, Nir I, Fradis M, Podoshin L, David YB, Zidan J, Robinson E. Toxic effects of cisplatin alone and in combination with gentamicin in stria vascularis of guinea pigs. Laryngoscope. 1991;101:709–16.

    Article  PubMed  CAS  Google Scholar 

  • Komune S, Nakagawa T, Hisashi K, Kimituki T, Uemura T. Movement of monovalent ions across the membranes of marginal cells of the stria vascularis in the guinea pig cochlea. ORL J Otorhinolaryngol Relat Spec. 1993;55:61–7.

    Article  PubMed  CAS  Google Scholar 

  • Koo J-W, Wang Q, Steyger PS. Infection-mediated vasoactive peptides modulate cochlear uptake of fluorescent gentamicin. Audiol Neurootol. 2011;16:347–58.

    Article  PubMed  CAS  Google Scholar 

  • Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res. 2015;330:191–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurata N, Schachern PA, Paparella MM, Cureoglu S. Histopathologic evaluation of vascular findings in the cochlea in patients with presbycusis. JAMA Otolaryngol Head Neck Surg. 2016;142(2):173–8.

    Article  PubMed  Google Scholar 

  • Lamm K, Arnold W. Successful treatment of noise-induced cochlear ischemia, hypoxia, and hearing loss. Ann N Y Acad Sci. 1999;884:233–48.

    Article  PubMed  CAS  Google Scholar 

  • Lamm K, Arnold W. The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO(2) and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear. Hear Res. 2000;141:199–219.

    Article  PubMed  CAS  Google Scholar 

  • Laurell G, Viberg A, Teixeira M, Sterkers O, Ferrary E. Blood-perilymph barrier and ototoxicity: an in vivo study in the rat. Acta Otolaryngol. 2000;120:796–803.

    Article  PubMed  CAS  Google Scholar 

  • Le Prell CG, Dolan DF, Schacht J, Miller JM, Lomax MI, Altschuler RA. Pathways for protection from noise induced hearing loss. Noise Health. 2003;5:1–17.

    PubMed  Google Scholar 

  • Le Prell CG, Hughes LF, Miller JM. Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma. Free Radic Biol Med. 2007a;42:1454–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res. 2007b;226:22–43.

    Article  PubMed  Google Scholar 

  • Li H, Kachelmeier A, Furness DN, Steyger PS. Local mechanisms for loud sound-enhanced aminoglycoside entry into outer hair cells. Front Cell Neurosci. 2015;9:130.

    PubMed  PubMed Central  Google Scholar 

  • Liberman LD, Suzuki J, Liberman MC. Erratum to: dynamics of cochlear synaptopathy after acoustic overexposure. J Assoc Res Otolaryngol. 2015;16:221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin DW, Trune DR. Breakdown of stria vascularis blood-labyrinth barrier in C3H/lpr autoimmune disease mice. Otolaryngol Head Neck Surg. 1997;117:530–4.

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Ren J-G, Cooper WL, Hawkins CE, Cowan MR, Tong PY. Identification of the antivasopermeability effect of pigment epithelium-derived factor and its active site. Proc Natl Acad Sci U S A. 2004;101:6605–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu JT, Chen YL, Chen WC, Chen HY, Lin YW, Wang SH, Man KM, Wan HM, Yin WH, Liu PL. Role of pigment epithelium-derived factor in stem/progenitor cell-associated neovascularization. J Biomed Biotechnol. 2012a;2012:871272.

    PubMed  PubMed Central  Google Scholar 

  • Liu S, Agalliu D, Yu C, Fisher M. The role of pericytes in blood-brain barrier function and stroke. Curr Pharm Des. 2012b;18:3653–62.

    Article  PubMed  CAS  Google Scholar 

  • Maddox DE, Shibata S, Goldstein IJ. Stimulated macrophages express a new glycoprotein receptor reactive with Griffonia simplicifolia I-B4 isolectin. Proc Natl Acad Sci U S A. 1982;79:166–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcus DC, Marcus NY, Thalmann R. Changes in cation contents of stria vascularis with ouabain and potassium-free perfusion. Hear Res. 1981;4:149–60.

    Article  PubMed  CAS  Google Scholar 

  • Meech RP, Campbell KC, Hughes LP, Rybak LP. A semiquantitative analysis of the effects of cisplatin on the rat stria vascularis. Hear Res. 1998;124:44–59.

    Article  PubMed  CAS  Google Scholar 

  • Miettinen S, Laurell G, Andersson A, Johansson R, Laurikainen E. Blood flow-independent accumulation of cisplatin in the guinea pig cochlea. Acta Otolaryngol. 1997;117:55–60.

    Article  PubMed  CAS  Google Scholar 

  • Mijovic T, Zeitouni A, Colmegna I. Autoimmune sensorineural hearing loss: the otology–rheumatology interface. Rheumatology. 2013;52(5):780–9. https://doi.org/10.1093/rheumatology/ket009.

    Article  PubMed  CAS  Google Scholar 

  • Miller JM, Brown JN, Schacht J. 8-iso-prostaglandin F2α, a product of noise exposure, reduces inner ear blood flow. Audiol Neurotol. 2003;8:207–21.

    Article  CAS  Google Scholar 

  • Miller JM, Dengerink H. Control of inner ear blood flow. Am J Otolaryngol. 1988;9:302–16.

    Article  PubMed  CAS  Google Scholar 

  • Misrahy G, Shinabarger E, Arnold J. Changes in cochlear endolymphatic oxygen availability, action potential, and microphonics during and following asphyxia, hypoxia, and exposure to loud sounds. J Acoust Soc Am. 1958;30:701–4.

    Article  Google Scholar 

  • Miyao M, Firestein GS, Keithley EM. Acoustic trauma augments the cochlear immune response to antigen. Laryngoscope. 2008;118:1801–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moon S-K, Moon S-K, Park R, Moon S-K, Park R, Lee H-Y, Nam G-J, Cha K, Andalibi A, Lim DJ. Spiral ligament fibrocytes release chemokines in response to otitis media pathogens. Acta Otolaryngol. 2006;126:564–9.

    Article  PubMed  CAS  Google Scholar 

  • Mouadeb DA, Ruckenstein MJ. Antiphospholipid inner ear syndrome. Laryngoscope. 2005;115:879–83.

    Article  PubMed  Google Scholar 

  • Mudar RA, Husain FT. Neural alterations in acquired age-related hearing loss. Front Psychol. 2016;7:828.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murillo-Cuesta S, Contreras J, Zurita E, Cediel R, Cantero M, Varela-Nieto I, Montoliu L. Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice. Pigment Cell Melanoma Res. 2010;23:72–83.

    Article  PubMed  CAS  Google Scholar 

  • Nair TS, Kozma KE, Hoefling NL, Kommareddi PK, Ueda Y, Gong T-W, Lomax MI, Lansford CD, Telian SA, Satar B. Identification and characterization of choline transporter-like protein 2, an inner ear glycoprotein of 68 and 72 kDa that is the target of antibody-induced hearing loss. J Neurosci. 2004;24:1772–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakai Y, Masutani H, Moriguchi M, Matsunaga K, Kato A, Maeda H. Microvasculature of normal and hydropic labyrinth. Scanning Microsc. 1992;6:1097–103; discussion 1103–4.

    PubMed  CAS  Google Scholar 

  • Nakamoto T, Mikuriya T, Sugahara K, Hirose Y, Hashimoto T, Shimogori H, Takii R, Nakai A, Yamashita H. Geranylgeranylacetone suppresses noise-induced expression of proinflammatory cytokines in the cochlea. Auris Nasus Larynx. 2012;39:270–4.

    Article  PubMed  Google Scholar 

  • Nakashima T. Autoregulation of cochlear blood flow. Nagoya J Med Sci. 1999;62:1–9.

    PubMed  CAS  Google Scholar 

  • Nakashima T, Suzuki T, Iwagaki T, Hibi T. Effects of anterior inferior cerebellar artery occlusion on cochlear blood flow–a comparison between laser-Doppler and microsphere methods. Hear Res. 2001;162:85–90.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima T, Naganawa S, Sone M, Tominaga M, Hayashi H, Yamamoto H, Liu X, Nuttall AL. Disorders of cochlear blood flow. Brain Res Rev. 2003;43:17–28.

    Article  PubMed  Google Scholar 

  • Neng L, Zhang F, Kachelmeier A, Shi X. Endothelial cell, pericyte, and perivascular resident macrophage-type melanocyte interactions regulate cochlear intrastrial fluid–blood barrier permeability. J Assoc Res Otolaryngol. 2013a;14:175–85.

    Article  PubMed  Google Scholar 

  • Neng L, Zhang W, Hassan A, Zemla M, Kachelmeier A, Fridberger A, Auer M, Shi X. Isolation and culture of endothelial cells, pericytes and perivascular resident macrophage-like melanocytes from the young mouse ear. Nat Protoc. 2013b;8:709–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neng L, Zhang J, Yang J, Zhang F, Lopez IA, Dong M, Shi X. Structural changes in thestrial blood–labyrinth barrier of aged C57BL/6 mice. Cell Tissue Res. 2015;361(3):685–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nuttall AL. Techniques for the observation and measurement of red blood cell velocity in vessels of the guinea pig cochlea. Hear Res. 1987;27:111–9.

    Article  PubMed  CAS  Google Scholar 

  • Nuttall AL. Sound-induced cochlear ischemia/hypoxia as a mechanism of hearing loss. Noise Health. 1999;2:17.

    PubMed  Google Scholar 

  • Nuttall AL, Lawrence M. Endocochlear potential and scala media oxygen tension during partial anoxia. Am J Otolaryngol. 1980;1:147–53.

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell FM, Attwell D. A role for pericytes in coronary no-reflow. Nat Rev Cardiol. 2014;11(7):427–32.

    Article  PubMed  Google Scholar 

  • O’Malley JT, Nadol JB Jr, McKenna MJ. Anti CD163+, Iba1+, and CD68+ cells in the adult human inner ear: normal distribution of an unappreciated class of macrophages/microglia and implications for inflammatory otopathology in humans. Otol Neurotol. 2016;37:99–108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberman B, Patel V, Cureoglu S, Isildak H. The aetiopathologies of Ménière’s disease: a contemporary review. Acta Otorhinolaryngol Ital. 2017;37(4):250–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Oh G-S, Kim H-J, Choi J-H, Shen A, Kim C-H, Kim S-J, Shin S-R, Hong S-H, Kim Y, Park C. Activation of lipopolysaccharide–TLR4 signaling accelerates the ototoxic potential of cisplatin in mice. J Immunol. 2011;186:1140–50.

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Gagnon PM. Genetic dependence of cochlear cells and structures injured by noise. Hear Res. 2007;224:34–50.

    Article  PubMed  CAS  Google Scholar 

  • Ohlemiller KK, Rice MER, Gagnon PM. Strial microvascular pathology and age-associated endocochlear potential decline in NOD congenic mice. Hear Res. 2008;244:85–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohlemiller KK, Rybak Rice ME, Lett JM, Gagnon PM. Absence of strial melanin coincides with age-associated marginal cell loss and endocochlear potential decline. Hear Res. 2009;249:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Oishi N, Talaska AE, Schacht J. Ototoxicity in dogs and cats. Vet Clin North Am Small Anim Pract. 2012;42:1259–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ottaviani F, Cadoni G, Marinelli L, Fetoni AR, De Santis A, Romito A, Vulpiani P, Manna R. Anti-endothelial autoantibodies in patients with sudden hearing loss. Laryngoscope. 1999;109:1084–7.

    Article  PubMed  CAS  Google Scholar 

  • Pender D. Endolymphatic hydrops and Ménière’s disease: a lesion meta-analysis. J Laryngol Otol. 2014;128:859–65.

    Article  PubMed  CAS  Google Scholar 

  • Penha R, O’Neill M, Goyri ONJ, Esperanca PJ. Ultrastructural aspects of the microvasculature of the cochlea: the internal spiral network. Otolaryngol Head Neck Surg. 1999;120:725.

    Article  PubMed  CAS  Google Scholar 

  • Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006;443:700–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfister F, Feng Y, Vom Hagen F, Hoffmann S, Molema G, Hillebrands J-L, Shani M, Deutch U, Hammes H-P. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes. 2008;57:2495–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plonka P, Passeron T, Brenner M, Tobin D, Shibahara S, Thomas A, Slominski A, Kadekaro A, Hershkovitz D, Peters E. What are melanocytes really doing all day long…? Exp Dermatol. 2009;18:799–819.

    Article  PubMed  CAS  Google Scholar 

  • Prat A, Biernacki K, Wosik K, Antel JP. Glial cell influence on the human blood-brain barrier. Glia. 2001;36:145–55.

    Article  PubMed  CAS  Google Scholar 

  • Prazma J, Carrasco VN, Butler B, Waters G, Anderson T, Pillsbury HC. Cochlear microcirculation in young and old gerbils. Arch Otolaryngol Head Neck Surg. 1990;116:932.

    Article  PubMed  CAS  Google Scholar 

  • Qu C, Liang F, Smythe NM, Schulte BA. Identification of ClC-2 and CIC-K2 chloride channels in cultured rat type IV spiral ligament fibrocytes. J Assoc Res Otolaryngol. 2007;8:205–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quaegebeur A, Segura I, Carmeliet P. Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron. 2010;68:321–3.

    Article  PubMed  CAS  Google Scholar 

  • Quintanilla-Dieck L, Larrain B, Trune D, Steyger PS. Effect of systemic lipopolysaccharide-induced inflammation on cytokine levels in the murine cochlea: a pilot study. Otolaryngol Head Neck Surg. 2013. https://doi.org/10.1177/0194599813491712.

  • Quirk W, Laurikainen E, Avinash G, Nuttall A, Miller J. The role of endothelin on the regulation of cochlear blood flow. Assoc Res Otolaryngol. 1992;15:37.

    Google Scholar 

  • Rehm HL, Zhang D-S, Brown MC, Burgess B, Halpin C, Berger W, Morton CC, Corey DP, Chen Z-Y. Vascular defects and sensorineural deafness in a mouse model of Norrie disease. J Neurosci. 2002;22:4286–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reif R, Zhi Z, Dziennis S, Nuttall AL, Wang RK. Changes in cochlear blood flow in mice due to loud sound exposure measured with Doppler optical microangiography and laser Doppler flowmetry. Quant Imaging Med Surg. 2013;3:235.

    PubMed  PubMed Central  Google Scholar 

  • Ruckenstein MJ, Hu L. Antibody deposition in the stria vascularis of the MRL-Fas lpr mouse. Hear Res. 1999;127:137–42.

    Article  PubMed  CAS  Google Scholar 

  • Rybak LP, Ramkumar V. Ototoxicity. Kidney Int. 2007;72:931–5.

    Article  PubMed  CAS  Google Scholar 

  • Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res. 2007;226:157–67.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi N, Spicer SS, Thomopoulos GN, Schulte BA. Immunoglobulin deposition in thickened basement membranes of aging strial capillaries. Hear Res. 1997a;109:83–91.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi N, Spicer SS, Thomopoulos GN, Schulte BA. Increased laminin deposition in capillaries of the stria vascularis of quiet-aged gerbils. Hear Res. 1997b;105:44–56.

    Article  PubMed  CAS  Google Scholar 

  • Salt AN, Mleichar I, Thalmann R. Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope. 1987;97:984–91.

    Article  PubMed  CAS  Google Scholar 

  • Sara S, Teh B, Friedland P. Bilateral sudden sensorineural hearing loss: review. J Laryngol Otol. 2014;128:S8–S15.

    Article  PubMed  Google Scholar 

  • Sato E, Shick HE, Ransohoff RM, Hirose K. Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: the role of CX3CR1. J Comp Neurol. 2008;506:930–42.

    Article  PubMed  Google Scholar 

  • Schacht J, Talaska AE, Rybak LP. Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention. Anat Rec. 2012;295:1837–50.

    Article  CAS  Google Scholar 

  • Scheibe F, Haupt H, Ludwig C. Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure. Eur Arch Otorhinolaryngol. 1993;250:281–5.

    Article  PubMed  CAS  Google Scholar 

  • Schulte BA, Schmiedt RA. Lateral wall Na, K-ATPase and endocochlear potentials decline with age in quiet-reared gerbils. Hear Res. 1992;61:35–46.

    Article  PubMed  CAS  Google Scholar 

  • Seidman MD, Quirk WS, Shirwany NA. Mechanisms of alterations in the microcirculation of the cochlea, ototoxicity: basic science and clinical applications. Ann N Y Acad Sci. 1999;884:226–32.

    Article  PubMed  CAS  Google Scholar 

  • Shaddock LC, Hamernik RP, Axelsson A. Cochlear vascular and sensorycell changes induced by elevated temperature and noise. Am J Otolaryngol. 1984;5:99–107.

    Article  PubMed  CAS  Google Scholar 

  • Shepro D, Morel N. Pericyte physiology. FASEB J. 1993;7:1031–8.

    Article  PubMed  CAS  Google Scholar 

  • Shi X. Cochlear pericyte responses to acoustic trauma and the involvement of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. Am J Pathol. 2009;174:1692–704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res. 2010;342:21–30.

    Article  PubMed  Google Scholar 

  • Shi X. Physiopathology of the cochlear microcirculation. Hear Res. 2011;282:10–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res. 2016;338:52–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi X, Nuttall AL. The demonstration of nitric oxide in cochlear blood vessels in vivo and in vitro: the role of endothelial nitric oxide in venular permeability. Hear Res. 2002;172:73–80.

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Nuttall AL. Upregulated iNOS and oxidative damage to the cochlear stria vascularis due to noise stress. Brain Res. 2003;967:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Nuttall AL. Expression of adhesion molecular proteins in the cochlear lateral wall of normal and PARP-1 mutant mice. Hear Res. 2007;224:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Han W, Yamamoto H, Tang W, Lin X, Xiu R, Trune DR, Nuttall AL. The cochlear pericytes. Microcirculation. 2008;15:515–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sims DE. Diversity within pericytes. Clin Exp Pharmacol Physiol. 2000;27:842–6.

    Article  PubMed  CAS  Google Scholar 

  • Slominski A. Neuroendocrine activity of the melanocyte. Exp Dermatol. 2009;18:760–3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slominski A, Zmijewski MA, Pawelek J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 2012;25:14–27.

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA. Differentiation of inner ear fibrocytes according to their ion transport related activity. Hear Res. 1991;56:53–64.

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res. 1996;100:80–100.

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA. Spiral ligament pathology in quiet-aged gerbils. Hear Res. 2002;172:172–85.

    Article  PubMed  Google Scholar 

  • Spicer SS, Schulte BA. Novel structures in marginal and intermediate cells presumably relate to functions of apical versus basal strial strata. Hear Res. 2005;200:87–101.

    Article  PubMed  Google Scholar 

  • Spiess AC, Lang H, Schulte BA, Spicer S, Schmiedt RA. Effects of gap junction uncoupling in the gerbil cochlea. Laryngoscope. 2002;112:1635–41.

    Article  PubMed  CAS  Google Scholar 

  • Sprinzl G, Riechelmann H. Current trends in treating hearing loss in elderly people: a review of the technology and treatment options–a mini-review. Gerontology. 2010;56:351–8.

    Article  PubMed  CAS  Google Scholar 

  • Steel K, Barkway C. Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development. 1989;107:453–63.

    PubMed  CAS  Google Scholar 

  • Steel K, Davidson DR, Jackson I. TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor. Development. 1992;115:1111–9.

    PubMed  CAS  Google Scholar 

  • Sulaimon SS, Kitchell BE. The biology of melanocytes. Vet Dermatol. 2003;14:57–65.

    Article  PubMed  Google Scholar 

  • Suzuki M, Yamasoba T, Kaga K. Development of the blood-labyrinth barrier in the rat. Hear Res. 1998;116:107–12.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Yamasoba T, Ishibashi T, Miller JM, Kaga K. Effect of noise exposure on blood–labyrinth barrier in guinea pigs. Hear Res. 2002;164:12–8.

    Article  PubMed  Google Scholar 

  • Tagaya M, Yamazaki M, Teranishi M, Naganawa S, Yoshida T, Otake H, Nakata S, Sone M, Nakashima T. Endolymphatic hydrops and blood–labyrinth barrier in Meniere’s disease. Acta Otolaryngol. 2011;131:474–9.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Harris JP. Anatomic distribution and localization of immunocompetent cells in normal mouse endolymphatic sac. Acta Otolaryngol. 1988;106:409–16.

    Article  PubMed  CAS  Google Scholar 

  • Tavanai E, Mohammadkhani G. Role of antioxidants in prevention of age-related hearing loss: a review of literature. Eur Arch Otorhinolaryngol. 2017;274(4):1821–34.

    Article  PubMed  Google Scholar 

  • Thomopoulos GN, Spicer SS, Gratton MA, Schulte BA. Age-related thickening of basement membrane in stria vascularis capillaries. Hear Res. 1997;111:31–41.

    Article  PubMed  CAS  Google Scholar 

  • Tornabene SV, Sato K, Pham L, Billings P, Keithley EM. Immune cell recruitment following acoustic trauma. Hear Res. 2006;222:115–24.

    Article  PubMed  CAS  Google Scholar 

  • Toubi E, Halas K, Ben-David J, Sabo E, Kessel A, Luntz M. Immune-mediated disorders associated with idiopathic sudden sensorineural hearing loss. Ann Otol Rhinol Laryngol. 2004;113:445–9.

    Article  PubMed  Google Scholar 

  • Trowe M-O, Maier H, Schweizer M, Kispert A. Deafness in mice lacking the T-box transcription factor Tbx18 in otic fibrocytes. Development. 2008;135:1725–34.

    Article  PubMed  CAS  Google Scholar 

  • Trune DR, Nguyen-Huynh A. Vascular pathophysiology in hearing disorders, Semin Hear. Thieme Medical Publishers; 2012. p. 242–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trune DR, Kempton JB, Mitchell CR, Hefeneider SH. Failure of elevated heat shock protein 70 antibodies to alter cochlear function in mice. Hear Res. 1998;116:65–70.

    Article  PubMed  CAS  Google Scholar 

  • Ueda S, Yamagishi S-I, Okuda S. Anti-vasopermeability effects of PEDF in retinal-renal disorders. Curr Mol Med. 2010;10:279–83.

    Article  PubMed  CAS  Google Scholar 

  • Varol C, Mildner A, Jung S. Macrophages: development and tissue specialization. Annu Rev Immunol. 2015;33:643–75.

    Article  PubMed  CAS  Google Scholar 

  • Wakaoka T, Motohashi T, Hayashi H, Kuze B, Aoki M, Mizuta K, Kunisada T, Ito Y. Tracing Sox10-expressing cells elucidates the dynamic development of the mouse inner ear. Hear Res. 2013;302:17–25.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Hirose K, Liberman MC. Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryng. 2002;3:248–68.

    Article  Google Scholar 

  • Wang Q, Steyger PS. Trafficking of systemic fluorescent gentamicin into the cochlea and hair cells. J Assoc Res Otolaryngol. 2009;10:205–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wangemann P. Cochlear blood flow regulation. Adv Otorhinolaryngol. 2002;59:51–7.

    PubMed  CAS  Google Scholar 

  • Wangemann P, Liu J. Osmotic water permeability of capillaries from the isolated spiral ligament: new in-vitro techniques for the study of vascular permeability and diameter. Hear Res. 1996;95:49–56.

    Article  PubMed  CAS  Google Scholar 

  • Wong ML, Young JS, Nilaver G, Morton JI, Trune DR. Cochlear IgG in the C3H/lpr autoimmune strain mouse. Hear Res. 1992;59:93–100.

    Article  PubMed  CAS  Google Scholar 

  • Wood MB, Zuo J. The contribution of immune infiltrates to ototoxicity and cochlear hair cell loss. Front Cell Neurosci. 2017;11:106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu T, Marcus DC. Age-related changes in cochlear endolymphatic potassium and potential in CD-1 and CBA/CaJ mice. J Assoc Res Otolaryngol. 2003;4:353–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Omelchenko I, Shi X, Nuttall AL. The influence of NF-kappaB signal-transduction pathways on the murine inner ear by acoustic overstimulation. J Neurosci Res. 2009;87:1832–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamane H, Nakai Y, Konishi K, Sakamoto H, Matsuda Y, Iguchi H. Strial circulation impairment due to acoustic trauma. Acta Otolaryngol. 1991;111:85–93.

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Dai M, Wilson TM, Omelchenko I, Klimek JE, Wilmarth PA, David LL, Nuttall AL, Gillespie PG, Shi X. Na+/K+-ATPase alpha1 identified as an abundant protein in the blood-labyrinth barrier that plays an essential role in the barrier integrity. PLoS One. 2011;6:e16547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yehudai D, Shoenfeld Y, Toubi E. The autoimmune characteristics of progressive or sudden sensorineural hearing loss. Autoimmunity. 2006;39:153–8.

    Article  PubMed  CAS  Google Scholar 

  • Yorgason JG, Luxford W, Kalinec F. In vitro and in vivo models of drug ototoxicity: studying the mechanisms of a clinical problem. Expert Opin Drug Metab Toxicol. 2011;7:1521–34.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida N, Kristiansen A, Liberman MC. Heat stress and protection from permanent acoustic injury in mice. J Neurosci. 1999;19:10116–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Young J, Morton J, Nilaver G, Trune D. Distribution of IgG in the inner ear of C3H/lpr autoimmune disease mice. Abst Assoc Res Otolaryngol. 1988;225.

    Google Scholar 

  • Zhang W, Dai M, Fridberger A, Hassan A, Degagne J, Neng L, Zhang F, He W, Ren T, Trune D, Auer M, Shi X. Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proc Natl Acad Sci U S A. 2012;109:10388–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Dai M, Neng L, Zhang JH, Zhi Z, Fridberger A, Shi X. Perivascular macrophage-like melanocyte responsiveness to acoustic trauma—a salient feature of strial barrier associated hearing loss. FASEB J. 2013;27:3730–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Chen S, Hou Z, Cai J, Dong M, Shi X. Lipopolysaccharide-induced middle ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through down-regulation of tight junction proteins. PLoS One. 2015;10(3):e0122572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Most of the data presented in this review reflects the efforts of my colleagues and students at the Oregon Hearing Research Center. In particular, the author is deeply indebted to Dr. Alfred Nuttall for stimulating discussion and advice. The author also thanks Mr. Allan Kachelmeier and Ms Janice Moore for editorial assistance, and Christine Casabar for assistance with the references.

This work was supported by National Institutes of Health grants R03 DC008888, DC008888S1, R01 DC010844 (X. Shi), R21 DC1239801 (X. Shi.); P30-DC005983 (Peter Barr-Gillespie); R01 DC000105 (Alfred L. Nuttall); R21 DC016157 (X. Shi.) and R01 DC015781 (X. Shi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaorui Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, X. (2018). Cochlear Vascular Pathology and Hearing Loss. In: Ramkumar, V., Rybak, L. (eds) Inflammatory Mechanisms in Mediating Hearing Loss. Springer, Cham. https://doi.org/10.1007/978-3-319-92507-3_4

Download citation

Publish with us

Policies and ethics