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Chapter 4
RNAi for Resistance Against Biotic Stresses 
in Crop Plants

Pradeep Kumar Jain, Ramcharan Bhattacharya, Deshika Kohli, 
Raghavendra Aminedi, and Pawan Kumar Agrawal

Abstract RNA interference (RNAi)-based gene silencing has become one of the 
most successful strategies in not only identifying gene function but also in improv-
ing agronomical traits of crops by silencing genes of different pathogens/pests and 
also plant genes for improvement of desired trait. The conserved nature of RNAi 
pathway across different organisms increases its applicability in various basic and 
applied fields. Here we attempt to summarize the knowledge generated on the fun-
damental mechanisms of RNAi over the years, with emphasis on insects and plant- 
parasitic nematodes (PPNs). This chapter also reviews the rich history of RNAi 
research, gene regulation by small RNAs across different organisms, and applica-
tion potential of RNAi for generating transgenic plants resistant to major pests. But, 
there are some limitations too which restrict wider applications of this technology 
to its full potential. Further refinement of this technology in terms of resolving these 
shortcomings constitutes one of the thrust areas in present RNAi research. 
Nevertheless, its application especially in breeding agricultural crops resistant 
against biotic stresses will certainly offer the possible solutions for some of the 
breeding objectives which are otherwise unattainable.

Keywords RNA interference · RNAi · Biotic stresses · Insect resistance · Disease 
resistance

4.1  Introduction

RNA interference (RNAi) is an invaluable technology for unraveling gene function 
in the area of functional genomics. It has been utilized in basic research ranging 
from functional studies to gene knockdown in plants and vertebrates and to suppres-
sion of cancer and viral diseases in medicine. Moreover, from application point of 
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view, it is being used extensively for trait modification by selective inhibition of 
gene expression universally across the organisms. In agriculture, RNAi has been 
extensively employed particularly for imparting resistance against biotic stresses 
including insects, bacteria, nematodes, fungal infection, and viruses (Tan and Yin 
2004; Yanagihara et al. 2006; Good and Stach 2011; Banerjee et al. 2017; Majumdar 
et al. 2017; Zhang et al. 2017). This chapter focuses on how RNAi has been exten-
sively used in managing various biotic stresses which constitute serious impedi-
ments to crop productivity. Damage due to insects, fungus, parasitic weeds, and 
plant-parasitic nematodes is a major biotic constraint causing significant yield 
losses in agriculture year-round.

4.2  History of RNAi

The basic concept involves a double-stranded RNA (dsRNA) molecule which 
potentially silences the gene with complementary sequences post-transcriptionally. 
RNAi phenomenon was first discovered in a free-living nematode, Caenorhabditis 
elegans (Fire et al. 1998). They coined the term “RNAi” for describing effective 
silencing of gene expression by exogenously supplied sense and antisense RNAs in 
the model nematode, Caenorhabditis elegans. This phenomenon, conserved among 
eukaryotes, was described as post-transcriptional gene silencing (PTGS) (Carthew 
and Sontheimer 2009; Berezikov 2011). Historically the roots of this exciting devel-
opment can be traced back to 1990 when chsA gene was overexpressed in trans-
genic petunia plants and the silencing of endogenous as well as transgene of 
chalcone synthase in the transgenic plants was observed (Napoli et al. 1990). Loss 
of endogenous as well as transgene-derived mRNAs was described as co-suppres-
sion, a term formulated by Napoli. Soon, importance of this technology was well 
understood by the scientific community, and since then, phenomenal growth in this 
technology has taken place. In fungi, this mechanism of PTGS is known as quelling 
(Agrawal et al. 2003). In nature, viruses mediate PTGS in plants, and the effect is 
amplified in cytoplasm or in the nucleus.

4.3  Biogenesis and Mechanism of RNAi Pathway

The major small noncoding RNAs (ncRNAs) include microRNAs (miRNAs), small 
interfering RNAs (siRNAs), and PIWI-interacting RNAs (piRNAs) which are all 
involved in downregulation of gene expression (Aalto and Pasquinelli 2012). Each 
class of small RNA is unique in its biogenesis and mechanism of action, but there 
are a few similarities too. Both miRNAs and siRNAs are processed from larger 
dsRNAs through cleavage by Dicer (a ribonuclease III enzyme). Both are associated 
with Argonaute proteins (AGO) (Ketting 2011) forming RNA-induced silencing 
complex (RISC). RISC basically is an Argonaute protein bound to a single strand of 

P. K. Jain et al.



69

noncoding RNA. Varied ribonucleoprotein complexes arise due to several ncRNAs 
and Argonautes involved in formation of RISC (Darrington et al. 2017).

The RNAi-mediated gene silencing occurs basically in three stages (Siomi and 
Siomi 2009). First one involves processing of long dsRNA into small dsRNA by 
ribonuclease III; in the second stage, unwinding of these small RNAs leads to for-
mation of one guide strand, which is loaded into the RISC, whereas the other strand 
known as passenger strand gets degraded. Finally, the RISC, directed by the guide 
strand, locates mRNAs containing sequences complementary to the guide, binds to 
these sequences, and either degrades the mRNA or blocks its translation (Winter 
et al. 2009). The mechanism of RNAi is emerging with all its complexity, but with 
clarity, as more and more players involved in the interference are getting identified 
and characterized.

The involvement of siRNA molecules as important intermediates of the RNAi 
process became evident through independent investigations carried out by research-
ers around the world. The first report of accumulation of siRNAs was confirmed by 
Hamilton and Baulcombe (1999) while studying tomato lines transformed with 
1-aminocyclopropane-1-carboxyl oxidase (ACO) and later in Drosophila syncytial 
blastoderm embryo (Tuschl et al. 1999). Two other independent studies experimen-
tally exhibited the 21–23 nucleotide small RNAs as intermediates for degradation of 
mRNA (Zamore et al. 2000; Elbashir et al. 2001). But how these small RNA mole-
cules are excised from their precursor was yet to be discovered. As the role of RNase 
III enzymes had been recognized as dsRNA nucleases already, the RNase III 
domain-containing proteins were searched as one of the factors in siRNA biogene-
sis. Recently only, different experimental studies revealed the involvement of RNA- 
processing enzymes in chopping off the dsRNAs into siRNA molecules. One of the 
crucial enzymes, Dicer, was identified in Drosophila, by browsing its genome for 
the proteins dedicated for functioning like RNase III endonuclease activity 
(Bernstein et al. 2001). In another study, Dicer protein in C. elegans (a bidentate 
nuclease) was characterized revealing its functional role in small RNA regulatory 
pathways (Ketting et al. 2001). It was also deduced to be the ortholog of Drosophila 
DCR-1 protein. Ketting et al. (2001) in this study also showed the requirement of 
ATP for regulating the rate of siRNA synthesis. In yet another experiment reduction 
in ATP levels by 5000-fold in Drosophila revealed a decrease in the rate of siRNA 
production (Nykanen et al. 2001). It is now believed that Dicer acts as a complex of 
proteins with domains for dsRNA binding at its C terminus which are separable 
from motifs like helicase and PAZ. It was experimentally found to co-localize with 
an endoplasmic reticulum protein, calreticulin (Caudy et al. 2002). However, the 
role of ATP in the biogenesis of siRNA is abstruse due to its varied functions among 
different Dicer proteins in different organisms. An imperative involvement of 
ATPase in siRNA production was exhibited by Drosophila Dicer-2 and C. ele-
gans  Dcr-1 (Tomari and Zamore 2005) in contrast to human Dicer wherein an 
ATPase-defective mutant showed regular processing (Carthew and Sontheimer 
2009). A comprehensive biochemical, molecular, genetic, and structural study 
revealed the presence of two main domains, namely, PAZ and RNaseIII, performing 
a crucial role in excising the siRNAs (Zhang et al. 2004; Macrae et al. 2006).
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Once Dicer cuts off the dsRNA, synthesized siRNAs then enter the RISC com-
plex. The double-stranded siRNAs act as a template for the RISC to recognize the 
complementary mRNA aided by Argonaute proteins. Agronaute proteins are 
required for the RISC assembly and have been biochemically characterized in 
Drosophila. Amplification of siRNAs has been reported in nematodes, fungus, 
plants and amoeba (Dykxhoorn et  al. 2003). RNA-dependent RNA polymerase 
(RdRP) is proposed to be involved in augmenting the siRNA molecules on the basis 
of biochemical studies (Lipardi et al. 2001; Sijen et al. 2001). Sijen demonstrated 
the fundamental role of rrf1 gene having sequence homology to RdRP for the pro-
duction of secondary siRNAs in C. elegans. In this study, the concept of transitive 
RNAi pathway induced by secondary siRNAs came into the picture. Thus, catalytic 
nature of RNAi was proposed.

4.4  RNAi in Insect Resistance

The direct loss in crop productivity due to damage by insect pest and the input-cost 
accrued in agrochemical based protection amount to billions of dollars every year 
worldwide. In spite of alarming environmental hazard directly due to residual toxic-
ity of insecticides in food chain, the consumption of insecticides has been ever 
incremental. This is primarily due to resistance development in insect-pest popula-
tion and lack of awareness among the farming community. The worldwide con-
sumption of insecticide increases by almost 30% in every 4 years. Therefore, 
insect-pest management, preferably through an integrative approach and without 
indiscriminate use of insecticide, has become a most sought-after area in research 
planning worldwide. Millions of dollars were granted for researching on sustainable 
and low-cost alternate avenues of pest control strategies in five most important agri-
cultural crops. Development of resistant cultivars in crops seems to be the most 
acclaimed alternative for minimizing the application of insecticides. Unfortunately, 
for most of the major crop- insect damage, either such resistant cultivars are not 
available or the resistance has been broken down. Further insight into such exam-
ples reveals that lack of resistance source maneuverable either through classical 
breeding or through transgenesis has been the major constraint.

Accessing unrelated gene pool through development of transgenics has emerged 
as the most potential avenue for overcoming this bottleneck. Success of Bacillus 
thuringiensis (Bt) toxin-mediated protection of a large number of crops has been 
celebrated widely and in fact demonstrated for the first time the potential of biotech-
nological means in developing genetic resistance. However, applicability of 
Bt-mediated protection is limited as many of the insect pests are not affected by Bt 
toxin, and also this technology has faced second-generation challenge of some 
major insect species developing resistance to Bt (Tabashnik 2008; Tabashnik et al. 
2008). It has been realized that lack of useful insecticidal transgenes is the major 
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limitation in transgenic-based engineering of genetic resistance. In contrary, through 
RNAi, any important gene can be precisely targeted to elicit lethality in the insect 
species. Use of RNAi has rapidly progressed for gene function analysis in various 
insect orders, including Diptera (Lum et al. 2003; Dietzl et al. 2007), Lepidoptera 
(Tian et al. 2009; Terenius et al. 2011), Coleoptera (Baum et al. 2007; Zhu et al. 
2011; Bolognesi et al. 2012), and Hymenoptera (Nunes and Simoes 2009; Meer and 
Choi 2013; Zhao and Chen 2013).

4.5  RNAi Pathway in Insects

Like in plants, RNAi is primarily involved in antiviral defense mechanisms of 
insects as a part of its innate immunity. However, a number of studies indicate sev-
eral branches of RNAi involved in endogenous gene regulation in addition to silenc-
ing of genetic elements of pathogen invaders and transposons (Van Rij and Berezikov 
2009). Gene silencing through RNAi is systemic and transitive as originally 
described in C. elegans. A host-derived RNA-dependent RNA polymerase (RdRp) 
amplifies the RNAi post-elicitation by dsRNA. In contrast to nematodes, in insects, 
there is no definite proof of the presence of RdRp. In the absence of RdRp-mediated 
amplification of dsRNA in insects, the silencing is expected to be more localized. 
Therefore, elicitation of an effective silencing will require delivery of the dsRNA 
directly to the target cells and tissues in a continuous manner. The administered 
dsRNA enters the insect cells via siRNA pathway in which a complex consisting of 
the RNAase III enzyme (Dicer-2) and TRBP cuts the dsRNA into small 21–23 
bpsiRNAs. The RISC bound to AGO recognizes the guide strands of the siRNAs. 
This complex then binds to complementary sequences of target RNAs which are 
eventually degraded.

Two types of RNAi pathway are known to occur in insects: cell-autonomous and 
non-cell-autonomous RNAi. Cell-autonomous RNAi is limited to the cells in which 
the dsRNA is administered or delivered. In contrary, when the silencing occurs in 
cells different from the cells delivered with or producing the dsRNA, it is called 
non-cell-autonomous RNAi. Depending on how the dsRNA is acquired by the cell, 
non-cell-autonomous RNAi can be grouped in two kinds: environmental RNAi and 
systemic RNAi. In environmental RNAi, dsRNA is absorbed by a cell from the sur-
rounding environment. Therefore, this is seen in unicellular organisms or any cell 
lines when administered with dsRNA. Environmental RNAi does not necessarily 
result into systemic spread of the response. In multicellular organisms, silencing 
signal is transported from one cell to another by systemic RNAi.

In case of transgenic host-mediated delivery of dsRNA, the dsRNA is delivered 
into the gut lumen of insects. For eliciting effective RNAi, dsRNA must be taken up 
by gut cells from the gut lumen which is known as environmental RNAi. If the tran-
scripts of target genes are prevalently expressed in tissues outside the gut cells, the 
systemic RNAi has to occur for spreading of silencing signal. However, there is no 
definite study on assessing systemic RNAi in insects.
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4.6  RNAi in Plant-Parasitic Nematodes (PPNs)

Plant-parasitic nematodes (PPNs) are grouped on the basis of different type of life-
styles, i.e., sedentary, including root-knot nematode (RKN) and cyst nematodes, 
and migratory, including root-lesion nematodes. Sedentary endoparasites interact 
with the host through secretions which are vital cues for plant-nematode interac-
tions. These secretory proteins are thus of major interest as targets for modulating 
the interaction. RNAi has been extensively used in functional genomics performed 
on C. elegans and opened up the possibility of deciphering the function of unchar-
acterized genes in other parasitic nematodes. Recent discoveries focused on unrav-
eling the role of different components of RNAi in parasitic nematodes has eventually 
led to increasing our understanding of RNAi mechanism.

There are overwhelming reports on managing PPNs using RNAi. In nematodes, 
systemic RNAi can be observed resulting in a gene knockout that spreads through-
out the organism. This is because RNA-dependent RNA polymerase (RdRP) is 
present in nematodes which interact with RISC and leads to production of new 
dsRNAs which are acted upon by Dicer enzymes and further produces new siRNAs 
(secondary siRNAs) in a well-coordinated amplification reaction. Therefore, the 
effect of dsRNA persists over development and also can be exported to neighboring 
cells thereby leading to silencing effect all over the organism (Daniel and John 
2008). C. elegans displays systemic RNAi wherein the dsRNA/siRNAs entering 
from the environment can spread from one cell to another. Studies on identification 
of effectors of systemic RNAi revealed presence of protein SID-1  in C. elegans 
(Winston et al. 2002; Feinberg and Hunter 2003). Interestingly, M. incognita and M. 
hapla, along with other parasitic nematodes, despite exhibiting successful RNAi, 
were found deficient in SID-1 and other related proteins having a key role in dsRNA 
uptake and its spread. Several detailed comparative studies have postulated the pres-
ence of RNAi components in different PPNs and animal parasitic nematodes that 
were reported in C. elegans (Lendner et al. 2008; Dalzell et al. 2011; Haegeman 
et  al. 2011). All these studies found rare proteins taking part in RNAi pathway. 
Seventy-seven orthologous effectors in C. elegans were searched in 13 nematode 
species, Ancylostoma caninum, Oesophagostomum dentatum, Ascaris suum, Brugia 
malayi, C. brenneri, C. briggsae, C. japonica, C. remanei, Haemonchus contortus, 
Meloidogyne hapla, M. incognita, Pristionchus pacificus, and Trichinella spiralis, 
using reciprocal BLAST followed by domain structure verification (Maule et  al. 
2011). It was concluded that effector deficiencies cannot, in any way, be associated 
with reduced susceptibility in parasitic nematodes. Surprisingly, minimum diversity 
was observed among these parasitic nematodes in most of the orthologous genes 
belonging to different functional groups (Table 4.1). Thus it was evident that all the 
species possess varied proteins from across the RNAi spectrum each with alterna-
tive proteins which are yet to be fully identified and characterized.
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4.7  Mode of dsRNA Delivery

The efficacy of gene silencing substantially depends on the method of dsRNA 
uptake. In absence of systemic RNAi, gene silencing shall be limited to the cells that 
take up the dsRNA. Therefore, appropriate delivery system is pivotal (Terenius et al. 
2011). Different delivery methods of dsRNA that have been used for successful 
RNAi in insects and nematodes include microinjection, feeding on either artificial 
diet (Table 4.2), and/or host-mediated delivery through transgenic plants (Fig. 4.1). 
Each of these methods has its own advantages and limitations.

Table 4.1 RNAi effector components in selected nematodesa

Species RNAi effectors – functional groupings

Small RNA 
biosynthesis

dsRNA 
uptake 
and 
spread

Amplification 
proteins

Argonautes 
and RISC 
components

RNAi 
inhibitors

Nuclear 
RNAi 
effectors

Free-living nematodes
Caenorhabditis 
elegans

9 5 7 31 31 15

Caenorhabditis 
brenneri

9 4 6 21 9 15

Caenorhabditis 
briggsae

9 5 6 21 9 15

Caenorhabditis 
japonica

9 5 5 18 8 15

Caenorhabditis 
remanei

9 5 5 22 4 15

Pristionchus 
pacificus

6 2 4 14 4 5

Plant-parasitic nematodes
Meloidogyne hapla 6 1 3 7 3 7
Meloidogyne 
incognita

7 1 3 9 2 6

Animal parasitic nematodes
Trichinella spiralis 6 1 3 5 3 4
Ascaris suum 7 1 5 17 5 8
Brugia malayi 9 1 4 8 4 10
Haemonchus 
contortus

7 2 4 19 5 11

Oesophagostomum 
dentatum

6 2 3 14 5 6

aData derived from Dalzell et al. (2011)
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dsRNA delivery methods

Microinjection Feeding Host-mediated
RNAi

Soaking
(dsRNA solution)

Fig. 4.1 Different delivery methods of dsRNA employed in RNAi strategy

4.7.1  Microinjection

Microinjection involves injection of dsRNA or siRNA directly into the body of an 
organism and has been demonstrated as one of the most successful delivery methods 
for RNAi to validate gene functions (Ober and Jockusch 2006). In this method, 
dsRNA is produced by in vitro transcription using T7 or Sp6 promoter sequences. It 
has been employed successfully for suppressing genes in both insects and 
nematodes.

4.7.1.1  In Insects

In D. melanogaster, microinjection has been successfully used for delivering dsR-
NAs for two genes, viz., frizzled and frizzled2, into embryos. The silencing resulted 
in defects in embryonic patterning that was similar to loss of wingless (wg) function. 
This was the first study proving the function of frizzle through dsRNA microinjec-
tion in an insect (Kennerdell and Carthew 1998). Since then, microinjection-based 
delivery has been used in several insect species. A comprehensive list of Hemipteran 
insects subjected to microinjection for studying RNAi is presented in Table 4.3. 
Direct injection of dsRNA into the insect body leads to higher efficiency of gene 
expression attenuation compared to other methods. Nevertheless, there are several 
limitations in microinjection delivery method. In vitro synthesis of dsRNA is skill 
intensive and costly. Additionally, recovery of the insects, especially smaller insects, 
from aftershock of microinjection, is relatively low. The significant aftershock is 
due to damage of cuticle leading to adverse immune responses in the insect 
(Roxstrom-Lindquist et al. 2004). Therefore, microinjection is rarely used in func-
tional analysis of large number of genes from the point of view of insect-pest con-
trol. It is evident from Table 4.3 that in the microinjection, mediated delivery has 
been carried out mostly in the case of hemipteran insects.

4 RNAi for Resistance Against Biotic Stresses in Crop Plants
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4.7.1.2  In Nematodes

After injecting dsRNAs into the worms, progeny is counted and recorded for the 
mutant phenotypes. Usually after 24 h of injection, good RNAi effect is observed 
(Fire et al. 1998). In C. elegans, dsRNAs of genes like unc-22, unc-54, fem1, and 
hlh-1 were injected into the adult hermaphrodites, and the interference effect was 
observed. It was also proposed that in an antisense mechanism, interference of 
endogenous gene is due to the hybridization between the injected RNA and endog-
enous mRNA (Fire et  al. 1998). It is a classical technique, and different target 
mRNAs can be used for injection simultaneously. However, microinjection has not 
been very successful in plant-parasitic nematodes in general and particularly in M. 
incognita. This is because of the small size of the infective stages and their inability 
to ingest fluid without host plant infection (Banerjee et al. 2017). In this process, 
although the range of dsRNA concentrations can be used, the success rate relies 
upon ample uptake or absorption by the worms (Hull and Timmons 2004).

4.7.2  Feeding on Artificial Diet

4.7.2.1  In Insects

dsRNA delivery through artificial diet has been the most popular method for deliv-
ering dsRNA into the insect gut especially for relatively smaller insects such as 
Hemipterans, which are sap-sucking. Several insect species of different taxa were 
studied for RNAi by the administration of dsRNA through artificial diet as pre-
sented in Table 4.3. Araujo et al. (2006) fed the blood-sucking Rhodnius prolixus 
with an artificial diet containing dsRNA of the nitrophorin2 (Np2) gene and found 
that the saliva of control R. prolixus prolonged plasma coagulation by approxi-
mately fourfold compared with the saliva of Np2-knockdown R. prolixus. Feeding 
A. pisum with an artificial diet supplemented with dsRNA of the A. pisum aquaporin 
1 (ApAQP1) gene caused attenuated expression of the target gene, which resulted in 
an increased osmotic pressure of the hemolymph in this insect (Shakesby et  al. 
2009).

4.7.2.2  In Nematodes

In a nematode, feeding involves ingestion of bacteria expressing dsRNA of the tar-
get gene against which RNAi is employed. Timmons et al. (2001) developed engi-
neered bacteria deficient for RNaseIII producing high levels of dsRNA segments of 
a specific gene. C. elegans feeding on these engineered bacteria showed RNAi 
effect leading to loss-of-function phenotypes for the target genes. One of the advan-
tages of this method is that it can be conducted for stage-specific RNAi experiments 
as worms of any stage can be fed with dsRNA (Kamath et al. 2001; Ahringer 2006).

P. K. Jain et al.
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The feeding method has some major advantages over other methods of deliver-
ing dsRNA. These are as follows: (i) it is easy to perform; (ii) feeding dsRNA is less 
traumatic to the nymphs and juveniles than doing so via injections, the nymphs and 
juveniles remain healthier, and their mortality is comparatively lower (Shakesby 
et al. 2009); and (iii) perhaps most significantly, delivering dsRNAs in early stages 
of insects and nematodes is convenient by this method as compared to microinjec-
tion which needs special equipment and often causes high rate of mortality due to 
art effect. However, there are some challenges, viz., low efficiency of this method 
and requirement of large quantities of dsRNA, which need to be addressed. 
Moreover, a detailed study in understanding the mechanism of dsRNA delivery by 
ingestion for inhibiting gene expression is yet to be carried out.

4.7.2.3  Soaking Method for dsRNA Delivery in Nematodes

This method involves soaking of nematodes in concentrated dsRNA solution and 
subsequently scoring of worms or their progeny for phenotypes. RNAi by soaking 
is useful for treating a moderately large number of animals (e.g., 10–100). RNAi 
through soaking method was first employed in C. elegans as a tool for converting its 
genome sequence information into functional information (Tabara et  al. 1998). 
Apart from C. elegans, silencing of genes in plant-parasitic nematodes (PPN) 
through soaking technique has been popularly used but with minor modifications. 
Other techniques like feeding and microinjection possess some limitations with 
respect to PPNs. In microinjection, successful recovery of injected juveniles is dif-
ficult and PPN juveniles do not take up dsRNA orally easily from the solutions. This 
was overcome by Urwin et  al. (2002) by inducing oral uptake of dsRNA using 
octopamine, a neuroactive compound by cyst nematodes Heterodera glycines and 
Globodera pallida. This marked a revolution in imparting RNAi-mediated resis-
tance in cyst and root-knot parasitic nematodes.

Since then many reports on successfully governing the nematode growth utilizing 
RNAi approach came into the picture. In later studies, compounds like resorcinol 
and serotonin were used for successful uptake of dsRNA in M. incognita (Rosso 
et  al. 2005; Huang et  al. 2006). Apart from neuroactive compounds, fluorescein 
isothiocyanate (FITC) as a marker for observing dsRNA uptake and as a mean of 
selecting affected individuals was used in many studies (Urwin et al. 2002; Rosso 
et al. 2005). Intestinal gene cysteine proteinase was suppressed through the soaking 
method in G. pallida, H. glycines, and M. incognita (Nakai and Horton 1999; 
Schmidt et al. 1999). Gene silencing by RNAi soaking has led to various abnormali-
ties in processes like nematode hatching and molting and even resulted in reduced 
reproduction rates. Many genes, namely, chitin synthase, neuropeptides, msp, c-type 
lectin, and aminopeptidases, were targeted (Kennerdell and Carthew 1998; Schmidt 
et al. 1999; Dernburg and Karpen 2002; Ischizuka et al. 2002). But the efficiency 
and duration of the silencing effect were assessed for M. incognita calreticulin 
(Mi-crt) and polygalacturonase (Mi-pg-1) (Rosso et al. 2005). Other genes targeted 
by this approach are cellulases, pectate lyase, chorismate mutase, and glutathione- S 
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transferase (Anandalakshmi et al. 1998; Cogoni and Macino 2000; Hammond et al. 
2001; Matzke et al. 2001; Carmell et al. 2002). However, the silencing acquired by 
soaking in dsRNA solutions is often transient as duration of soaking and the concen-
tration of dsRNAs affect the RNAi mechanism (Banerjee et al. 2017).

4.8  Resistance Via Transgenic Plants Expressing dsRNA

Another alternative method of dsRNA delivery is through host-delivered RNAi 
(HD-RNAi) where gene is silenced in target organism by the host plant. Since there 
is no synthesis of any gene product in HD-RNAi, it is likely to address the biosafety 
concerns more favorably.

4.8.1  In Insects

Genetic transformations of crop plants for expressing dsRNA homologous to impor-
tant insect gene entail several advantages. It delivers the dsRNA to the target insect 
pest in a continuous fashion that leads to elicitation of RNAi throughout the life 
cycle of the insects. Host-mediated delivery of dsRNA was first demonstrated 
against two important agricultural pests, cotton bollworm, Helicoverpa armigera, 
and Western corn rootworm, Diabrotica virgifera (Baum et  al. 2007; Mao et  al. 
2007). Transgenic rice was developed by delivering dsRNA targeting hexose trans-
porter gene NIHT1, carboxypeptidase gene NIcar, and the trypsin-like serine prote-
ase gene NItry of Nilaparvata lugens. The study revealed reduced transcript levels 
of these three targeted genes in the insects that fed on these transgenic rice plants. 
However, insect lethality was not reported (Zha et al. 2011). Subsequently, several 
attempts have been made for attenuating key genes of the insects through transgenic 
host-mediated delivery of dsRNA as presented in Table 4.4. The gene construct for 
expression of the dsRNA essentially consists of 200–500 nucleotide tandem repeats 
of the target gene sequence under the control of a constitutive promoter. Such strat-
egy also offers the scope of tissue specific expression of the dsRNA. For example, 
for targeting the phloem-feeding insect pests, phloem-specific expression of the 
dsRNA and their transport in phloem sieve elements would be more desirable. 
However, several attempts in this direction clearly indicated the effective level of 
protection would depend on targeting suitable target genes in addition to desired 
level of expression and delivery of intact dsRNA to the infesting insect pests (Price 
and Gatehouse 2008). Further understanding of the uptake process and elicitation of 
RNAi by dsRNA in insects will facilitate tailoring the gene expression cassette of 
dsRNA in order to achieve effective protection.

Mao et al. (2007) used RNAi-mediated approach to reduce insect’s ability to 
cope up when exposed to xenobiotic compounds, for example, gossypol. 
Transgenic cotton plants expressing a hairpin dsRNA targeting gossypol-inducible 
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cytochrome P450 gene CYP6AE14 of H. armigera showed increased tolerance to 
the cotton bollworm, H. armigera (Mao et al. 2011), but were not lethal to the 
larvae. Interestingly, when a cysteine proteinase which is supposed to damage 
larval peritrophic matrix leading to higher accumulation of gossypol in the midgut 
was co- delivered, the tolerance was further enhanced (Mao et al. 2013). The simi-
lar strategy may be applicable for restoring insecticide sensitivity among resistant 
insect species (Bautista et al. 2009; Tanget al. 2012; Figueira-Mansur et al. 2013).

The host-mediated RNAi for controlling insect pest has been considered to be 
particularly important for phloem-sucking hemipteran insect pests, viz., aphids. In 
green peach aphid, plant-mediated RNAi of several target insect-specific genes such 
as salivary proteins MpC002, MpPIntO1, and MpPIntO2 and the gut-specific gene 
Rack-1 showed reduced fecundity (Table 4.3). In a similar study, stronger aphicidal 
activity of a hairpin RNA targeting V-ATPase E or the tubulin folding cofactor D 
(TBCD) was demonstrated (Guo et al. 2014). RNAi-mediated expression attenua-
tion of a serine protease gene MySP in the green peach aphid, Myzus persicae, led 
to a remarkable decrease in their fecundity and parthenogeneticity (Bhatia et  al. 
2012). These studies on host-mediated delivery of dsRNA and elicitation of RNAi 
in infesting aphids demonstrated potential of RNAi approach for developing genetic 
resistance against aphids. Mao and Zeng (2014) reported reduced attack by aphids 
on transgenic tobacco plants expressing dsRNA against the gap gene hunchback, 
and reproduction rate of aphids was also retarded.

Interestingly, aphid nymphs parthenogenetically born from mothers reared on 
transgenic plants expressing dsRNA continued to show downregulation of the target 
gene even when transferred on normal plants. An assessment of RNAi effect over 
three generations of M. persicae revealed 60% reduction in aphid reproduction lev-
els in transgenic Arabidopsis plants expressing dsMpC002 compared to 40% decline 
on transgenics expressing dsRack1 and dsMpPIntO2. Such transgenerational RNAi 
was found to last over seven generations in Sitobion avenae reared on transgenic 
barley plants expressing shp-dsRNA (Abdellatef et al. 2015). Such parental trans-
mission of RNAi effect adds to potential of the strategy.

4.8.2  In Nematodes

RNAi mechanism partly occurs in the host itself and partly in nematodes feeding 
on the transgenic host plant expressing dsRNA for the target gene. The plant 
RNAi machinery produces siRNAs which are ingested by nematodes feeding 
upon these plants through stylet (Li et al. 2011). By far HD-RNAi is the most suc-
cessful methodology for developing resistance against nematodes in important 
crops. This technique exploits the capability of PPNs of ingesting macromole-
cules from the host plants. Specifically, the method involves producing dsRNA 
construct and developing transformed plants by Agrobacterium-mediated 
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transformation. For generating dsRNA, a part of the target gene is cloned in sense 
and antisense orientation separated by an intron or spacer region and expressed 
under a constitutive or tissue- specific promoter. Majority of researchers have 
adopted this time-consuming methodology and have successfully developed 
transgenics resistant against nematodes. Another new approach with rapid screen-
ing system has been developed involving hairy root method for transformation of 
crops like soybean, tomato, and sugar beet.

Genes involved in various vital processes are mostly targeted by this approach 
being categorized into effector genes (most targeted), house-keeping genes, develop-
mental genes, and genes associated with mRNA metabolism. Two genes  encoding 
integrase and splicing factor were suppressed in M. incognita using host-delivered 
RNAi. It was the first report eliciting RNAi in M. incognita by developing transgenic 
tobacco lines (Yadav et al. 2006). The lethality of these genes as RNAi targets was 
further reconfirmed by Kumar et al. (2017) in Arabidopsis by utilizing this approach 
against M. incognita. Effective silencing of 16D10 effector genes leads to 63–90% 
reduction in the infectivity of M. incognita in Arabidopsis (Huang et al. 2006). Since 
16D10 is highly conserved in Meloidogyne species, resistance against three other 
major species was also developed (Li et al. 2011). M. chitwoodi also showed a reduc-
tion in the number of nematodes and eggs on silencing 16D10L gene via HD-RNAi 
approach in transgenic Arabidopsis and potato plants (Dinh et al. 2014a, b).

Cyst nematodes also exhibited gene suppression by this technique successfully. 
The suppression of four parasitism genes, ubiquitin-like (4G06), cellulose-binding 
protein (3B05), SKP1-like (8H07), and zinc finger protein (10A06), in Heterodera 
schachtii resulted in the reduction of females in RNAi transgenic Arabidopsis lines 
(Sindhu et al. 2009). Silencing of esophageal proteins in H. glycines leads to the 
reduction in reproduction (Bakhetia et al. 2007). In another study, successful sup-
pression of major sperm protein of H. glycines resulted in 68% decrease in eggs per 
gram root tissue when infected on transgenic soybean plants (Steeves et al. 2006). 
Transgenic tobacco lines expressing dsRNAs of two neuropeptides, flp-14 and flp- 
18, showed 50–80% decline in the infection of M. incognita (Papolu et al. 2013). 
Other genes silenced using this methodology are Mj-Tisll, Rpn7, tyrosine phospho-
tase, mitochondria stress 70 protein precursor and neuropepetides against 
Meloidogyne spp(s) (Hamann et al. 1993; Lindbo et al. 1993; Depicker and Montagu 
1997; Pasquinelli 2002; Lim et al. 2003; Valdes et al. 2003). Host-mediated RNAi 
strategy is more successful in root-knot (RKN) nematodes as compared to cyst nem-
atodes (CN) owing to factors like more RNAi sensitivity and larger size exclusion 
limit of RKNs than in CNs (Li et al. 2011). Host-delivered RNAi appears to be the 
most successful technique in controlling nematode infection.

Identification of appropriate target genes based on preliminary diet-based bioas-
say and ensuring adequate in planta expression of the dsRNA in the transgenic host 
are pivotal requirements for effective host-mediated RNAi. However, further under-
standing of the mechanisms on dsRNA uptake by insect and nematodes will facili-
tate the tailoring of dsRNA expression in HD-RNAi.
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4.9  dsRNA Uptake Mechanisms

The dsRNA uptake mechanism in insects is known to be achieved by either of the 
two pathways, viz., a protein-mediated pathway and via endocytic pathway. The 
major component of protein-mediated pathway is a multi-pass transmembrane pro-
tein known as systemic RNA interference deficient-1 (Sid-1) which exports the small 
interfering RNAs across neighboring cells (Bansal and Michel 2013). The second 
pathway is receptor-mediated pathway. In case of C. elegans, the endocytic pathway 
involves a Sid-2 gene localized in intestinal cells. It encodes a membrane protein 
and is thought to import dsRNA from the intestinal lumen which are then exported 
to other cells with the help of sid-1 channels (Winston et al. 2007; McEwan et al. 
2012). Hence, Sid-1 and Sid-2 proteins must work in conjunction to achieve envi-
ronmental RNAi. Sid-1 genes have been reported to be evolutionarily conserved 
among insects orders, but Sid-2 gene is absent in insects. Tribolium is considered as 
the model insect for studying systemic RNAi with presence of Sid-1 like proteins. 
However, the Sid-1 gene of Tribolium was found orthologous to Tag-130 gene of C. 
elegans and not Ce-Sid-1 gene interestingly, where Tag-130 has not been reported 
to be associated with systemic RNAi in nematodes (Tomoyasu et  al. 2008). The 
presence of Sid-1-like channel proteins varies among different orders of insects. 
The involvement of Sid-1-like channel proteins in dsRNA uptake has been reported 
in brown plant hopper [BPH, Nilaparvata lugens (Xu et al. 2013)], the Colorado 
potato beetle [CPB, Leptinotarsa decemlineata (Cappelle et al. 2016)], and the red 
flour beetle Tribolium castaneum (Tomoyasu et al. 2008). In 2016, genes involved 
in RNAi pathway in insects were identified and classified. The study reveals absence 
of Sid-1/Tag-130 orthologs in Diptera order (Dowling et al. 2016). It was suggested 
that in Drosophila melanogaster, dsRNA uptake is mediated via endocytic pathway 
along with pattern recognition receptors (PRRs) based on a study by Ulvila et al. 
(2006). This study reports more than 90% reduction in the uptake of double-stranded 
RNA on silencing of these two receptors by RNAi technology. Most of the studies 
examining dsRNA uptake so far focused on either the endocytic pathway or Sid-1- 
like dependent system. However, a clear understanding of the roles of these path-
ways on dsRNA uptake across the insect species is still lacking. Nevertheless, 
insects belonging to another order have been reported to have both the Sid-1-like 
channel proteins and receptor-mediated endocytosis pathways playing a role in 
dsRNA uptake (Cappelle et al. 2016).

However, the dsRNA uptake mechanism in worms is quite different. The compo-
nents involved in dsRNA uptake have been well studied in C. elegans, and presence 
of Sid-1 and Sid-2 genes along with other components like rsd-2, rsd-3, and rsd-6 
has been well documented in the C. elegans genome. But surprisingly in a study, it 
was found these proteins were not evolutionary conserved (Dalzell et al. 2011). The 
dataset recognizes sid-1orthologs in two parasitic nematodes, viz., in Haemonchus 
contortus and Oesophagostomum dentatum only. The Sid-2 protein was not found 
to be present in other nematode species. Intriguingly, the plant-parasitic nematodes 

P. K. Jain et al.



93

such as Meloidogyne and Globodera spp. despite the absence of Sid-1 and Sid-2 
genes exhibit systemic RNAi when subjected to silencing technology indicating a 
presence of similar receptor-mediated endocytic process for dsRNA uptake as 
reported in insects (Dalzell et al. 2011). Though lot of information has been gener-
ated over past few years, a clear understanding on dsRNA uptake mechanism(s) in 
worms is still elusive

4.10  RNAi Resistance in Other Agricultural Pests

Other than insects and nematodes, there are agricultural pests belonging to phylum 
Arthropoda that affect the crop productivity worldwide, and RNAi-based strategy to 
control these pests has shown some success. These pests are fire ants, mites, locusts 
(order Orthoptera), and many more. Systemic RNAi has already been demonstrated 
in these pests via microinjection. On feeding the worker ants, Solenopsis invicta, 
with 1000 ppm dsRNA targeting PBAN/pyrokinin gene, increased mortality rate of 
the fourth instar larvae. Direct toxic effect was also observed even when the dsRNA 
concentration was reduced to 200 ppm (Zhao and Chen 2013). In spider mite, gene 
silencing and increased mortality rate was observed when 160 ppm of dsRNA, tar-
geting several genes, was employed via permeated leaf disc assay (Kwon et  al. 
2013). In another mite, Varroa destructor, an ectoparasite of the honey bee, Apis 
mellifera, both the delivery methods of dsRNA, i.e., by immersing mites in a dsRNA 
solution or by host-mediated RNAi, wherein dsRNA was fed to the honey bees and 
eventually delivered to mites, were found to attenuate the target gene expression 
through environmental RNAi (Campbell et al. 2010; Garbian et al. 2012).

Interestingly, locust species displayed systemic RNAi response but were refrac-
tory to environmental RNAi. Even a considerate concentration of 15 pg of dsRNA 
per mg body mass (~10 ng/insect) was enough to silence a gene in the desert locust, 
Schistocerca gregaria (Wynant et al. 2012). In case of Tribolium castaneum, the 
systemic response continued to increase over time in a dose-dependent manner and 
furthermore led to mortality 7 days postinjection. A similar dose-dependent response 
was also exhibited by the migratory locust, Locusta migratoria, leading to target 
gene suppression and lethality, but was unresponsive to environmental RNAi (Luo 
et al. 2013).

4.11  RNAi for Fungus Resistance

Fungi are classified as a separate eukaryotic kingdom from plants and animals. 
The vital RNAi components (RNA-dependent RNA polymerase (RdRP), Dicer, 
and Argonaute) have been found in different fungi indicating the presence of func-
tional RNAi pathway (Dang et  al. 2011). The RNAi phenomenon is termed as 
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“quelling” in fungi which was first demonstrated in ascomycete Neurospora crassa 
(Romano and Macino 1992). Silencing of fungal genes by RNAi has shown to be 
desirable for many fungal species like Ascomycota, Basidiomycota, Zygomycota, 
and Phytophthora species (Nunes and Dean 2012). Several studies have been pub-
lished reporting the successful use of host-induced gene silencing (HIGS) to con-
trol fungal diseases (Table  4.5) (Koch and Kogel 2014). Suppression of GUS 
transcripts in a GUS-expressing strain of Fusarium verticillioides (phytopatho-
genic filamentous fungi) while colonizing transgenic tobacco plants expressing 
GUS gene-interfering cassette was reported (Tinoco et al. 2010).

In vitro feeding of dsRNA complementary to three genes involved in ergos-
terol biosynthetic pathway, viz., CYP51A, CYP51B, and CYP51C, showed 
reduced growth of Fusarium graminearum (Koch et al. 2013). In wheat, myco-
toxin-specific genes were silenced in F. graminearum and resulted in inhibition 
of virulence (McDonald et al. 2005). Fungal pathogenicity genes have shown to 
be an appropriate target for controlling fungal infection. A complete loss of 
pathogenicity was reported on targeting two of the host-selective ACT-toxin 

Table 4.5 List of genes targeted in fungus through RNAi

Species Target gene Host plant Effect/comments References

Blumeria 
graminis f. sp. 
tritici

MLO Wheat Resistance Riechen 
(2007)

Phytophthora 
parasitica var. 
nicotianae

GST (glutathione 
S-transferase gene)

Tobacco Resistance; GST 
negative regulator of 
defense response

Hernandez 
et al. (2009)

Blumeria 
graminis

Avra10 (effector gene) Barley and 
wheat

Reduced fungal 
development in the 
absence of the 
matching resistance 
gene Mla10

Nowara 
et al. (2010)

Fusarium 
verticillioides (F. 
moniliforme)

GUS (reporter gene) Tobacco GUS silencing; proof 
of concept

Tinoco et al. 
(2010)

Puccinia 
striiformis f. sp. 
tritici or
P. graminis f. sp. 
tritici

PSTha12J12
(haustorial Pst 
transcript)

Barley and 
wheat

No obvious reductions 
in rust development or 
sporulation

Yin et al. 
(2011)

Phytophthora 
parasitica

PnPMA1 
(H + -ATPase) and 
GFP (reporter gene)

Arabidopsis Not sufficient; no 
reduction in GFP and 
PnPMA1 transcripts

Zhang et al. 
(2011)

P. triticina, P. 
graminis, and P. 
striiformis

PtMAPK1 (MAP 
kinase), PtCYC1 
(cyclophilin), and 
PtCNB (calcineurin 
B)

Wheat Disease suppression, 
compromising fungal 
growth and sporulation

Panwar 
et al. (2013)

Fusarium 
graminearum

CYP51A, CYP51B, 
and CYP51C

Arabidopsis 
and barley

Resistance Koch et al. 
(2013)
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genes in the fungus Alternaria alternata (Miyamoto et  al. 2008; Ajiro et  al. 
2010). Similar reports on silencing of pathogenicity gene or avirulent gene 
proved successful in inhibiting the fungal growth and development. In 
Magnaporthe oryzae, silencing of 37 genes involved in calcium signaling pro-
cess adversely affected hyphal growth, sporulation, and pathogenicity (Nunes 
and Dean 2012). HIGS-mediated silencing of effector gene Avra10 showed a 
reduction in the number of haustoria in powdery mildew-susceptible barley cul-
tivar (Koch and Kogel 2014).

To date, there are several successful reports of gene silencing in fungi with varied 
silencing efficiency. For instance, in Moniliophthora perniciosa, the silencing 
 efficiency varied depending upon the targeted gene with reduction rates ranging 
from 18% to 97% in case of hydrophobin transcripts and 23% to 87% in peroxire-
doxin transcripts (Santos et al. 2009), while when RNA hairpin precursor used to 
transform the Ascomycota Ophiostoma novo-ulmi, the expression of 6%, 22%, and 
31% relative to the wild type was reported (Carneiro et al. 2010) in three transfor-
mants. Although usage of RNAi for managing fungus growth is nowadays a favored 
approach by researchers, RNAi silencing also leads to some off-target effects as 
observed by Lacroix and Spanu (2009) on silencing various genes in C. fulvum. 
These off-targets can be avoided by using specific silencing trigger sequence in 
RNAi vector, by tissue-specific and inducible silencing (Senthil-Kumar and Mysore 
2011).

4.12  Barriers Limiting RNAi

The potential of RNAi technology for controlling various pests has been well docu-
mented over the past decade. However, there are many limitations which need to be 
taken care of for successful deployment of RNAi technology. There are several fac-
tors which need to be carefully looked into while designing RNAi experiments, 
including the off-target effects, dsRNA design, length and concentration of dsRNA, 
and many more. Therefore, to ensure a successful and effective RNAi-based silenc-
ing, these factors need to be balanced optimally. In case of insects, persistency of 
RNAi is a major problem due to which an optimum amount of dsRNA needs to be 
determined for an effective silencing. Interestingly, it is not true for every order of 
insect which is to be managed. For instance, about 60% (or lower) of gene knock-
down was reported in certain recalcitrant insect species, while in coleopterans, 90% 
knockdown of gene was successfully achieved ensuing a long-lasting hereditary 
(Baum et al. 2007; Huvenne and Smagghe 2010; Zhu et al. 2011; Bolognesi et al. 
2012; Rangasamy and Siegfried 2012; Li et al. 2013). Not only in insects but in 
nematodes also barriers like off-target effects have been reported while performing 
RNAi technology based management approaches. Designing an effective siRNA 
sequence is a major limitation in RNAi technology-based silencing. The following 
are some major barriers.
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4.12.1  Off-Target Effects

Off-target effects result from the knockdown of unintended genes other than the 
target gene. Therefore, one of the most important aspects is avoidance of nonspecific 
target effects. It is the sequence used that determines possible off-target effects in the 
target organism and also in other species. Other than sequence, off-target effects can 
arise due to wide range of siRNAs being produced from a single dsRNA which 
increases the chance of nontarget effects. There are many reports of off-target effects, 
for instance, in triatomid bug R. prolixus, two homologous nitroprin genes were 
silenced other than the targeted gene (Araujo et al. 2006). Thus, selecting a sequence 
for synthesizing dsRNA is a crucial and limiting step in RNAi technology.

4.12.2  The Design of dsRNA

Selection of target gene is the first step in decision-making process for successful 
induction of RNAi in an organism. The gene selected should have a crucial role in 
the concerned organism, and genes involved in parasitism or development are likely 
candidate genes fulfilling all such requirements. Moreover, it should be highly spe-
cific and not conserved across different genera (Danchin et al. 2013) especially in 
pollinators. Next stage is to choose a suitable target site from the selected target 
gene. It is necessary to ensure the designing of a species-specific dsRNA. For iden-
tifying potential target sites for eliciting effective RNAi, bioinformatic tools are 
available online. Specificity of the dsRNAs could be conferred by either targeting 
conserved domain or variable region depending on the candidate gene with the aim 
to minimize possibility of affecting any unintended genes or organisms. This is 
particularly important to ensure that dsRNAs targeting agricultural pests should not 
possess any overlapping similarity to the genes of beneficial pollinators. By target-
ing the UTR regions, even closely related homologous genes can be selectively 
silenced through RNAi as demonstrated in D. melanogaster, T. castaneum, A. 
pisum, and tobacco hornworms, Manduca sexta, with respect to vATPase gene 
(Whyard et al. 2009).The concept of dsRNAs being used as tailor-made pesticides 
is emerging wherein highly specific dsRNAs are employed against havoc-creating 
pests and are also eco-friendly to the environment.

4.12.3  Length and Concentration of dsRNA

In general, longer RNA molecules tend to have longer half-life and therefore may 
be considered desirable while designing dsRNAs. However, size of the dsRNA mol-
ecule could be a limiting factor toward efficient uptake by the organisms. In nema-
todes, 28–140 kDa dsRNA could be efficiently ingested by Meloidogyne species 
(Urwin et al. 1997; Li et al. 2007; Zhang et al. 2012), though the limit is not known 
for other pests. In red flour beetle, the length and concentration of dsRNA had 
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profound effect on efficiency as well as persistence of the RNAi effect, for example, 
60- and 30-bp dsRNAs induced 70 and 30% of gene knockdown, respectively 
(Miller et al. 2012). In the same study, it has been also shown that multiple dsRNAs, 
when injected together, led to competitive inhibition influencing the effectiveness of 
RNAi. In contrary, dsRNA longer than 200 nucleotides and likely to generate mul-
tiple siRNAs contribute efficient RNAi response (Andrade and Hunter 2016). 
Multiple siRNAs will help in overcoming the target resistance that may arise due to 
polymorphism in the target. However, more studies are warranted to understand 
unambiguously the effect of length and concentration of dsRNAs on the initial effi-
ciency and persistence of the RNAi effect.

4.12.4  Screening of Target Genes

For realizing RNAi-mediated gene silencing as an applicable strategy of pest con-
trol in agriculture, it remains imperative to achieve significant mortality or growth 
arrest of the pest population. Therefore, any attenuation of the target gene must be 
indispensible for the pest organism. This in turn underlines the importance of iden-
tifying appropriate target gene for the target pest. Though most of the studies have 
used limited set of target genes reported earlier, more emphasis should be given on 
identification of novel candidate genes (Pitino et al. 2011; Zhu et al. 2011). The 
upcoming genomics and bioinformatics tools, like genome search (Bai et al. 2009), 
cDNA library (Mao et  al. 2007; Baum et  al. 2007), RNA-seq and digital gene 
expression tag profile (DGE-tag) (Wang et al. 2011), and RIT-seq (Alsford et al. 
2011), have been used for identification of new target genes.

4.12.5  Persistence of the Silencing Effect

The persistence of silencing signal determines the effectiveness of RNAi. Studies 
on low persistence of silencing effect have been reported in A. pisum wherein silenc-
ing effect on aquaporin persisted for 5 days of delivery before subsiding (Shakesby 
et al. 2009) indicating transient nature of RNAi effect. Thus, continuous supply of 
dsRNA seems to be essential for effective RNAi. It lends support for the transgenic 
host-mediated expression of the dsRNA for persistent and effective silencing. 
Persistent RNAi will also be useful in manifesting desired effect on the target organ-
ism even in case of inefficient and partial downregulation of the target gene.

4.12.6  Life Stage of the Target Organism

Selecting a life stage for larger silencing effects is species dependent that is to be 
targeted. In most cases, younger stage is preferred despite the efficient handling of 
older stages. In plant-parasitic nematodes, selecting the pre-parasitic juvenile stage 
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for delivering dsRNAs shows better silencing effect. Similar observation was 
reported in insects, for example, in case of R. prolixus, no silencing effect was 
observed after treating its fourth instars compared to 42% silencing when using 
second instars (Araujo et al. 2006).

4.12.7  Methods of Delivery and Uptake Mechanisms

Various methods of dsRNA delivery have been used across the organisms. Such 
methods include microinjection, feeding with bacteria expressing dsRNA, feeding 
through diet supplementation, and host-mediated ingestion. The efficiency of RNAi 
varies significantly among different organisms and when using different delivery 
methods. In insects, either microinjection or diet supplementation has been the 
method of choice, though the aftershock effect of microinjection remains a concern 
in many species. Microinjection-mediated direct delivery bypasses the exposure of 
the dsRNA molecule to the nucleases present in the digestive tract. However, for 
realizing true efficacy of the dsRNA, it is desired to deliver through oral delivery 
that mimics the host-mediated delivery through ingestion.

4.12.8  Nucleases and Viruses

Limited success in RNAi in some of the insects has been attributed to rapid degrada-
tion of dsRNA by saliva of the insects. The saliva of Lygus lineolaris was found to 
contain RNases which interact with plant material prior to ingestion (Allen and 
Walker 2012). Presence of nucleases in the saliva and viruses in the hemolymph of 
insects also limits the silencing efficiency by degrading dsRNAs (Thompson et al. 
2012; Christensen et al. 2013).

4.13  Improving RNAi

4.13.1  Large Throughput Screening for Selection of Target 
Genes

An ample number of studies in insect orders of Coleoptera, Diptera, Lepidoptera, 
Hemiptera, and others comprising of several insect pests have shown that RNAi 
targeting insect genes can affect growth and development of insects, often leading 
to insect death (Tables 4.3 and 4.4). The kind of genes for which a relatively high 
RNAi efficiency could be achieved included genes encoding detoxification enzymes, 
metabolism and cytoskeleton structure, cell synthesis, nutrition, etc. Alternative 
pathways of many of these genes in insects as well as relative importance of a 
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particular pathway in an insect species are not known with certainty. Therefore, use 
of RNAi as a strategy for pest control will require an essential step of target selec-
tion. If an indispensible gene has to be identified for an insect species, it will involve 
large throughput screening rather than going for homologous genes, effective for 
other insect species.

Chitin covers the exoskeleton of insect body, and the insect midgut lined by peri-
trophic membrane (PM) constitutes the major channel for absorption of nutrients as 
well as orally administered dsRNA. Therefore genes expressed and functioning in 
the insect midgut have been screened by many researchers (Wang and Granados 
2001). For example, a chitinase gene (OnCht) and a chitin synthase gene (OnCHS2) 
were identified from gut-specific EST of European corn borer (Ostrinia nubilalis) 
(Khajuria et al. 2010). Chitin content of the PM is regulated by OnCht as demon-
strated in feeding experiment with dsRNA- and RNAi-based suppression which led 
to reduced growth and development of European corn borer larvae (Khajuria et al. 
2010). In a similar study, Mao et al. (2007) identified several gossypol inducible 
genes, including a putative P450 monooxygenase, CYP6AE14, from a midgut- 
specific cDNA library from fifth-instar larvae exposed to gossypol. Similarly, for 
screening targets for RNAi in coleopteran insects, a large number of cDNAs from 
the cDNA libraries of Western corn rootworm (Diabrotica virgifera virgifera) were 
in vitro transcribed and used in feeding-based bioassays (Baum et al. 2007).

A rapid method of cDNA screening was demonstrated by Wang et al. (2011) by 
combining Illumina’s RNA-seq and digital gene expression tag profile (DGE-tag) in 
Asian corn borer (ACB) (Ostrinia furnacalis). In addition to being a rapid and cost- 
effective method, this method allows monitoring expression of the genes throughout 
the insect body and thus broadening the base of target selection. Using Illumina 
parallel sequencing technology, abundance of >90,000 transcripts from trypano-
some libraries was scored before and after induction of RNAi. The results led to 
constitution of non-redundant set of protein-coding sequences (CDS) comprising 
∼7500 genes (Alsford et  al. (2011). Thus these methods can derive core set of 
essential gene loci if genome sequence of the organism is known. RNAi-mediated 
attenuation of these core loci is most likely to significantly retard survival and fit-
ness of the insect pests.

In recent years, several modifications and methods for effective delivery and 
uptake of dsRNA have been proposed. Such methods include chemical modifica-
tions of siRNA duplex delivery through nanoparticles and liposomes, sprayable 
RNAi-based products, root absorption and trunk injection, and bacteria- or virus- 
based delivery. A few of them with much potentiality have been described below.

4.13.2  Nanoparticles

Synthetic, nontoxic nanoparticles could be generated from natural as well as syn-
thetic polymers. Nanoparticles offer ease of surface modifications and biode-
gradability in addition to more penetration ability, thus an effective vehicle for 
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delivery of dsRNA (Vauthier et al. 2003; Herrero-Vanrell et al. 2005). In mos-
quito dsRNA encapsulated in polymer, chitosan was used to achieve RNAi 
(Zhang et  al. 2010). The encapsulation process used the electrostatic forces 
between the negative charges of the RNA backbone and positive charges of the 
amino groups of chitosan. Zhang et al. (2015a, b) demonstrated effective knock-
down of AgCHS1 and AgCHS2 in A. gambiae and A. aegypti (sema1a) during 
larval development by using chitosan nanoparticles. He et  al. (2013) fed lepi-
dopteran pest, Asian corn borer (Ostrinia furnacalis), with diet containing the 
mixture of fluorescent nanoparticle (FNP) and CHT10-dsRNA, naked CHT10-
dsRNA, FNP and GFP-dsRNA, and GFP- dsRNA. RNAi-mediated gene silencing 
occurred only in the larvae fed on the diet containing the mixture of FNP and 
CHT10-dsRNA leading to retarded growth and eventually death of the larvae.

4.13.3  Liposomes

Liposome vesicles composed of nontoxic natural lipids are already being used in 
drug delivery. Liposomes can cross the cell membrane effectively and deliver the 
exogenous molecules. Whyard et al. (2009) used cationic liposomes for encapsulat-
ing and delivering dsRNA targeting 3′-UTR of the g-tubulin gene in four different 
species of Drosophila (D. melanogaster, D. sechellia, D. yakuba, and D. pseudoob-
scura) and demonstrated mortality of the insects only in case of encapsulated 
dsRNA. In Drosophila, presence of sid1 homologues has never been confirmed, and 
the uptake of dsRNA is likely to be by receptor-mediated endocytosis (Ulvila et al. 
2006). Higher efficiency of RNAi in case of liposome-mediated delivery in certain 
cases could be attributed to the fact that it bypasses the gut nucleases which reduces 
the efficacy of orally delivered dsRNA.

4.13.4  Chemical Modifications

Chemical modifications are known to increase the stability of RNA molecules. In 
case of siRNA also such modifications have been proposed to improve half-life and 
pharmacokinetic properties of the siRNA duplexes, target-binding affinity, and 
delivery (Kurreck 2003; Manoharan 2003; Dorsett and Tuschl 2004). Interestingly 
a couple of examples have demonstrated that such modifications may increase the 
specificity of dsRNA. For example, methylation at 2′-position of the ribosyl ring of 
the second base of the siRNA could decrease off-target effects (Jackson et al. 2003), 
siRNA duplex with 3′-overhangs at each end was more effective in gene silencing 
compared to blunt-ended duplex (Elbashir et al. 2001), and addition of 3′-TT over-
hangs (the “Tuschl design”) on both strands of duplex siRNA has been preferred in 
many cases. A few other designs, for instance, siRNAs without 3′-overhangs and 
single 3′-overhang structures in the guide strand, have been active in gene silencing 
(Czauderna et al. 2003; Lorenz et al. 2004).
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4.14  Future Perspective and Conclusion

Despite few limitations, the applicability of RNAi in improving crop resistance espe-
cially against biotic stresses is expected to be the most reliable and significant 
approach in the future as evident from a plethora of studies. Certain products based 
on RNAi-mediated resistance such as Monsanto’s SmartStax Pro, for control of 
Western corn earworm, and DuPont Pioneer’s Plenish high oleic acid soybean 
(Majumdar et al. 2017) are likely to be commercialized soon. However, efficacy of 
these plants remains to be proven in actual field situations. Diverse classes of biotic 
factors, affecting crop production worldwide, have shown varied levels of suscepti-
bility toward RNAi, which warrants need for modified and improved versions of 
dsRNA delivery methods. The better understanding of host-pest interaction and the 
genetic basis of parasitism are likely to generate more potential target genes for 
effective HD-RNAi. CRISPR/Cas system has come up as a powerful technique in 
creating knockout mutants to unravel complex mechanism of parasitism and thus 
paves the way for identification of the key pest genes. Transplastomic expression of 
dsRNA in the plants would be a further improvement for achieving higher expres-
sion. Applying dsRNA through methods with low environmental risks, for instance, 
irrigation water, root drench, or trunk injection, would obviate the need for genetic 
transformation. These methods result in localized application along with rapid break-
down of dsRNA and therefore likely to be more acceptable from a biosafety point of 
view (Joga et al. 2016). Successful demonstration of using layered double hydroxide 
clay nanosheets for topical application of dsRNA against viruses (Mitter et al. 2017) 
opens up possibilities of applying dsRNA like any other protective agrochemicals.

To conclude, RNAi has emerged as one of the most potential control mechanisms 
for pests like insects, nematodes, fungus, etc. Although still a lot remains to be 
explored and understood about the molecular process of RNAi in plants and their 
pests, the present available knowledge and the studies reviewed in this chapter have 
proved RNAi technology as an important tool in identifying gene functions and 
targeting vital genes for controlling pest development. RNAi-mediated loss-of- 
function phenotypes not only determine functions of unknown genes but also lead 
to identification of new specific targets for managing pest or improving agricultural 
traits. But understanding RNAi mechanism is of utmost importance as RNAi 
machinery varies from genus to genus. There are several shortcomings that need to 
be addressed, for instance, persistence of silencing effects, off-target effects of 
silencing, etc. Not only this, the biosafety, risk assessment, and government regula-
tions related to commercialization of RNAi-based transgenics still have to be devel-
oped. The revelation of RNAi technology has revolutionized the area of research in 
biotechnology. Not only in pest management, the wide range of RNAi application 
includes modification of agronomic traits, eliminating mycotoxin contamination, 
improving nutritional value of crops, etc. It is also proving its worth in RNAi-based 
therapeutics research for human welfare. In toto, this technology is a potential boon 
in the arsenal of the scientific community to address the challenges associated with 
climatic changes, burgeoning population, and sustainability of human race.
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