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Abstract. Human operators will increasingly team with autonomous systems in
military and security settings, for example, evaluation and analysis of threats.
Determining whether humans are threatening is a particular challenge to which
future autonomous systems may contribute. Optimal trust calibration is critical
for mission success, but most trust research has addressed conventional auto-
mated systems of limited intelligence. This article identifies multiple factors that
may influence trust in autonomous systems. Trust may be undermined by var-
ious sources of demand and uncertainty. These include the cognitive demands
resulting from the complexity and unpredictability of the system, “social”
demands resulting from the system’s capacity to function as a team-member,
and self-regulative demands associated with perceived threats to personal
competence. It is proposed that existing gaps in trust research may be addressed
using simulation methodologies. A simulated environment developed by the
research team is described. It represents a “town-clearing” task in which the
human operator teams with a robot that can be equipped with various sensors,
and software for intelligent analysis of sensor data. The functionality of the
simulator is illustrated, together with future research directions.
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1 Introduction

1.1 Autonomy in the Military Context

The US military will increasingly rely on autonomous systems to perform actions
currently delegated to human Warfighters, including detection of explosives, recon-
naissance and surveillance, and support of combat operations. Such systems include
robots and unmanned vehicles capable of independent situation analysis,
decision-making and action, under some level of human monitoring and control.
The US Air Force envisages autonomous systems making contributions to a range of
operations [1]; we focus here especially on intelligence, surveillance, and reconnais-
sance (ISR). One realization of the Air Force vision is the “Loyal Wingman” concept, a
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scenario involving collaboration between a manned fighter platform and one or more
Unmanned Autonomous Systems (UASs) with capabilities for locating and possibly
attacking targets without full-time human direction. Autonomy may minimize cogni-
tive load on the pilot, and protects the mission against jamming of communications
between the pilot and the UAS.

Unmanned systems are especially suitable for “dull, dirty and dangerous” missions
[2], including monitoring for threat. Consider, for example, a soldier at a vehicle
checkpoint tasked with identifying possible insurgents. Use of a robot to detect haz-
ardous materials such as explosives traces or radiation is within current capabilities.
Advancements in machine intelligence will enhance robot functionality. For example,
it might utilize infrared cameras to determine if the vehicle’s body panels had been
altered to hide contraband, a determination that requires complex inferences from
sensor data. Robots will also acquire increasing abilities to analyze human beings for
threat. Analysis of facial emotion and body posture can indicate fear and aggressive
intentions, whereas off-the-body sensors will detect physiological responses such as
autonomic arousal. For example, eye tracking methodologies show promise for
detecting insider threat behavior at a computer workstation [3]. Effective use of such
strategies requires more than advanced sensor technology. Psychophysiological
responses do not map onto human behavior and emotion in a simple one-to-one manner
[4]; they must be interpreted insightfully with some understanding of context, requiring
“intelligence” on the part of the robot. For example, the Transportation Security
Administration (TSA) has a pilot Behavior Detection and Analysis (BDA) program,
which seeks to identify suspicious passenger behaviors at airports. However, behaviors
alone may not be sufficiently diagnostic to be practically useful; analysis of the context
for the behavior may be necessary to distinguish a fearful terrorist from a person afraid
of flying.

An intelligent threat detection system would be of great value to the military and
security services, through augmenting human capabilities, relieving human personnel
of the tedious work of evaluating mostly harmless civilians, and physically removing
humans from the potential dangers of close contact with those who are far from
harmless. However, human oversight will remain critical. That is, threat detection and
neutralization will require collaborative decision making between a human and an
intelligent system. The robot or other autonomous agent must maintain and update
threat evaluations based on its own sensors, communication with other team-members,
and inference mechanisms.

1.2 The Importance of Trust

Teaming with autonomous systems places a burden of trust on the human operator [5].
Some degree of trust is essential to capitalize on the functionality of the autonomous
system, but the operator must also remain alert to possible system errors, requiring
careful calibration of trust. In the security context, human oversight is necessary to
detect threats beyond the machine’s detection capabilities, given the diversity of threats
that may occur. It is also important to reduce “false positive” threat determinations
which may waste resources and antagonize civilian populations.
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There is a large human factors literature on trust [6, 7], which increasingly refers to
human-robot interaction [8, 9]. Issues of automation misuse, disuse, and abuse [PR]
broadly apply to autonomous as to other mechanical systems. A meta-analysis of trust
in human-robot interaction [8] found that system performance characteristics including
reliability, false alarm rate, and failure rate were more strongly related to trust than
other robot attributes, or human and environmental characteristics.

Existing research provides only limited guidance for optimizing trust in autono-
mous systems operations [5]. A key issue is that enhancements in machine intelligence
will change operator perceptions of functionality in complex ways, impacting trust in
the process. On the one hand, greater intelligence will improve the machine’s capa-
bilities, enhance its ability to accommodate contextual factors, and improve its com-
munications with the human operator. Generally, these capabilities should enhance
trust. On the other hand, the downside of machine intelligence is that the bases for
analysis and decision become increasingly complex and hard to communicate, and
diagnosis of machine error is correspondingly difficult. Operators may also have faulty
assumptions about machine intelligence that interfere with trust calibration. Thus,
findings from trust research based on conventional automation may not generalize to
autonomous systems.

1.3 Current Aims and Scope

Limitations of current research suggest a need for new methodological approaches to
understanding the factors that impact operator trust in autonomous systems [5]. This
paper describes some of the factors that require investigation, and describes a novel
simulation methodology for determining how characteristics of the autonomous sys-
tem, the operating environment, and operators themselves may influence trust. The
methodology focuses on threat analysis as a specific context in which a human operator
teams with an autonomous system. Specifically, the methodology aims to simulate
interactions with an autonomous robot possessing sensors for various types of threat
stimuli, as well as the capacity to analyze sensor data intelligently.

2 Trust in Autonomous Systems: Research Challenges

2.1 Facets of Trust

Trust is a complex construct with multiple facets and determinants [6]. Furthermore, it
is a concept that comes from the social psychology of interpersonal relations, and its
generalization to trust in machines is uncertain. In human factors research on trust in
traditional automation, perceptions of competence predominate [9].

Qualities such as technical competence, reliability and understandability are readily
applicable to machines [10]. Human-human trust also depends on additional factors -
benevolence and integrity complement ability (competence) in one well-known model
[11]. Such factors imply a self-motivated agent, perceptions that are unlikely to apply
to simple automated systems, such as a vehicle cruise control. However, autonomous
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systems may be perceived as possessing a limited kind of personhood [12], implying
that human-centered models of trust may become increasingly applicable.

Emotional as well as cognitive processes are also critical for human-human trust,
which is influenced by the simple preference of liking or disliking the other person, a
preference generated automatically with little cognitive effort [13]. Emotional aspects
of trust are also shaped by longer-duration deliberative processes, e.g., a person might
initially dislike a new coworker but come to appreciate their contributions over time.
Simple automation elicits emotions associated with competence, such as frustration at
repeated failures, or contentment with satisfactory performance. However, perceptions
of machines as person-like agents open up the range of possible emotional responses,
including socially-infused emotions. The person might experience disappointment or
pride in the machine’s performance, or guilt over failing to support it effectively.

2.2 Demand Factors and Trust

The advent of machine intelligence increases the range of demands potentially expe-
rienced by the operator, with implications for trust. Generally, as interacting with the
machine becomes more demanding, trust is likely to deteriorate, as costs of machine
management become perceived as higher than benefits of the machine’s contributions to
the mission [14]. Demands and trust may also be linked reciprocally; failure to calibrate
trust optimally is likely to increase demands. Under-trust means that the human must
take on more work, unnecessarily; over-trust will eventually lead to a mission failure
due to machine error which the human must responsibility for mitigating.

Table 1. Challenges of autonomy and their performance impacts.

Challenge Examples Demands of autonomy Performance
vulnerabilities

Cognitive • Sensor malfunction
• Machine goal management error
• Cyber attack

• Additional cognitive
demand

• Attentional
overload

• Knowledge-based
errors

• Mode errors
Social • Mis-perceptions of autonomy

• Failure to support machine (human
is poor team-mate)

• Perceived lack of support
(machine perceived as poor
team-mate)

• Maintaining shared
situation awareness

• Appropriate back-up
behavior

• Function allocation

• Impaired shared
situation
awareness

• Lack of team
cohesion

• Negative attitudes
to machine

Self-
regulation

• Stress from uncertainty and
overload

• Loss of perceived self-efficacy

• Overload
• Managing feedback
from machine (explicit
or implicit)

• Diversion of
attention

• Disruption of
executive control

344 G. Matthews et al.



Table 1 lists multiple sources of demand characteristic of interactions with
autonomy [14]. The greater complexity of autonomous systems relative to traditional
automation may impose higher demands on the operator. They may also increase
operator uncertainty; for example, fault diagnosis becomes more difficult if it is unclear
whether the fault is in a sensor or in the machine software. Demands may also be
exacerbated by uncertainty over the machine’ intentions [8]; in the military context, the
operator might wonder whether unusual behavior was the result of the machine being
hacked by a cyber-adversary. High cognitive demands and uncertainty may influence
trust via the operator’s assessment of machine competence; a machine that behaves
unpredictably may not be deemed trustworthy.

Increasing autonomy also raises the scope for “social” interaction, as the machine
graduates from tool to team-mate [15]. Team operations require not only coordination
of actions to accomplish mission goals, but also teamwork behavior such as mutual
performance monitoring, providing back-up, and leadership [16]. Lack of trust impairs
teamwork, potentially leading to issues such as breakdown of a shared situational
awareness and cohesion in performance [17]. Conversely, perceptions of poor team-
work by the machine – for example, if it fails to back-up the human as anticipated - will
damage trust. Finally, interacting with an autonomous system may increase
self-regulative demands, as the human is forced to evaluate their own competence as an
operator. Increased cognitive and social complexity may make it difficult for the human
to gauge if he or she is actually performing competently, potentially causing stress
which may disrupt information-processing [14]. An officer commanding troops
understands the importance of effective leadership – but what constitutes leadership of
a team of autonomous systems? In some cases, the system may have the capacity to
adapt its behavior according to its evaluation of the human’s capabilities, i.e., adaptive
automation [18]. The downside of this facet of machine intelligence is that the human
may feel denigrated if the machine’s actions signal that it perceives the human as
incompetent.

3 Drivers of Trust in Autonomous Systems for Threat
Analysis

Trust in autonomous systems may be influenced by novel demand factors, in addition
to established drivers of trust associated with machine performance and reliability [9].
Salient demand factors will be somewhat context-dependent, varying with the func-
tionality of the specific autonomous system, and the operational challenges faced by the
human-system team. We discuss the factors that may be important in the threat
detection and analysis context, which define research priorities.

3.1 System Characteristics

Simple devices for threat detection include sensors for radiation or toxic chemicals.
Future systems will add to these capabilities in various ways including novel sensors
such as lidar-based detection of threats in 3-D space. They will also include sensors to
detect psychologically relevant human responses such as facial emotions and
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autonomic arousal, coupled with software that can distinguish, for example, harmless
expressions of frustration from purposeful aggression. Human operators may find it
hard to trust advanced and/or unfamiliar detection and analysis capabilities. It may be
especially hard to trust a machine that makes psychological judgments.

Future autonomous systems will also differ from conventional automation in regard
to communication abilities. Current systems provide essentially a passive read-out of
information, and the human must gauge its credibility and whether it is actionable.
Autonomous systems will be able to also deliver confidence ratings, background
information and transparency messages [19] that illuminate the reasons for its analysis,
potentially increasing cognitive demands. Future systems may also have action capa-
bilities, potentially including autonomous search for possible threats, calling for human
or machine back-up to deal with a threat, or in some cases direct actions such as bomb
disarming. Such capabilities will increase “social” needs for effective teaming and
appropriate trust calibration.

3.2 Environmental Characteristics

Threat detection in military and security contexts takes place in a variety of operating
environments, differing in the challenges that they pose. In some cases, the environ-
ment may be generally safe, and threats rare, such as scanning people attending a sports
event for traces of explosives. In other settings, the ability of the machine to improve
over human threat detection may be critical. In the military context, threats may be hard
to identify, due to the increasingly asymmetric nature of combat; for example, insur-
gents seek to blend in with civilians and change tactics frequently. Future threat
identification will increasingly require information fusion [20], i.e., analysis of multiple
cues provided by different information sources, often under time pressure. For example,
the machine might analyze immediate emotional cues along with information about a
suspect’s social media postings, credit card purchases, and phone records. Multiple cue
integration, perhaps including “big data” methods, may threaten transparency, even if
such functionality is included; it may not be feasible to explain the machine’s analysis
to the human, placing a particular burden on trust.

3.3 Operator Characteristics

Human operators differ considerably in terms of the personal characteristics they bring
to autonomous system interactions, such as level of understanding of information
technology. Inexperienced operators may be vulnerable to misleading depictions of
artificial intelligence in popular media. Various psychological factors associated with
propensity to trust humans have been identified, but the extent to which they generalize
to trusting autonomous systems is unclear, especially as the social behaviors that
influence trust may be interpreted differently when executed by an artificial system.

Operator characteristics can be represented as mental models, in this context, the
person’s internal representation of the machine’s capabilities and limitations [15]. In fact,
two types of mental model are relevant. First, people will have pre-existing mental
models of what artificial system capabilities. Barriers to trust include beliefs that
machines cannot interpret human behaviors, or that machines cannot be relied upon as
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team-mates. Second, people will have a more narrowly focused model of
machine-functioning in the context of the current mission’s goals [17]. Training should
accomplish realism in the mental model, but representations may nevertheless be biased
by pre-existing conceptions of machine intelligence and by other characteristics such as
personality. For example, in a UAS study, highly conscientious individuals appeared to
prefer their own agency to reliance on automation under high demands [21].

3.4 Research Implications

We have identified multiple factors that may impact the operator’s trust in an auton-
omous threat detection system, such as a robot or UAS. From previous research [8, 9]
we can anticipate that factors such as perceived competence of the machine will impact
trust, but system autonomy raises novel issues. Will the operator trust the machine’s
ability to infer threat from complex data sources, including psychophysiological data?
Will the operator trust the machine to interpret threats emanating from challenging
operational environments, such as insurgents actively aiming to disguise their inten-
tions? Will the operator’s trust be swayed by personal characteristics, such as
pre-existing beliefs about intelligent machines, attitudes to technology, and knowledge
of information technology?

The questions just framed point primarily to the role of cognitive demands in
shaping trust, i.e., whether the operator can effectively cope with the increased com-
plexity of working with an intelligent machine. However, in extended interaction
scenarios, social and self-regulative demands may also factor into trust. Operators must
determine the extent to which they will treat the machine as a team-mate capable of
autonomous action, and the extent to which they trust their own judgment in managing
the machine. Research on complex, realistic threat-detection scenarios may be neces-
sary to answer such questions. Next, we describe a simulation platform that will be
used in our research.

4 Simulation Use and Current Methodology

4.1 Unreal Engine for Research

Video game platforms are a favored tool for training purposes due to their versatility,
elevating them to the status of “Serious games.” [22]. Anecdotally, many military
members report playing video games, supporting efforts to enhance training delivered
through serious games. Younger Soldiers have greater gaming experience than older
ones [23], so that gaming exposure is likely to increase in the future. The stimulating
design of these systems may be naturally motivating for individuals [23] who regularly
play video games. Serious games allow for the delivery of complex, situation-based
information for the purpose of training due to the ability to program many environ-
ments and scenarios with multiple users. Using these features of serious games,
researchers can examine decision-making, performance and subjective response in
more realistic environments than traditional laboratory settings.
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Gaming environments can be easily programmed for simulation of different com-
plicated tasks from simple flight to dynamic exploration of a simulated environment.
Unity and Unreal Engine 4 (UE4), by Epic Games, are popular game engines. The
current study made use of UE4 due to its availability and ease of use. UE4 is a free
downloadable gaming environment that is easily customizable. Objects for scenes can
be purchased online and altered within the studio. Agents for simulation can be made in
3D modeling software such as make human (www.makehuman.org) or blender (www.
blender.org) with animations created in software such as Mixamo (www.mixamo.com).
Additionally, agents can be scanned into the designed environment and animated with
commercial off-the-shelf software [24].

Scripting of levels can be done within UE4’s editor using a node-based system
called Blueprint shown in Fig. 1. Additionally, programming can be supplemented or
done entirely using C++ and there is an abundance of tutorials for use of UE4 on
YouTube and at the UE4 website (https://docs.unrealengine.com). The UE4 editor
allows for programing of elements such as game rules, conditions, camera perspective,
player control, weapon system controls, trigger events, and randomized or procedurally-
generated props within the game [22]. Sound can also be added for atmosphere.

4.2 Design of the Task

The current task was designed as a “town-clearing” task where a participant plays the
role of a Soldier patrolling a small city with a robot partner to determine if threat
activity is present. Participants are told that they are clearing a path through the town
for a SWAT team to travel and must ensure that the areas along this path are safe. The
robotic partner is armed with multiple sensors which it uses to make its own deter-
mination of the area’s potential for threat. The type of cue used by the robot is
manipulated. In one condition, the robot makes its judgement of the scene (see Fig. 2)
using physical cues in the environment, such as a potential fire threat based off of

Fig. 1. Picture of UE4’s node-scripting system.
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thermal readings. In another condition, the robot partner makes a psychological
inference from sensor readings, such as using thermal cameras to determine suspicious
stress response in agents in the scene.

Scene threat is manipulated to be low, medium, or high based on the number of
suspicious objects, individuals and their qualities, and the condition of the buildings in
the area. In low threat scenes buildings are new, one suspicious object is planted in the
scene, and 1 out of 3 individuals seem angry. In medium threat scenes, buildings are
slightly rundown and painted in the modeling software to appear dirty but without
disrepair (no boarded or broken windows). There are also 2 suspicious objects such as a
discarded duffle bag or package and 1 or 2 individuals appear upset and have angry or
violent gestures. In the high threat scenes, the buildings appear in disrepair with broken
or boarded windows and entrances or windows. Suspicious objects are higher in
number. These include fire or smoke in the scene, and old package or random canisters
next to each other (to hint at the possibility of explosives). Individuals in the high threat
scenes appear ready to fight or riot; more individuals exhibit angry gesturing motions.
Agents are carefully modeled to remove any social biases which may influence threat
cues. There is an even representation of light, medium and dark complexion agents.
Additionally, age is controlled in each complexion type so that an even number of
individuals under and over 40 is drawn.

The robot is quite reliable so its evaluations are generally congruent with the scene.
Cases where the robot’s evaluation is discrepant may be especially important for
assessing trust, and the person’s willingness to trust the robot over their own senses.

After viewing the scene and robot evaluation, the participant uses Likert scales to
answer various questions indicative of trust, beginning with an overall evaluation of
threat (Fig. 3). Participants then rate the extent to which the robot’s assessment is
psychological in nature (Fig. 4). This rating tests if participants discriminate between

“I indicate possession of unknown metal ob-
jects. Metal objects match outline of weapons.  

My assessment of the scene is threat.

Fig. 2. Example of scene and robot judgement using physical sensor information.
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the qualitatively different types of threat assessment that the robot makes, which may
impact trust. Participants also rate their confidence in their robotic partner’s judgement,
and in its action recommendations. That is, there are two ratings of trust to test whether
people are inclined to trust robot situation analysis more than choice of action. In
further instantiations, the robot will in fact take autonomous action. Bias may be
evident in any of these ratings.

Initial studies will evaluate the extent to which trust in the robot is impacted by
level of perceived threat, as well as the nature of the threat cue, i.e., whether analysis of
sensor data identifies a physical or psychological threat. The role of individual dif-
ference factors related to the person’s mental model for robot capabilities will also be
assessed. Subsequently, the simulation will be utilized to explore trust in more com-
plex, dynamic scenarios in which the robot has increased scope for acting
autonomously.

5 Simulation Use - Future Directions and Challenges

The simulation methodology outlined in the previous section is intended to provide a
platform for multiple studies that can address different aspects of trust in autonomous
systems. In outline, specific research issues include the following:

• Cognitive factors. In addition to manipulating the reliability of the robot, studies
may manipulate specific sources of cognitive demand on the operator, such as
sensor and software failures, or a suspected cyber attack.

• Social factors. With more complex scenarios, the teaming aspects of autonomy may
be brought to the fore. For example, the human and robot might be called upon to

Fig. 3. Participant threat evaluation screen.
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evaluate threat in different scenes, and communicate with one another to maintain
shared situation awareness.

• Self-regulative factors. Scenarios can be developed in which the mission ultimately
fails, either due to human or robot error. Attribution of blame, and the extent to
which the human assumes responsibility for robot errors can be investigated.

• Dynamic scenarios. The simulator is currently configured to have the participant
evaluate a series of independent scenes, but it might also be programmed to support
an ongoing narrative in which a mission unfolds over time. Dynamic scenarios may
be used to investigate factors influencing trust repair following a robot failure.

• Mitigating factors. It is likely that research can identify a variety of contexts in
which trust in the robot is mis-calibrated, whether too high or too low. Further
studies can investigate how to mitigate suboptimal trust. One focus is training, and
how to optimize acquisition of a realistic mental model of robot capabilities.
Another focus is robot design to elicit appropriate trust. Design features include the
appearance of the robot, including the extent of anthromorphism, and the extent to
which it provides transparency into the sources of its evaluations. Effective robot
communication is also a focus for design efforts. For example, synthetic speech and
displays of human-like emotion might support effective trust calibration.

Efforts to understand trust in the context of human interaction with autonomous
systems are in their infancy. Systematic empirical work is necessary to determine the
main influences on trust, beyond system competence and performance. Various chal-
lenges remain, including generalization of results from simulated to real environments.
The role of contextual factors remains to be explored; can findings in the threat analysis
scenario be generalized to other types of human-robot teamingmission? Results may also
generalize to civilian contexts for autonomous systems including healthcare and manu-
facturing and service industries. Possible moderator effects of operator characteristics

Fig. 4. Participant ratings of type of judgment and trust in robot’s threat evaluation and action
recommendation.
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such as gender, cultural background, computer knowledge, and motivation remain to be
explored. However, the increasing functionality and immersiveness of simulated envi-
ronments provides a methodology for sustained research on trust and autonomy.
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