
Peer-to-Peer Video Streaming in HTML5
with WebTorrent

István Koren(B) and Ralf Klamma

Advanced Community Information Systems (ACIS) Group, RWTH Aachen
University, Ahornstr. 55, 52056 Aachen, Germany

{koren,klamma}@dbis.rwth-aachen.de
http://dbis.rwth-aachen.de

Abstract. Multimedia-related businesses dealing with movie streaming
and video-based short messages have increased the global Internet video
traffic substantially in the last couple of years. At the same time, multi-
media on the Web has been standardized in terms of codecs and browser-
based JavaScript APIs. However, the technological challenges concerning
the distribution of large video files are today mainly tackled by scaling
up capacities in cloud data centers, or relying on content delivery net-
works. Both approaches favor financially strong, large companies, while
independent video providers with highly demanded videos are disadvan-
taged. In this article, we conceptualize methods to offload video delivery
from centralized clouds to clients. In particular, we implemented and
evaluated a system that streams videos peer-to-peer via WebTorrent in
HTML5. The resulting library is available open source.

Keywords: Web multimedia · Peer-to-peer · WebTorrent

1 Introduction

The global Internet video traffic has risen substantially in the last couple of
years. The continuous increase of connection speed has paved the way for the
success of multimedia-related businesses dealing with movie streaming and video-
based short messages. In 2014, 64% of all consumer Internet traffic regarding
bits transferred was video traffic [2]. According to Cisco’s Visual Networking
Index, this number will most likely rise to 80% in 2019. Meanwhile, a shift of
multimedia technologies on the Web from proprietary plugins like Adobe Flash
to a standardized set of HTML5-related standards has taken place. Necessary
preconditions for cross-device multimedia on the Web were tackled, including
licensing issues around media codecs such as WebM and MPEG H.264. However,
technological challenges in distributing large video files are mainly addressed by
relying on central cloud providers with large storage capacity, so that the de
facto video distribution model still follows the client-server architecture. Video
files are first uploaded from client devices to a central cloud solution, before being
downloaded or streamed to clients. This entails a number of drawbacks. First,
c© Springer International Publishing AG, part of Springer Nature 2018
T. Mikkonen et al. (Eds.): ICWE 2018, LNCS 10845, pp. 404–419, 2018.
https://doi.org/10.1007/978-3-319-91662-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91662-0_33&domain=pdf


WebTorrent-Based Video Streaming on the Web 405

live streaming takes a temporal indirection when routed over a server. Second,
it generates a high load on central points of the network infrastructure. Last
but not least, video creators must accept the terms and conditions of the cloud
provider to serve the video. Although Content Delivery Networks (CDNs) solve
the first problem, they introduce a further monetary burden, making it hard for
small content providers to reach the quality and availability of big providers.
Thus, a possible solution lies in offloading the load from the cloud back to the
clients, following principles of Edge computing [11]. Peer-to-peer video streaming
is a promising principle to meet these challenges. Although browser plugins like
Adobe Flash and Akamai Netsession have tried to solve this several years go, they
have failed due to usability and security shortcomings. Today, two recent group
of Web standards are here to solve the challenges natively in the browser. On the
one hand, the Media Source Extensions control feeding <audio> and <video>
tags with multimedia data. On the other hand, WebRTC as a group of protocols
and APIs solve issues around cross-browser peer-to-peer data streaming.

In this paper, we describe our conceptual considerations and prototype imple-
mentation of a WebTorrent-based framework for peer-to-peer video streaming
in native HTML5. The results are available as open source solutions, enabling
the further development with the help of the open source community.

1.1 Motivation

Online videos have become a huge market over the last years. Large Internet
companies like Facebook and Twitter entered the video business, trying to gain
a share of the consumer market dominated by YouTube. There is also a movement
towards live video on social networking sites. As a social phenomenon, digital
natives prefer new kinds of social networks like Snapchat and Instagram, whose
business model includes short video “stories” that vanish after a user-defined
time period. Besides entertainment and social networking aspects, there is also
huge potential in further multimedia-based application cases like distant, collab-
orative workplaces. Users get more acquainted with local multi-device streaming
of videos from mobile computers to the big screens of smart TVs. Simultaneously,
video bitrates increase steadily. 4K with a horizontal screen display resolution
of around 4,000 pixels is now state-of-the-art in home entertainment, but 8 K is
already on the horizon with the recent HDMI specification [13]. Streaming video
files needs to tackle a number of challenges:

– Fast initial startup time: There should be no significant lag when starting a
stream.

– Random access: It should be possible to switch the position in the timeline.
– Complying with device and network limitations: The resolution of the target

device and the bandwidth need to be respected.

This paper is organized as follows. After presenting related work, we evaluate
different concepts for peer-to-peer multimedia streaming on the Web. We then
elaborate on the conceptual architecture of our solution relying on a tracking



406 I. Koren and R. Klamma

server. Concretely, we decided to use an approach relying on WebTorrent. We
then present the OakStreaming library that enables setting up browser-based
peer-to-peer video streams. The library is configurable and extendable. Amongst
other parameters, developers may specify a limit on the amount of data each
peer is allowed to upload to other peers, to keep a balance amongst the peers.

2 Related Work

This section introduces related work from academia and industry that tackles
the challenges of delivering video content through peer-to-peer technologies.

2.1 Content Delivery Networks

High server load and world-wide latency challenges are usually tackled with
Content Delivery Networks (CDNs). A CDN consists of a world-wide network of
caches that replicate content of a main server. Requests to the central identity
are then redirected to the nearest cache [1]. A commercial CDN provider usually
delivers content for many different content providers. For the Web user, CDNs
are transparent; the content provider, however, needs to pay fees.

Coolstreaming and Akamai NetSession are two representatives of systems
that relay the caching to the peers. Lin et al. described and evaluated the peer-
assisted CDN Akamai NetSession [8]. The peers of the network need to run
instances of the NetSession Interface application. By including a library into
third-party applications like download managers, they can also benefit from the
network. Running as part of a download manager, a NetSession Interface instance
first tries to download the fragments of a file from other peers of the NetSes-
sion network. Fragments that cannot be received fast enough are downloaded
from dedicated servers of the CDN. Additionally, a running NetSession Interface
uploads already downloaded fragments to other NetSession Interfaces.

2.2 WebRTC-Based Prototypes

Högqvist et al. describe and evaluate Hive.js [10], a WebRTC-based, peer-assisted
video streaming solution. A central tracking server keeps track which player
instances are currently connected. Their software then builds a random graph
between all viewers of a video. Periodically, each peer selects one of his WebRTC
connections and terminates it. Immediately after that, the peer connects to a
randomly chosen peer from a list of potential new neighbors. This list is provided
by the tracking server. An evaluation has shown that their system performs well
for peer-to-peer streaming with 30 or less peers. Hive.js does not check data
integrity of downloaded video fragments.

Gomes Soares et al. describe an implementation of a WebRTC-based, peer-
assisted video streaming solution [6]. The system uses an ISP and geolocation
awareness concept. Each peer in their system belongs to a WebRTC cluster.
Peers who belong to the same provider’s network and who are geographically



WebTorrent-Based Video Streaming on the Web 407

close are preferably assigned to the same cluster. All peers in the same cluster are
directly connected to each other through WebRTC connections. If a peer needs a
media fragment, it first tries to receive it via broadcasting the request within its
cluster. If the peer is not able to receive a desired media fragment from the peer-
to-peer network in time, it requests it from a CDN. The authors’ experiments
demonstrate that their implementation leads to high fluctuations regarding the
percentage of fragments that are delivered through the peer-to-peer network.

Antony J.R. Meyn described another WebRTC-based, peer-assisted video
streaming system [5]. Due to the fact that at the time of conceptualization no
browser vendor had implemented support for the WebRTC data channel, no
prototype was created. Nurminen et al. describe a WebRTC-based, peer-to-peer
video streaming system [7]. Similarly, no working WebRTC data channel was
available on mainstream browsers. Instead, the authors evaluated the load and
the MD5 hashing algorithm to validate data integrity of media fragments that
were delivered by peers.

3 Requirements for Peer-to-Peer Video Delivery

This section discusses various models of delivering video streams to viewers. We
then show how these can be developed using common Web technologies. Based
on these considerations, we list our functional and non-functional requirements.

3.1 Delivery Models

Video content delivery as it is currently implemented on various popular websites
like YouTube, Facebook and Vimeo follows a client-server model. Users upload
the video to a central cloud repository. When other users retrieve the video’s
website, the provider embeds the URL of the video in the returned HTML page,
typically within a <video> tag. The browser then requests the video from the
server over the specified URL. After that, the server initializes the video stream
to the client. In this scenario, the video is always delivered from the server to the
client. No data is transferred between any two clients. Although Web caches such
as CDNs can reduce the load on the main server, even if a video is watched at the
same time on two different client devices side by side, two separate connections
to the server are established and the data is downloaded twice. The limitation
of the number of requests a server can answer is a significant bottleneck of the
client-server architecture. However, traditional client-server systems can easily
ensure content integrity and reliable accounting.

The advantage of peer-to-peer systems compared to client-server models is
that the load is decentralized onto the clients. Peers are connected to each other
and retrieve video fragments from neighbor peers ideally. The disadvantages of
peer-to-peer systems compared to sufficiently equipped client-server systems are
longer initial start-up times as the video source has to be negotiated initially,
and more unwanted stuttering or stalling of video play due to the disappearance
of other peers during the playback [4]. In a peer-to-peer network, the time span



408 I. Koren and R. Klamma

between connecting and receiving the first byte of a media fragment is relatively
large; getting the first fragment from a Web server or CDN is significantly faster.

Peer-assisted video streaming is another delivery method. It is a hybrid model
that combines the advantages of client-server like high availability with the load
distribution of pure peer-to-peer system [4,6,8]. In a peer-assisted streaming
system, if a peer cannot receive a desired media fragment from the peer-to-peer
network in time, it downloads it from the source of the media stream, e.g. from
a server [10]. The short initial start-up times are possible because in this kind of
hybrid solution the first media fragments of media content can be downloaded
from the CDN or Web server to enable the start of the video playback as soon as
possible. This fallback solution guarantees that all media fragments are received
by each peer early enough to avoid stuttering or stalling of video playback.

3.2 Technology

After discussing delivery models of Web videos above, in this section we discuss
related Web Technologies used by our system.

WebRTC. WebRTC is a HTML5 API that enables establishing direct peer-
to-peer connections between two or more Web browsers [3]. The WebRTC data
channel is the communication channel type of WebRTC which enables to transfer
arbitrary binary data between Web browsers. In order to use the WebRTC data
channel, a website does not need the explicit agreement from the visitor, however
the Web application needs to be delivered over a secure HTTPS channel.

To establish a WebRTC connection, signaling data has to be exchanged
between the peers [3]. This includes the public IP addresses of each peer and
the local IP addresses, if the peers are located in the same LAN. The data is
typically exchanged with the help of a signaling server that is reachable from
both ends of the connection. When using this approach, both peers connect to
the signaling server and use it as a relay for transferring their signaling data
to the other peer. The signaling data can also be transferred by other means.
For instance, the peer-to-peer WebRTC connection can be established by man-
ually typing in signaling data into an HTML form. Because of firewalls and the
functioning of network address translation (NAT), direct IP-based communica-
tion between peers is normally not possible on the Web. Therefore, if the two
peers are located in different local networks and at least one peer is behind
a NAT-enabled router, a so-called STUN (Session Traversal Utilities for NAT)
server is necessary to traverse the router so that the WebRTC connection can
be established.

Media Source Extensions. The W3C Media Source Extensions specification
enables JavaScript to send byte streams to media codecs [14]. Web browsers that
support this specification enable JavaScript code to “feed” a HTML5 <video> or
<audio> element with a video/audio stream piecewise. It enables the implemen-
tation of client-side prefetching, buffering and adaptive bit rate for streaming
media in JavaScript.



WebTorrent-Based Video Streaming on the Web 409

3.3 Requirements

Considering the available body of research literature and the capabilities of
commercial software described in the previous section, we present a number
of functional and non-functional requirements for our system in the following.
As of today, all browsers including the initially hesitant Apple Safari support the
WebRTC or similar RTC group of standards for peer-to-peer connections on the
Web. The Edge browser by Microsoft currently exposes the ORTC interface with
similar capabilities; thus the findings of our system should be easily transferable.

Generally, we want to enable streaming videos in a peer-to-peer manner
between instances of different browsers. Random access of playback positions
should be allowed to enable users to jump freely during the stream. There are
different strategies for distributing the video content amongst the peers. Rarest
piece selection means that those fragments of a video get requested first, that
are estimated as rarest in the network. Offloading streams from the cloud to
a peer-to-peer network naturally shifts the load onto the clients. We therefore
envision having a fair distribution of the load amongst the peers. A ratio defining
the proportion of download and upload should be configurable in addition. For
example, it is more reasonable to stream from a device that is connected to a
stable wired connection than it is from a battery-powered mobile device in a slow
mobile network. The respective configuration parameter is the peer upload limit.
Other parameters include the buffer size, which is the length of seconds of video
playback we cache to enable a seamless playback of the video file. Finally, the
system to be developed should generate and expose statistical values for further
tuning the system. For example, the amount of video data downloaded from
other peers and the amount of uploaded data could be logged. The connection
to other peers should either be mediated by a central server or be established
via manual connection.

Finally, non-functional requirements include the ability to cope with high
fluctuations of the available bandwidth. Also, the system should be quite resis-
tant to continuous arrival and departure of peers. This means that the video
stream must not slow down or stop completely if a peer leaves the network. We
particularly stress the importance of a comprehensible and easy-to-understand
documentation of the source code, as the results should be available as open
source solution to foster further development through the wider open source
community.

4 Conceptual Design

To create a peer-to-peer solution for distributing video data, we evaluated three
different architectures: a synchronized look-up table, a distributed hash table
and a tracking server.

4.1 Synchronized Look-Up Table

The goal of a synchronized look-up table concept is to collect all available signif-
icant information about the network state at each peer in the network. In this



410 I. Koren and R. Klamma

approach, peers publish which fragments they have cached already. Peers use
this information to update their own look-up tables where the keep track of the
current overall video distribution state. To retrieve needed fragments, peers send
out messages to all other peers together with an urgency indicator calculated
out of the temporal distance of the currently played fragment. Other peers then
react to the message and offer the needed fragment. As a consequence, there is
a large number of messages that need to be broadcasted to all participants, thus
any naive algorithm would not be scalable to a large number of peers. A solution
would be to multicast messages to a subset of peers.

4.2 Distributed Hash Table

The main aim of a distributed hash table (DHT) concept is to make finding
a peer which can deliver the desired media fragment possible, reliable and effi-
cient without a need for a central coordination node. Distributed hash tables are
decentralized distributed systems which provide a look-up service for key-value
pairs [9]. DHTs have a network structure consisting of nodes and connections
between these nodes. The look-up functionality of a DHT gets as input an arbi-
trary key out of a defined key space, and outputs the corresponding value. Each
key is (temporarily) assigned to a network node and any participant can retrieve
the corresponding value by sending a query message into the DHT network
which then gets routed to a node that got assigned this key. Responsibility for
the key space is distributed among all nodes of the network in such a way that
the quality of service provided by the DHT is robust against continual node
arrivals, departures and failures. Moreover, DHTs do not have a single-point
of failure, which enables peer-to-peer video streaming systems that use a DHT
to be fairly safe against total failures. A popular DHT algorithm and proto-
col is Chord [12]. Using the key-value storage functionality of DHTs, it can be
dynamically stored and retrieved which peer can deliver which video fragments.
The mentioned properties of Chord make finding a peer which can deliver a
desired media fragment efficient and scalable. Most DHT concepts have similar
properties like Chord, making them attractive as a basis for peer-to-peer video
streaming systems.

4.3 Tracking Server

Another possible solution to implement a peer-to-peer video streaming system
is to connect every peer to a central tracking server that stays in contact with
each peer to keep an overview of the network state. No actual video data is
transferred from or to a tracking server. For performance reasons, the tracking
server could observe, (a) which peer needs which media fragment in the next
few seconds, and (b) how reliable each peer has been in the last seconds. On the
one hand, a tracking server may calculate which peer should best send which
media fragments to which other peer and then send the corresponding orders
to the peers. On the other hand, it may also just organize which peer connects
to which peer and let the peers send requests for media fragments to other



WebTorrent-Based Video Streaming on the Web 411

peers. This approach highly reduces organization efforts of the tracking server
and therefore significantly improves the scalability. In [6] as well as in [10], this
tracking server approach proved successful. Peer-to-peer video streaming con-
cepts based on tracking servers are tried and tested, which is shown by the
fact that every WebRTC-based, peer-to-peer video streaming implementation
presented in Sect. 2.2 uses a tracking server. An obvious disadvantage of the
tracking server concept compared to the two aforementioned main concepts is
that the tracking server is a single point of failure. When the tracking server
stops working, no peer can find new peers to connect to.

Torrent Tracker. A torrent tracker is a special kind of tracking server. The
torrent concept works with torrent files, which group other files into fragments
and identify them by cryptographic hash values. Furthermore, it lists the size (in
bytes) of the fragments. Moreover, a torrent file optionally contains additional
information such as one or more URLs to torrent trackers. Everyone who knows
the hash value of the complete torrent file can request from tracking servers
direct peer-to-peer connections to peers which want to exchange fragments of
the respective file. Torrent trackers, additionally, enable to build up peer-to-
peer connections between two peers that are interested in the same torrent file,
taking the role of a signaling server. The set of peers with whom a peer shares
a direct peer-to-peer connection are called the swarm instance of the peer. Over
the newly established peer-to-peer connections, peers can then request fragments
from each other. The protocol defines how peers request file fragments from each
other. Peers only request file fragments from peers with whom they have already
established a peer-to-peer connection. A torrent file can be tracked by different
tracking servers. With the hash value contained in the torrent file, any peer can
check the integrity of received fragments.

4.4 Discussion

The preceding discussion of possible concepts for the planned peer-to-peer sys-
tem revealed that the concept of a synchronized look-up table scales significantly
worse than DHT or a tracking sever concept. The existing related work shows
that tracking server concepts are decently good studied and work well. DHTs,
on the other hand, do not have a single point of failure and new peers only need
one connection to any node of the DHT to enter the DHT network. Therefore,
using a DHT seems to be a viable solution. Unfortunately, we were not able to
find a solid DHT implementation that runs without a plugin in the browser;
developing a new one was out of the scope of this work. In the following, we
therefore present our solution based on a torrent tracker, named OakStreaming.

5 OakStreaming Peer-to-Peer Video Streaming Library

In this section, the architecture and implementation of the planned video stream-
ing system is presented. The system consists of a torrent tracker, a Web server



412 I. Koren and R. Klamma

Fig. 1. Overview of OakStreaming architecture and video fragment exchange

and OakStreaming instances. The OakStreaming instances run on the devices
of the viewers. In the first subsection, a system overview will be given.

Figure 1 shows the three main parts of our system: the Web server delivering
the initial Web application including the OakStreaming client-side library, the
torrent tracker responsible for sharing video fragment locations, and the peers
interested in watching the video. First, peer 1 retrieves the Web application and
the initial video fragments from the Web server (1). The server also keeps a
torrent file which includes information about the fragments of the video. The
client then announces the availability of fragments to the torrent tracker (2). If
a second peer connects to the system by retrieving the Web application (3), sub-
sequent fragments are already available on the first peer. Therefore, the torrent
tracker announces the availability of fragment 2 to the second peer (4), which
then starts a peer-to-peer connection to the first peer (5). The torrent tracker
is also responsible for negotiating the direct peer-to-peer data channel between
the peers.

The example above showed the simplest case for retrieving video from the
peer-to-peer network. We additionally included several strategies for efficient
and effective data transfer. For instance, multiple parameters can be set to limit
the amount of uploaded data from a peer; in the example above, the second
peer could have also retrieved the first fragment already from the peer-to-peer
network. Alternatively, the video file can also be sourced by a participating peer.
All parameters are explained in the next section.



WebTorrent-Based Video Streaming on the Web 413

5.1 Implementation

In this section, we describe the implementation of the system for peer-to-peer
video streaming on the Web. The implementation is based on the WebTorrent
JavaScript library1. It is an adaptation of the BitTorrent protocol for the Web,
using WebRTC connections for exchanging data fragments. We extended its
functionality significantly by introducing additional parameters targeting video
streams. The OakStreaming library has been developed as a Node.js module
which is turned into a Web browser compatible version via the Browserify2

bundler. The Node.js module only exports a single object which is the con-
structor to create OakStraming instances; it is global to the browser window’s
namespace. An OakStreaming instance provides several public methods for the
library user; no properties are exposed.

Initiating a Stream. The createStream(callback, videoFile, options)
method expects one required and two optional parameters. The required param-
eter is a callback function which gets called with a previously instantiated
StreamTicket object that contains all the streaming properties. The first
optional parameter is the video file which is handed over as a W3C File object.
The second optional parameter contains options for the streaming process. If
a video file gets handed over to the createStream method, it seeds this video
file to the WebTorrent network. In this case, additional streaming information
is entered through the options argument.

Receiving a Stream. Most logic of our OakStreaming library is hidden behind
the receiveStream(streamTicket, callback, stopUploadWhenDownloaded)
method. The required streamTicket argument expects a StreamTicket object
containing peer and Web server connection information. An OakStreaming client
can download a video from a Web server and from peers of the WebTorrent net-
work in parallel. The callback function gets called upon successful connection.
The stopUploadWhenDownloaded parameter defines whether upload to other
peers should get stopped once the video is fully downloaded locally. To be able
to play back all common video formats, each peer repacks received media frag-
ments on-the-fly by using a Node.js module called videostream3. A videostream
object repacks media fragments and puts them into a source buffer to be played
back by a HTML5 <video> element.

As soon as the WebTorrent instance has processed a torrent file and found
peers, it starts downloading the video in the background according to the rarest-
piece-selection strategy. The torrent tracker also exchanges the signaling data
amongst the peers.

Byte range requests can be conducted by calling the createReadStream()
method of the WebTorrent API. This method returns a readable stream object
1 https://webtorrent.io/.
2 http://browserify.org/.
3 https://github.com/jhiesey/videostream.

https://webtorrent.io/
http://browserify.org/
https://github.com/jhiesey/videostream


414 I. Koren and R. Klamma

which can be used to (partially) read the requested byte range even if it has not
been downloaded completely yet. If the byte range request should not span the
entire file, the range can be specified through an argument. Byte range requests
which were created from calls to createReadStream are fetched as fast as pos-
sible and in sequential order from the WebTorrent network. The rarest-piece-
selection fragment downloading, as initialized by the creation of a WebTorrent
instance, is suspended as long as a stream returned by createReadStream has
not yet received every byte out of its byte range request.

Fig. 2. Establishing an OakStreaming peer-to-peer session

Figure 2 shows the sequence of messages sent around between OakStreaming
peers and the torrent tracker. First, a torrent file is created on the first peer by
calling the library with a video file. The library then registers the peer as seeder
of the video file. To notify the second peer about the availability of the file, a
StreamTicket including the torrent file is sent to the second peer. The second
peer then queries the tracker together with its signaling data. It is forwarded to
the first peer, asking for its signaling data in turn. After the first peer’s signaling
data is presented to peer 2, both start a WebRTC stream negotiation process.
Finally, the first fragment of the video is transferred from peer 1 to peer 2.

6 Evaluation

The evaluation of our library is divided into a technical and a user evaluation. In
the technical evaluation, we measured how the three implemented features added
to the Web Torrent library affected the video streaming. In the user evaluation,
we asked seven Web developers to use the OakStreaming API and give feedback
regarding the usability of the library, its documentation and peer-to-peer video
streaming in general.



WebTorrent-Based Video Streaming on the Web 415

6.1 Technical Evaluation

In order to test how well the implemented system is able to organize peer-to-
peer streaming, several tests have been conducted with up to eight peers. Each
test was conducted with one seeding OakStreaming instance and 2, 4 or 8 Oak-
Streaming instances which should emulate viewers of the video. The video used
was a three minute high definition (HD) video that comprised 106 Megabyte.
At the start of each test, each OakStreaming instance established a WebSocket
connection to a WebTorrent tracker. As implemented in the WebTorrent library,
the WebTorrent tracker automatically initializes the WebRTC connection estab-
lishment between OakStreaming instances. We have found that the process of
querying a neighbor for video fragments could take a significant amount of time,
even if the peer-to-peer connection had already been established. Moreover, a
peer can only receive file data from its neighbors in fragments whose size is spec-
ified during creation of the torrent. This circumstances increase the time from
the moment a peer receives a chunk of video data to the moment it serves the
received chunk to the viewer. The OakStreaming library uses the default value
calculation algorithm of the WebTorrent library for the fragment size. Addition-
ally, after a WebRTC connection between two peers has been established, the
WebTorrent protocol needs time to initialize the neighborhood conditions and
exchange information which fragments which peer can deliver. Because these
factors can cause a delay, the emulated viewers were started with a random time
offset. First, an interval from 0 to 10 s was chosen. Using this interval, the aver-
age amount of video data that the viewers delivered to each other was relatively
low. Therefore, several interval sizes were tested. Besides 0 to 10, the checked
interval sizes were 0 to 20, 0 to 30 and 0 to 60. When using 0 to 60 as time offset
interval, most data was transferred between emulated viewers compared to the
other three; it was therefore chosen as the offset value for all graph-related test
runs.

As a result, our tests showed that a lower value for the seconds of video
playback to be buffered before the OakStreaming client switches from sequential-
piece-selection to rarest-piece-selection leads to a higher overall download time.
This correlation was expected and confirms the usefulness of this setting.

We also tested pure peer-to-peer delivery versus peer-assisted delivery regard-
ing the average time the playback was stalled. As expected, peer-assisted deliv-
ery significantly reduces stalling time; here, video playback was only interrupted
during initial start-up.

To summarize, the results of the technical evaluation clearly indicate
that peer-assisted delivery and automatic switching between sequential-piece-
selection and rarest-piece-selection enhance the quality of service of the peer-to-
peer video streaming system. When the peer-to-peer network consisted out of
two peers, the average start-up time for pure peer-to-peer streaming was 1086
milliseconds. In case of peer-assisted streaming this number went down to 667 ms.
Measurements with four peers in a pure peer-to-peer environment resulted in an
average start-up time of 936 ms. In case of peer-assisted streaming this number
went down to 695 ms.



416 I. Koren and R. Klamma

6.2 Developer Evaluation

The aim of the developer evaluation was to test the usability of the OakStreaming
library by asking potential library users for their opinion about the design of the
library and peer-to-peer streaming in general. The seven participants drawn out
of the pool of student workers at our department had intermediary to advanced
knowledge and experience in the areas of torrent-based peer-to-peer systems,
peer-to-peer systems in general, video streaming/hosting and JavaScript. The
lab experiment comprised three programming task and filling out the evaluation
questionnaire. The programming tasks were designed to make the participants
familiar with the API and functionality of the OakStreaming library. The ques-
tionnaire mainly aimed at collecting data about the usability and documentation
of the OakStreaming library as well as general opinions regarding peer-to-peer
video streaming.

Session Setup and Programming Tasks. Although the participants had to
solve the same three tasks, they were asked to work on them individually. The
setup was the same for all three programming tasks. The final Web application
of each task should be tested in two to three Web browser windows. The par-
ticipants could conduct these tests independent from each other on their own
device.

The first programming task was to create a Web application which uploads
and downloads a video to and from a Web server. The second and third pro-
gramming tasks then both focused on completing the program code of a Web
application which streams a video peer-to-peer. The peer-to-peer connections
were established locally between the browser windows on the devices of the par-
ticipants.

In task 2, the participants had to use the streamVideo method of the Oak-
Streaming library to create a StreamTicket object from a video file. The object
was then shared over the a synchronized data structure with the Yjs collabora-
tion library4. The received object was then put into the receiveStream method
of the peer instances.

Task 3 was very similar to task 2 but the participants had to use different
parameters and parameter values when creating the StreamTicket object. In
contrast to task 2, the video should be streamed in the peer-assisted mode and
the participants had to set a value for the ratio of time downloaded from server
versus peer-to-peer. The parameter values of task 2 and 3 were given by the task
description. To solve task 3 it was necessary to read parts of the OakStreaming
documentation. Finally, an evaluation form was filled out by the participants.

It asked the participants about their knowledge and experience in the areas
of torrent-based peer-to-peer systems, peer-to-peer systems in general, video
streaming/hosting and JavaScript. Moreover, the participants were asked to rate
the usefulness of several features that the OakStreaming library implemented
on-top of WebTorrent. Additionally, the participants had to rate the usability

4 http://y-js.org.

http://y-js.org


WebTorrent-Based Video Streaming on the Web 417

of the OakStreaming API documentation. Furthermore, the participants were
asked about their opinion regarding peer-to-peer video streaming in general.

Results. Five of the seven participants were able to solve all three tasks. Two
participants were only able to complete after short clarification. The question-
naire revealed minor issues of the arguments, like putting together URL and
port properties. While working on the tasks, several participants remarked that
the hostname and the port of a Web server should not be separate parameters.
After the evaluation the respective API was changed to a single URL property
instead, which can now handle strings in several formats (e.g. http://example.
com:42, http://example.com, example.com:42, etc.). Overall, all features of the
OakStreaming library were considered easily understandable.

We were also interested in general opinions of our developers on peer-to-
peer video streaming. Most of the participants rarely publish or share, but often
consume Web videos. They saw many important advantages of peer-to-peer video
streaming like benefits for small content providers with successful videos and
the breaking of the monopoly of large content providers in terms of intellectual
property rights. Additional remarks of the respondents covered legal issues if
possibly illegal videos are streamed between peers.

7 Discussion and Future Work

This paper presented OakStreaming, a peer-to-peer video streaming system for
the Web. The three main motivations for developing it were to reduce server
load compared to state-of-the-art client-server-based video streaming systems;
to avoid transfer of intellectual property to a third party; and to maintain a
reasonable quality level for the viewer. Since all major browser manufacturers
have implemented the W3C WebRTC or similar specifications, some commer-
cial WebRTC-based peer-to-peer video streaming systems have been developed,
while solutions by the academic community lack many desired features. We dis-
cussed the three alternative concepts synchronized look-up table, distributed
hash table and torrent tracker. Finally we implemented the WebTorrent based
peer-to-peer video streaming system called OakStreaming. Our evaluation has
shown that the peer-assisted modus representing a hybrid scenario with peer-
to-peer video delivery and a fallback server significantly reduces video playback
start-up time. Peer-to-peer video streaming functionality has been implemented
based on the content delivery functionality of the WebTorrent library. The Oak-
Streaming library extends the WebTorrent library by various means:

– configurable limit on the amount of data each peer is allowed to upload
– configurable parameter specifying when the client switches from sequential-

piece-selection to rarest-piece-selection
– dynamic combination of server and peer-to-peer streaming (peer-assisted

delivery)
– possibility to easily add new client instances to an existing peer-to-peer net-

work, without using a torrent tracker, by explicitly exchanging signaling data

http://example.com:42
http://example.com:42
http://example.com


418 I. Koren and R. Klamma

The main challenge during the implementation was that in third-party libraries,
many properties were only described implicitly in GitHub issues and not in the
official API descriptions.

The results of the technical evaluation clearly indicate that peer-assisted
delivery and automatic switching between sequential-piece-selection and rarest-
piece-selection enhance the overall Quality of Service (QoS) of the peer-to-peer
video streaming system. In the developer evaluation, the usability and the design
of the OakStreaming library were positively assessed by the participants. More-
over, the results of the questionnaire have shown that all participants agreed
that peer-to-peer video streaming will become more important in the future.
The results are helpful to set further goals regarding research in the area of
Web-based peer-to-peer video streaming. Limitations of our work include fur-
ther evaluation in larger developer groups. Privacy aspects in terms of sharing
peer information were neglected by our research.

7.1 Future Work

We are planning to embed the library in various other Web application pro-
totypes, to measure the long-term effects and behavior of the library. Today’s
Web videos are often streamed with an adaptive bitrate streaming technology,
which downloads sections of the same video in different bitrate versions depend-
ing on the network conditions of the client. The DASH (Dynamic Adaptive
Streaming over HTTP) technique is an international standard that enables adap-
tive bitrate streaming with conventional HTTP servers. Implementing adaptive
bitrate streaming within a peer-to-peer network with a satisfying viewer expe-
rience is not trivial, as respective fragments have to be available on peers. To
the best of our knowledge, there is no implementation which offers an adaptive
bitrate in a WebRTC-based peer-to-peer video streaming system. Therefore,
adding support for adaptive bitrate streaming to the OakStreaming library is a
promising aim for future research and development.

Acknowledgements. We would like to thank our student Philipp Bartels for his
contributions towards the implementation of the prototype and we are grateful for the
feedback received in our evaluation and the review. The work has received funding
from the European Commission’s FP7 IP Learning Layers under grant agreement no.
318209 and from the European Research Council under the European Union’s Horizon
2020 Programme through the project “WEKIT” (grant no. 687669).

References

1. Buyya, R., Pathan, M., Vakali, A.: Content Delivery Networks. Lecture Notes
in Electrical Engineering, vol. 9. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-77887-5

2. Cisco: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update
2014–2019 White Paper (2015)

https://doi.org/10.1007/978-3-540-77887-5
https://doi.org/10.1007/978-3-540-77887-5


WebTorrent-Based Video Streaming on the Web 419

3. Hickson, I., Bergkvist, A., Burnett, D.C., Jennings, C., Narayanan, A., Aboba, B.:
WebRTC 1.0: Real-time Communication Between Browsers: W3C Working Draft,
28 January 2016. https://www.w3.org/TR/2016/WD-webrtc-20160128/

4. Li, B., Xie, S., Qu, Y., Keung, G.Y., Lin, C., Liu, J., Zhang, X.: Inside the new
coolstreaming: principles, measurements and performance implications. In: IEEE
Conference on Computer Communications, pp. 1031–1039 (2008)

5. Meyn, A.J.: Browser to Browser Media Streaming with HTML5: Master’s Thesis.
Aalto University (2012)

6. Nogueira Barbosa, F.R., Gomes Soares, L.F.: Towards the application of WebRTC
peer-to-peer to scale live video streaming over the internet. In: Simposio Brasileiro
de Redes de Computadores (SBRC) (2014). http://sbrc2014.ufsc.br/anais/files/
wp2p/ST4-1.pdf

7. Nurminen, J.K., Meyn, A.J.R., Jalonen, E., Raivio, Y., Garcıa Marrero, R.: P2P
media streaming with HTML5 and WebRTC. In: IEEE Conference on Computer
Communications Workshops (Infocom Workshops), pp. 63–64 (2013)

8. Papagiannaki, K., Gummadi, K., Partridge, C., Zhao, M., Aditya, P., Chen, A.,
Lin, Y., Haeberlen, A., Druschel, P., Maggs, B., Wishon, B., Ponec, M.: Peer-
assisted content distribution in Akamai netsession. In: IMC 2013 Proceedings of
the 2013 Conference on Internet Measurement, pp. 31–42 (2013)

9. Rescorla, E.: Introduction to Distributed Hash Tables (2006). https://www.ietf.
org/proceedings/65/slides/plenaryt-2.pdf

10. Roverso, R., Hogqvist, M.: Hive.js: browser-based distributed caching for adaptive
video streaming. In: IEEE International Symposium on Multimedia, pp. 143–146
(2014)

11. Satyanarayanan, M., Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., Hu, W.,
Amos, B.: Edge analytics in the internet of things. IEEE Pervasive Comput. 14(2),
24–31 (2015)

12. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)

13. Sugawara, M., Choi, S.Y., Wood, D.: Ultra-high-definition television (Rec. ITU-
R BT.2020): a generational leap in the evolution of television [Standards in a
Nutshell]. IEEE Signal Process. Mag. 31(3), 170–174 (2014)

14. Wolenetz, M., Smith, J., Watson, M., Colwell, A., Bateman, A.: Media Source
Extensions: W3C Candidate Recommendation 12 November 2015. https://www.
w3.org/TR/2015/CR-media-source-20151112/

https://www.w3.org/TR/2016/WD-webrtc-20160128/
http://sbrc2014.ufsc.br/anais/files/wp2p/ST4-1.pdf
http://sbrc2014.ufsc.br/anais/files/wp2p/ST4-1.pdf
https://www.ietf.org/proceedings/65/slides/plenaryt-2.pdf
https://www.ietf.org/proceedings/65/slides/plenaryt-2.pdf
https://www.w3.org/TR/2015/CR-media-source-20151112/
https://www.w3.org/TR/2015/CR-media-source-20151112/

	Peer-to-Peer Video Streaming in HTML5 with WebTorrent
	1 Introduction
	1.1 Motivation

	2 Related Work
	2.1 Content Delivery Networks
	2.2 WebRTC-Based Prototypes

	3 Requirements for Peer-to-Peer Video Delivery
	3.1 Delivery Models
	3.2 Technology
	3.3 Requirements

	4 Conceptual Design
	4.1 Synchronized Look-Up Table
	4.2 Distributed Hash Table
	4.3 Tracking Server
	4.4 Discussion

	5 OakStreaming Peer-to-Peer Video Streaming Library
	5.1 Implementation

	6 Evaluation
	6.1 Technical Evaluation
	6.2 Developer Evaluation

	7 Discussion and Future Work
	7.1 Future Work

	References




