Skip to main content

Electrochemical Performance of Prussian Blue and Analogues in Aqueous Rechargeable Batteries

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Aqueous batteries offer lower cost compared to non-aqueous batteries and higher ionic mobility, thus potentially higher power, which are the driving forces for their commercialization. On the other hand, water-based electrolytes present a more limited voltage stability window (ca. 1.23 V) than organic electrolytes, what translates into storing lower energy densities than non-aqueous batteries. However, as we will see, there are several ways to enlarge this voltage window, such as modifying the salt chosen and its concentration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V.D. Neff, J. Electrochem. Soc. 125, 886–887 (1978)

    Article  Google Scholar 

  2. K. Itaya, I. Uchida, Inorg. Chem. 25, 389–392 (1986)

    Article  Google Scholar 

  3. K. Itaya, H. Akahoshi, S. Toshima, J. Electrochem. Soc. 129, 1498–1500 (1982)

    Article  Google Scholar 

  4. K. Itaya, H. Akahoshi, S. Toshima, J. App. Phys. 53, 804–805 (1982)

    Article  Google Scholar 

  5. K. Itaya, I. Uchida, V.D. Neff, Acc. Chem. Res. 19, 162–168 (1986)

    Article  Google Scholar 

  6. K. Itaya, T. Ataka, S. Toshima, J. Am. Chem. Soc. 104, 4767 (1982)

    Article  Google Scholar 

  7. K. Itaya, I. Uchida, Inorg. Chem. 25, 389–392 (1986)

    Article  Google Scholar 

  8. D. Ellis, M. Eckhoff, V.D. Neff, J. Phys. Chem. 85, 1225–1231 (1981)

    Article  Google Scholar 

  9. J.W. McCargar, V.D. Neff, J. Phys. Chem. 92, 3598–3604 (1988)

    Article  Google Scholar 

  10. A. Karyakin, Electroanalysis 13, 10 (2001)

    Article  Google Scholar 

  11. A.L. Crumbliss, P.S. Lugg, J.W. Childers, R.A. Palmer, J. Phys. Chem. 89, 482–488 (1985)

    Article  Google Scholar 

  12. S.M. Chen, J. Electroanal. Chem. 521, 29–52 (2002)

    Article  Google Scholar 

  13. A. Bocarsly, S Sinha J. Electroanal. Chem. 140, 167–172 (1982)

    Article  Google Scholar 

  14. F. Scholz, A. Dostal, Angew. Chem. Int. Ed. 34, 2685–2687 (1995)

    Article  Google Scholar 

  15. M. Pasta, R.Y. Wang, R. Ruffo, R. Qiao, H.W. Lee, B. Shyam, M. Guo, Y. Wang, L.A. Wray, W. Yang, M.F. Toney, Y. Cui, J. Mater. Chem. A 4, 4211–4223 (2016)

    Article  Google Scholar 

  16. R.D. Shannon, Acta Cryst A32, 751–767 (1976)

    Article  Google Scholar 

  17. C.D. Wessells, M.T. McDowell, S.V. Peddada, M. Pasta, R.A. Huggins, Y. Cui, ACS Nano 6, 1688–1694 (2012)

    Article  Google Scholar 

  18. K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mat. Res. Bull. 15, 783–789 (1980)

    Article  Google Scholar 

  19. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemon, J. Liu, Chem. Rev. 111, 3577–3613 (2011)

    Article  Google Scholar 

  20. C.D. Wessells, R.A. Huggins, Y. Cui, Nat. Commun. 2, 550 (2011)

    Article  Google Scholar 

  21. H. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, M. Kamimoto, Echem. Acta 36, 1191–1196 (1991)

    Google Scholar 

  22. S. Roe, C. Menictas, M. Skyllas-Lazaos, J. Electrochem. Soc. 164(1), A5023–A5028 (2016)

    Google Scholar 

  23. P. Padigi, J. Thiebes, M. Swan, G. Goncher, D. Evans, R. Solanki, Echem. Acta 166, 32–39 (2015)

    Google Scholar 

  24. X. Wu, Y. Luo, M. Sun, J. Quian, Y. Cao, X. Ai, H. Yang, Nano Energy 13, 117–123 (2015)

    Article  Google Scholar 

  25. D. Su, A. McDonagh, S.-Z. Qiao, G. Wang, Adv. Mater. 29, 1604007 (2017)

    Article  Google Scholar 

  26. X. Wu, M. Sun, S. Guo, J. Qian, Y. Liu, Y. Cao, X. Ai, H. Yang, ChemNanoMat. 1, 188–193 (2015)

    Article  Google Scholar 

  27. C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nano Lett. 11, 5421–5425 (2011)

    Article  Google Scholar 

  28. C.D. Wessells, S.V. Peddada, M.T. McDowell, R.A. Huggins, Y. Cui, J. Electrochem. Soc. 159, A98–A103 (2012)

    Article  Google Scholar 

  29. Y. Mizuno, M. Okubo, E. Hoson, T. Hudo, H. Zhou, K. Oh-ishi, J. Phys. Chem. C 117, 10877–10882 (2013)

    Article  Google Scholar 

  30. D.A. Sverjensky, Geochim. Cosmochim. Acta 65, 3643–3655 (2001)

    Article  Google Scholar 

  31. L.M. Siperko, T. Kuwana, J. Echem. Soc. 130, 396–402 (1983)

    Google Scholar 

  32. J.J. García-Jareño, A. Sanmatías, F. Vicente, C. Gabrielli, M. Keddam, H. Perrot, Echem. Acta 45, 3765–3776 (2000)

    Google Scholar 

  33. A.J. Fernandez-Ropero, M.J. Piernas-Muñoz, E. Castillo-Martínez, T. Rojo, M. Casas-Cabanas, Echem. Acta 210, 352–357 (2016)

    Google Scholar 

  34. A. Dostal, G. Kauschka, S.J. Reddy, F. Scholz, J. Electroanal. Chem. 406, 155–163 (1996)

    Article  Google Scholar 

  35. Y. You, X.-L. Wu, Y.-X. Yin, Y. Guo-Guo, Energy Environ. Sci. 7, 1643–1647 (2014)

    Article  Google Scholar 

  36. L. Zhou, Z. Yang, C. Li, B. Chen, Y. Wang, L. Fu, Y. Zhu, X. Liu, Y. Wu, RSC Adv. 6, 109340 (2016)

    Article  Google Scholar 

  37. Y. Mizuno, M. Okubo, E. Hoson, T. Kudo, K. Oh-ishi, A. Okazawa, N. Kojima, R. Kurono, S.-I. Nishimura, A. Yamada, J. Mat. Chem. A 1, 13055–13059 (2013)

    Article  Google Scholar 

  38. R.Y. Wang, C.D. Wessells, R.A. Huggins, Y. Cui, Nano Lett. 13, 5748–5752 (2013)

    Article  Google Scholar 

  39. C.H. Lee, S.-K. Jeong, Chem. Lett. 45, 1447–1449 (2016)

    Article  Google Scholar 

  40. R.Y. Wang, B. Shyam, K.H. Stone, J.N. Weker, M. Pasta, H.-W. Lee, M.F. Toney, Y. Cui, Adv. Energy Mat. 3, 1401869 (2015)

    Article  Google Scholar 

  41. L. Zhang, L. Chen, X. Zhou, Z. Liu, Adv. Energy Mat. 2, 1400930 (2014)

    Google Scholar 

  42. L. Zhang, L. Chen, X. Zhou, Z. Liu, Sci. Rep. 3, 18263 (2015)

    Google Scholar 

  43. R. Trocoli, F. La Mantia. ChemSusChem 8, 481–485

    Google Scholar 

  44. G. Kasiri, R. Trocoli, A.B. Hashemi, F. La Mantia, Echem. Acta 222, 74–83 (2016)

    Google Scholar 

  45. V. Renman, D.O. Ojwang, M. Valvo, C.P. Gómez, T. Gustafsson, G. Svensson, J. Power Sources 369, 146–153 (2017)

    Article  Google Scholar 

  46. S. Liu, G.L. Pan, G.R. Li, X.P. Gao, J. Mater. Chem. A 3, 959–962 (2015)

    Article  Google Scholar 

  47. V.D. Neff, J. Electrochem. Soc. 132, 1382–1384 (1985)

    Article  Google Scholar 

  48. E.W. Grabner, S. Kalwellis-Mohn, J. Appl. Electrochem. 17(3), 653–656 (1987)

    Article  Google Scholar 

  49. M. Jayalakshmi, F. Scholz, J. Power Sources 91, 217–223 (2000)

    Article  Google Scholar 

  50. M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, Nat. Commun. 3, 1149 (2012)

    Article  Google Scholar 

  51. X. Wu, Y. Cao, X. Ai, J. Quian, H. Yang, Electrochem. Commun. 31, 145–148 (2013)

    Article  Google Scholar 

  52. M. Pasta, C.D. Wessells, N. Liu, J. Nelson, M.T. McDowell, R.A. Huggins, M.F. Toney, Y. Cui, Nat. Commun. 5, 3007 (2014)

    Article  Google Scholar 

  53. D.J. Kim, Y.H. Jung, K.K. Bharathi, S.H. Je, D.K. Kim, A. Coskun, J.W. Choi, Adv. Energy Mater. 4, 1400133 (2014)

    Article  Google Scholar 

  54. L. Chen, J. L. Bao, X. Dong, D. G. Truhlar, Y. -Wang, C. Wang, Y. Xia. ACS Energy Lett. 2, 1115–1121 (2017)

    Article  Google Scholar 

  55. R.S. Treptow, The lead-acid battery: its voltage in theory and practice. J. Chem. Educ. 79(3), 334–338 (2002)

    Article  Google Scholar 

  56. Q. Gao, L. Demarconnay, E. Raymundo-Piñero, F. Beguin, Energy Environ. Sci. 5, 9611–9617 (2012)

    Article  Google Scholar 

  57. L.-P. Wang, P.-F. Wang, T.-S. Wang, Y.-X. Yin, Y.-G. Guo, C.-R. Wang, J. Power Sources 335, 18–22 (2017)

    Article  Google Scholar 

  58. L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science 350, 938 (2015)

    Article  Google Scholar 

  59. Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang, Y. Qian, J. Mat. Chem. A 5, 730–73 (2017)

    Google Scholar 

  60. Z. Liu, P. Bertram, F. Endres, J. Solid State Electrochem. 21, 2021–2027 (2017)

    Article  Google Scholar 

  61. T. Gupta, A. Kim, S. Phadke, S. Biswas, T. Luong, B.J. Hertzberg, M. Chamoun, K. Evans-Lutterodt, D.A. Steingart, J. Power Sources 305, 22–29 (2016)

    Article  Google Scholar 

  62. https://natron.energy/ last accessed on Feb 2018

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piernas Muñoz, M., Castillo Martínez, E. (2018). Electrochemical Performance of Prussian Blue and Analogues in Aqueous Rechargeable Batteries. In: Prussian Blue Based Batteries. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-91488-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91488-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91487-9

  • Online ISBN: 978-3-319-91488-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics