Skip to main content

Molecular Genetics and Vascular Anomalies

  • Chapter
  • First Online:
  • 536 Accesses

Abstract

PIK3CA-related overgrowth spectrum (PROS) refers to a group of disorders of segmental overgrowth caused by mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) PROS is an umbrella term that includes several diagnostic entities, including congenital lipomatous overgrowth (CLOVES), fibroadipose hyperplasia (FAH), Klippel-Trenaunay Syndrome (KTS), isolated low flow vascular malformations (e.g. lymphatic and venous malformations), megalencephaly syndromes and focal cortical dysplasias, among others. Although many of these disorders are clinically distinct, there is a great deal of overlap, leading to the utility of considering them a spectrum of disorders due to post-zygotic activating mutations in the gene PIK3CA. In this chapter we review the phenotypic spectrum of these disorders, their clinical and molecular diagnosis, as well as their pathophysiology and management.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McGinn S, Gut IG. DNA sequencing – spanning the generations. New Biotechnol. 2013;30(4):366–72.

    Article  CAS  Google Scholar 

  2. *Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell. 2013;155(1):27–38.

    Article  CAS  Google Scholar 

  3. Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: past, present and future. Nature. 2017;550(7676):345–53.

    Article  CAS  Google Scholar 

  4. Koboldt DC, Larson DE, Wilson RK. Using VarScan 2 for germline variant calling and somatic mutation detection. Curr Protoc Bioinformatics. 2013;44:15.4.1–17.

    Article  Google Scholar 

  5. ***Luks VL, Kamitaki N, Vivero MP, et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J Pediatr. 2015;166(4):1048–54.e1–5.Accessed 20150330; 12/17/2015 5:54:01 PM. https://doi.org/10.1016/j.jpeds.2014.12.069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mirzaa G, Timms AE, Conti V, et al. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight. 2016;1(9):e87623.

    Article  Google Scholar 

  7. ***Limaye N, Kangas J, Mendola A, et al. Somatic activating PIK3CA mutations cause venous malformation. Am J Hum Genet. 2015;97(6):914–21.

    Article  CAS  Google Scholar 

  8. Sanger F. Sequences, sequences, and sequences. Annu Rev Biochem. 1988;57:1–28.

    Article  CAS  Google Scholar 

  9. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.

    Article  CAS  Google Scholar 

  10. **Subramanian G, Adams MD, Venter JC, Broder S. Implications of the human genome for understanding human biology and medicine. JAMA. 2001;286(18):2296–307.

    Article  CAS  Google Scholar 

  11. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

    Article  Google Scholar 

  12. Organick L, Ang SD, Chen YJ, et al. Random access in large-scale DNA data storage. Nat Biotechnol. 2018;36(3):242–8.

    Article  CAS  Google Scholar 

  13. Ng SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6.

    Article  CAS  Google Scholar 

  14. Choi M, Scholl UI, Ji W, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106(45):19096–101.

    Article  CAS  Google Scholar 

  15. Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A. 2008;105(42):16266–71.

    Article  CAS  Google Scholar 

  16. Shovlin CL, Hughes JM, Tuddenham EG, et al. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3. Nat Genet. 1994;6(2):205–9.

    Article  CAS  Google Scholar 

  17. McDonald J, Gedge F, Burdette A, et al. Multiple sequence variants in hereditary hemorrhagic telangiectasia cases: illustration of complexity in molecular diagnostic interpretation. J Mol Diagn. 2009;11(6):569–75.

    Article  CAS  Google Scholar 

  18. McDonald J, Damjanovich K, Millson A, et al. Molecular diagnosis in hereditary hemorrhagic telangiectasia: findings in a series tested simultaneously by sequencing and deletion/duplication analysis. Clin Genet. 2011;79(4):335–44. Accessed 20110304; 12/17/2015 5:54:01 PM. https://doi.org/10.1111/j.1399-0004.2010.01596.x.

    Article  CAS  PubMed  Google Scholar 

  19. McDonald J, Bayrak-Toydemir P, Pyeritz RE. Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis. Genet Med. 2011;13(7):607–16. Accessed 20110708; 12/17/2015 5:42:12 PM. https://doi.org/10.1097/GIM.0b013e3182136d32.

    Article  PubMed  Google Scholar 

  20. McDonald J, Wooderchak-Donahue W, VanSant Webb C, Whitehead K, Stevenson DA, Bayrak-Toydemir P. Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet. 2015;6:1.

    Article  Google Scholar 

  21. Shirley MD, Tang H, Gallione CJ, et al. Sturge-weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368(21):1971–9. Accessed 20130523; 12/17/2015 5:54:01 PM. https://doi.org/10.1056/NEJMoa1213507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

To assist the reader in gaining familiarity with available evidence, the following rating system has been used to indicate key references for each chapter’s content:

***: Critical material. Anyone dealing with this condition should be familiar with this reference.

**: Useful material. Important information that is valuable in in clinical or scientific practice related to this condition.

*: Optional material. For readers with a strong interest in the chapter content or a desire to study it in greater depth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Bennett MD PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perkins, J.A., Bennett, J.T., Dobyns, W. (2018). Molecular Genetics and Vascular Anomalies. In: Perkins, J., Balakrishnan, K. (eds) Evidence-Based Management of Head and Neck Vascular Anomalies. Springer, Cham. https://doi.org/10.1007/978-3-319-92306-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92306-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92305-5

  • Online ISBN: 978-3-319-92306-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics