Skip to main content

Intestinal Microbiome in Health and Disease: Introduction

  • Chapter
  • First Online:
The Gut Microbiome in Health and Disease

Abstract

At the end of the nineteenth century, Robert Koch and Louis Pasteur developed the concept that transmissible human diseases are caused by microbial infections and, thereby, revolutionized the view of physicians on how to prevent and treat epidemics. More than 100 years later, the next conceptual revolution implies that naturally occurring communities of “commensal” microbes, collectively called microbiome, in and on human body sites affect health and the development of numerous diseases. The intestine provides an explicitly large interface to the environment and is critically involved in immune and metabolic homeostasis, providing the conceptual basis that this spatially adapted communities of microorganisms affects human health. Immune, metabolic, and xenobiotic receptors sense and process microbial signals and thereby contribute to a mutualistic relationship between the microbiome and the host. It seems a plausible hypothesis that the microbiome, considered as the forgotten organ, coevolved with the mammalian host, leading to a symbiotic interdependence of this metaorganism. Increasing evidence suggests that “unfavorable or so-called dysbiotic” changes in the gut microbiome lead to a distortion of microbe–host homeostasis and potentially affect disease susceptibility. In this book, we discuss breakthroughs, challenges, and applications of microbiome research at a cutting-edge level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell, G. C., Cooke, C. M., Bennett, C. N., Conlon, M. A., & McOrist, A. L. (2008). Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiology Ecology, 66, 505–515.

    Article  PubMed  CAS  Google Scholar 

  • Amann, R. I., Ludwig, W., & Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473, 174–180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atkinson, C., Berman, S., Humbert, O., & Lampe, J. W. (2004). In vitro incubation of human feces with daidzein and antibiotics suggests interindividual differences in the bacteria responsible for equol production. The Journal of Nutrition, 134, 596–599.

    Article  PubMed  CAS  Google Scholar 

  • Axelson, M., Sjövall, J., Gustafsson, B. E., & Setchell, K. D. R. (1982). Origin of lignans in mammals and identification of a precursor from plants. Nature, 298, 659–660.

    Article  PubMed  CAS  Google Scholar 

  • Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307, 1915–1920.

    Article  CAS  PubMed  Google Scholar 

  • Baughn, A. D., & Malamy, M. H. (2004). The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature, 427, 441–444.

    Article  PubMed  CAS  Google Scholar 

  • Belenguer, A., Duncan, S. H., Holtrop, G., Anderson, S. E., Lobley, G. E., & Flint, H. J. (2007). Impact of pH on lactate formation and utilization by human fecal microbial communities. Applied and Environmental Microbiology, 73, 6526–6533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett, B. J., de Aguiar Vallim, T. Q., Wang, Z., Shih, D. M., Meng, Y., Gregory, J., Allayee, H., Lee, R., Graham, M., Crooke, R., et al. (2013). Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metabolism, 17, 49–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernalier, A., Willems, A., Leclerc, M., Rochet, V., & Collins, M. D. (1996). Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Archives of Microbiology, 166, 176–183.

    Article  PubMed  CAS  Google Scholar 

  • Bik, E. M., Eckburg, P. B., Gill, S. R., Nelson, K. E., Purdom, E. A., Francois, F., Perez-Perez, G., Blaser, M. J., & Relman, D. A. (2006). Molecular analysis of the bacterial microbiota in the human stomach. Proceedings of the National Academy of Sciences of the United States of America, 103, 732–737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bindels, L. B., Delzenne, N. M., Cani, P. D., & Walter, J. (2015). Towards a more comprehensive concept for prebiotics. Nature Reviews. Gastroenterology & Hepatology, 12, 303–310.

    Article  CAS  Google Scholar 

  • Booijink, C. C., El-Aidy, S., Rajilic-Stojanovic, M., Heilig, H. G., Troost, F. J., Smidt, H., Kleerebezem, M., De Vos, W. M., & Zoetendal, E. G. (2010). High temporal and inter-individual variation detected in the human ileal microbiota. Environmental Microbiology, 12, 3213–3227.

    Article  PubMed  CAS  Google Scholar 

  • Braune, A., & Blaut, M. (2012). Intestinal bacterium Eubacterium cellulosolvens deglycosylates flavonoid C- and O-glucosides. Applied and Environmental Microbiology, 78, 8151–8153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braune, A., & Blaut, M. (2016). Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes, 7, 216–234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braune, A., Engst, W., & Blaut, M. (2016). Identification and functional expression of genes encoding flavonoid O- and C-glycosidases in intestinal bacteria. Environmental Microbiology, 18, 2117–2129.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I., Wigglesworth, M. J., Kinghorn, I., Fraser, N. J., et al. (2003). The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. The Journal of Biological Chemistry, 278, 11312–11319.

    Article  PubMed  CAS  Google Scholar 

  • Bry, L., Falk, P. G., Midtvedt, T., & Gordon, J. I. (1996). A model of host-microbial interactions in an open mammalian ecosystem. Science, 273, 1380–1383.

    Article  PubMed  CAS  Google Scholar 

  • Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research, 37, D233–D238.

    Article  PubMed  CAS  Google Scholar 

  • Carbonero, F., Benefiel, A. C., Alizadeh-Ghamsari, A. H., & Gaskins, H. R. (2012). Microbial pathways in colonic sulfur metabolism and links with health and disease. Frontiers in Physiology, 3, 448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chassard, C., Goumy, V., Leclerc, M., Del'homme, C., & Bernalier-Donadille, A. (2007). Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiology Ecology, 61, 121–131.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Ji, F., Guo, J., Shi, D., Fang, D., & Li, L. (2016). Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology. Scientific Reports, 6, 34055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, T., Long, W., Zhang, C., Liu, S., Zhao, L., & Hamaker, B. R. (2017). Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Scientific Reports, 7, 2594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho, K. H., Cho, D., Wang, G. R., & Salyers, A. A. (2001). New regulatory gene that contributes to control of Bacteroides thetaiotaomicron starch utilization genes. Journal of Bacteriology, 183, 7198–7205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christl, S. U., Gibson, G. R., & Cummings, J. H. (1992). Role of dietary sulphate in the regulation of methanogenesis in the human large intestine. Gut, 33, 1234–1238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clavel, T., Henderson, G., Alpert, C. A., Philippe, C., Rigottier-Gois, L., Dore, J., & Blaut, M. (2005). Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Applied and Environmental Microbiology, 71, 6077–6085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clavel, T., Borrmann, D., Braune, A., Dore, J., & Blaut, M. (2006a). Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe, 12, 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Clavel, T., Dore, J., & Blaut, M. (2006b). Bioavailability of lignans in human subjects. Nutrition Research Reviews, 19, 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Clavel, T., Lippman, R., Gavini, F., Dore, J., & Blaut, M. (2007). Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Systematic and Applied Microbiology, 30, 16–26.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, J. H. (1995). Short chain fatty acids. In G. R. Gibson & G. T. Macfarlane (Eds.), Human colonic bacteria: Role in nutrition, physiology and pathology (pp. 101–130). CRC Press: Boca Raton.

    Google Scholar 

  • Cummings, J. H., & Macfarlane, G. T. (1991). The control and consequences of bacterial fermentation in the human colon. The Journal of Applied Bacteriology, 70, 443–459.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P., & Macfarlane, G. T. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 28, 1221–1227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darragh, A. J., & Hodgkinson, S. M. (2000). Quantifying the digestibility of dietary protein. The Journal of Nutrition, 130, 1850S–1856S.

    Article  PubMed  CAS  Google Scholar 

  • De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G., & Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 107, 14691–14696.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devlin, A. S., & Fischbach, M. A. (2015). A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nature Chemical Biology, 11, 685–690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Rienzi, S. C., Sharon, I., Wrighton, K. C., Koren, O., Hug, L. A., Thomas, B. C., Goodrich, J. K., Bell, J. T., Spector, T. D., Banfield, J. F., & Ley, R. E. (2013). The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife, 2, e01102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dumas, M. E., Barton, R. H., Toye, A., Cloarec, O., Blancher, C., Rothwell, A., Fearnside, J., Tatoud, R., Blanc, V., Lindon, J. C., et al. (2006). Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 12511–12516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duncan, S. H., Barcenilla, A., Stewart, C. S., Pryde, S. E., & Flint, H. J. (2002). Acetate utilization and butyryl coenzyme A (CoA): Acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Applied and Environmental Microbiology, 68, 5186–5190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duncan, S. H., Louis, P., & Flint, H. J. (2004). Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology, 70, 5810–5817.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E., & Relman, D. A. (2005). Diversity of the human intestinal microbial flora. Science, 308, 1635–1638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faith, J. J., Guruge, J. L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A. L., Clemente, J. C., Knight, R., Heath, A. C., Leibel, R. L., et al. (2013). The long-term stability of the human gut microbiota. Science, 341, 1237439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finegold, S. M., Flora, D. J., Attebery, H. R., & Sutter, V. L. (1975). Fecal bacteriology of colonic polyp patients and control patients. Cancer Research, 35, 3407–3417.

    PubMed  CAS  Google Scholar 

  • Finegold, S. M., Sutter, V. L., & Mathisen, G. E. (1983). Normal indigenous intestinal flora. In D. J. Hentges (Ed.), Human intestinal microflora in health and disease (pp. 3–31). Academic Press: New York/London.

    Chapter  Google Scholar 

  • Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P., & Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3, 289–306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Florin, T. H., Zhu, G., Kirk, K. M., & Martin, N. G. (2000). Shared and unique environmental factors determine the ecology of methanogens in humans and rats. The American Journal of Gastroenterology, 95, 2872–2879.

    Article  PubMed  CAS  Google Scholar 

  • Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., & Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America, 104, 13780–13785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibson, S. A., McFarlan, C., Hay, S., & MacFarlane, G. T. (1989). Significance of microflora in proteolysis in the colon. Applied and Environmental Microbiology, 55, 679–683.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gill, S. R., Pop, M., Deboy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., & Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science, 312, 1355–1359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayashi, H., Takahashi, R., Nishi, T., Sakamoto, M., & Benno, Y. (2005). Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. Journal of Medical Microbiology, 54, 1093–1101.

    Article  PubMed  CAS  Google Scholar 

  • Hehemann, J. H., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M., & Michel, G. (2010). Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature, 464, 908–912.

    Article  PubMed  CAS  Google Scholar 

  • Hespell, R. B., & Smith, C. J. (1983). Utilization of nitrogen sources by gastrointestinal tract bacteria. In D. J. Hentges (Ed.), Human intestinal microflora in health and disease (p. 21). New York, London: Academic Press.

    Google Scholar 

  • Hoffmann, C., Dollive, S., Grunberg, S., Chen, J., Li, H., Wu, G. D., Lewis, J. D., & Bushman, F. D. (2013). Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS One, 8, e66019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hollman, P. C., & Katan, M. B. (1999). Dietary flavonoids: Intake, health effects and bioavailability. Food and Chemical Toxicology, 37, 937–942.

    Article  PubMed  CAS  Google Scholar 

  • Hooper, L. V., Xu, J., Falk, P. G., Midtvedt, T., & Gordon, J. I. (1999). A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 96, 9833–9838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hornich, M., & Chrastova, V. (1981). The redox potential of the large intestine in swine in relation to swine dysentery. Veterinary Medicine (Praha), 26, 593–598.

    CAS  Google Scholar 

  • Hoskins, L. C. (1993). Mucin degradation in the human gastrointestinal tract and its significance to enteric microbial ecology. European Journal of Gastroenterology & Hepatology, 5, 205–213.

    Article  Google Scholar 

  • Huffnagle, G. B., & Noverr, M. C. (2013). The emerging world of the fungal microbiome. Trends in Microbiology, 21, 334–341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., Butterfield, C. N., Hernsdorf, A. W., Amano, Y., Ise, K., et al. (2016). A new view of the tree of life. Nature Microbiology, 1, 16048.

    Article  PubMed  CAS  Google Scholar 

  • Hungate, R. E. (1969). A roll tube method for cultivation of strict anaerobes. In J. R. Norris & D. W. Ribbons (Eds.), Methods in microbiology (p. 117). Academic Press: New York.

    Google Scholar 

  • Huse, S. M., Ye, Y., Zhou, Y., & Fodor, A. A. (2012). A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One, 7, e34242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, Y., Xiong, X., Danska, J., & Parkinson, J. (2016). Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality. Microbiome, 4, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, B. V., Begley, M., Hill, C., Gahan, C. G., & Marchesi, J. R. (2008). Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 105, 13580–13585.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan, M. T., Duncan, S. H., Stams, A. J., van Dijl, J. M., Flint, H. J., & Harmsen, H. J. (2012). The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. The ISME Journal, 6, 1578–1585.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitahara, M., Sakamoto, M., Ike, M., Sakata, S., & Benno, Y. (2005). Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 55, 2143–2147.

    Article  PubMed  CAS  Google Scholar 

  • Knights, D., Ward, T. L., McKinlay, C. E., Miller, H., Gonzalez, A., McDonald, D., & Knight, R. (2014). Rethinking “enterotypes”. Cell Host & Microbe, 16, 433–437.

    Article  CAS  Google Scholar 

  • Kumar, R., Mukherjee, M., Bhandari, M., Kumar, A., Sidhu, H., & Mittal, R. D. (2002). Role of Oxalobacter formigenes in calcium oxalate stone disease: A study from North India. European Urology, 41, 318–322.

    Article  PubMed  CAS  Google Scholar 

  • Lazarova, D. L., Chiaro, C., Wong, T., Drago, E., Rainey, A., O’Malley, S., & Bordonaro, M. (2013). CBP activity mediates effects of the histone deacetylase inhibitor butyrate on WNT activity and apoptosis in colon cancer cells. Journal of Cancer, 4, 481–490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., Schlegel, M. L., Tucker, T. A., Schrenzel, M. D., Knight, R., & Gordon, J. I. (2008). Evolution of mammals and their gut microbes. Science, 320, 1647–1651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang, C., Tseng, H. C., Chen, H. M., Wang, W. C., Chiu, C. M., Chang, J. Y., Lu, K. Y., Weng, S. L., Chang, T. H., Chang, C. H., et al. (2017). Diversity and enterotype in gut bacterial community of adults in Taiwan. BMC Genomics, 18, 932.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim, M. Y., Rho, M., Song, Y. M., Lee, K., Sung, J., & Ko, G. (2014). Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet. Scientific Reports, 4, 7348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin, H. V., Frassetto, A., Kowalik, E. J., Jr., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., Hubert, J. A., Szeto, D., Yao, X., Forrest, G., & Marsh, D. J. (2012). Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One, 7, e35240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, C., Finegold, S. M., Song, Y., & Lawson, P. A. (2008). Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 58, 1896–1902.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, C. A., Winter, S. E., Rivera-Chavez, F., Xavier, M. N., Poon, V., Nuccio, S. P., Tsolis, R. M., & Baumler, A. J. (2012). Phage-mediated acquisition of a type III secreted effector protein boosts growth of salmonella by nitrate respiration. MBio, 3, e00143–e00112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Siles, M., Khan, T. M., Duncan, S. H., Harmsen, H. J., Garcia-Gil, L. J., & Flint, H. J. (2012). Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Applied and Environmental Microbiology, 78, 420–428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macfarlane, G. T., Cummings, J. H., & Allison, C. (1986). Protein degradation by human intestinal bacteria. Journal of General Microbiology, 132, 1647–1656.

    PubMed  CAS  Google Scholar 

  • Macfarlane, G. T., Gibson, G. R., & Cummings, J. H. (1992). Comparison of fermentation reactions in different regions of the human colon. The Journal of Applied Bacteriology, 72, 57–64.

    PubMed  CAS  Google Scholar 

  • Magee, E. A., Richardson, C. J., Hughes, R., & Cummings, J. H. (2000). Contribution of dietary protein to sulfide production in the large intestine: An in vitro and a controlled feeding study in humans. The American Journal of Clinical Nutrition, 72, 1488–1494.

    Article  PubMed  CAS  Google Scholar 

  • Martens, E. C., Chiang, H. C., & Gordon, J. I. (2008). Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host & Microbe, 4, 447–457.

    Article  CAS  Google Scholar 

  • Maruo, T., Sakamoto, M., Ito, C., Toda, T., & Benno, Y. (2008). Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. International Journal of Systematic and Evolutionary Microbiology, 58, 1221–1227.

    Article  PubMed  CAS  Google Scholar 

  • Matthies, A., Blaut, M., & Braune, A. (2009). Isolation of a human intestinal bacterium capable of daidzein and genistein conversion. Applied and Environmental Microbiology, 75, 1740–1744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McNulty, N. P., Wu, M., Erickson, A. R., Pan, C., Erickson, B. K., Martens, E. C., Pudlo, N. A., Muegge, B. D., Henrissat, B., Hettich, R. L., & Gordon, J. I. (2013). Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biology, 11, e1001637.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Metcalf, A. M., Phillips, S. F., Zinsmeister, A. R., MacCarty, R. L., Beart, R. W., & Wolff, B. G. (1987). Simplified assessment of segmental colonic transit. Gastroenterology, 92, 40–47.

    Article  PubMed  CAS  Google Scholar 

  • Minot, S., Sinha, R., Chen, J., Li, H., Keilbaugh, S. A., Wu, G. D., Lewis, J. D., & Bushman, F. D. (2011). The human gut virome: Inter-individual variation and dynamic response to diet. Genome Research, 21, 1616–1625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nava, G. M., Carbonero, F., Croix, J. A., Greenberg, E., & Gaskins, H. R. (2012). Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. The ISME Journal, 6, 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ragsdale, S. W. (2006). Metals and their scaffolds to promote difficult enzymatic reactions. Chemical Reviews, 106, 3317–3337.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay, A. G., Scott, K. P., Martin, J. C., Rincon, M. T., & Flint, H. J. (2006). Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon. Microbiology, 152, 3281–3290.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, A. R., Wang, G. R., & Salyers, A. A. (1997). Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. Journal of Bacteriology, 179, 643–649.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reichardt, N., Duncan, S. H., Young, P., Belenguer, A., McWilliam Leitch, C., Scott, K. P., Flint, H. J., & Louis, P. (2014). Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The ISME Journal, 8, 1323–1335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ridlon, J. M., Kang, D. J., & Hylemon, P. B. (2006). Bile salt biotransformations by human intestinal bacteria. Journal of Lipid Research, 47, 241–259.

    Article  PubMed  CAS  Google Scholar 

  • Roediger, W. E. (1980). Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut, 21, 793–798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salyers, A. A., Palmer, J. K., & Wilkins, T. D. (1977a). Laminarinase (beta-glucanase) activity in Bacteroides from the human colon. Applied and Environmental Microbiology, 33, 1118–1124.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Salyers, A. A., West, S. E., Vercellotti, J. R., & Wilkins, T. D. (1977b). Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Applied and Environmental Microbiology, 34, 529–533.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Savage, D. C. (1977). Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology, 31, 107–133.

    Article  PubMed  CAS  Google Scholar 

  • Schauer, K., Rodionov, D. A., & de Reuse, H. (2008). New substrates for TonB-dependent transport: Do we only see the ‘tip of the iceberg’? Trends in Biochemical Sciences, 33, 330–338.

    Article  PubMed  CAS  Google Scholar 

  • Schoefer, L., Mohan, R., Braune, A., Birringer, M., & Blaut, M. (2002). Anaerobic C-ring cleavage of genistein and daidzein by Eubacterium ramulus. FEMS Mircrobiology Letters, 208, 197–202.

    Article  CAS  Google Scholar 

  • Schroder, C., Matthies, A., Engst, W., Blaut, M., & Braune, A. (2013). Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens. Applied and Environmental Microbiology, 79, 3494–3502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scott, K. P., Martin, J. C., Chassard, C., Clerget, M., Potrykus, J., Campbell, G., Mayer, C. D., Young, P., Rucklidge, G., Ramsay, A. G., & Flint, H. J. (2011). Substrate-driven gene expression in Roseburia inulinivorans: Importance of inducible enzymes in the utilization of inulin and starch. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4672–4679.

    Article  PubMed  Google Scholar 

  • Sender, R., Fuchs, S., & Milo, R. (2016a). Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 164, 337–340.

    Article  PubMed  CAS  Google Scholar 

  • Sender, R., Fuchs, S., & Milo, R. (2016b). Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 14, e1002533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Setchell, K. D., & Clerici, C. (2010). Equol: History, chemistry, and formation. The Journal of Nutrition, 140, 1355S–1362S.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shipman, J. A., Cho, K. H., Siegel, H. A., & Salyers, A. A. (1999). Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron. Journal of Bacteriology, 181, 7206–7211.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shipman, J. A., Berleman, J. E., & Salyers, A. A. (2000). Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. Journal of Bacteriology, 182, 5365–5372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonnenburg, J. L., Xu, J., Leip, D. D., Chen, C. H., Westover, B. P., Weatherford, J., Buhler, J. D., & Gordon, J. I. (2005). Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science, 307, 1955–1959.

    Article  PubMed  CAS  Google Scholar 

  • Sonnenburg, E. D., Zheng, H., Joglekar, P., Higginbottom, S. K., Firbank, S. J., Bolam, D. N., & Sonnenburg, J. L. (2010). Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell, 141, 1241–1252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonnenburg, E. D., Smits, S. A., Tikhonov, M., Higginbottom, S. K., Wingreen, N. S., & Sonnenburg, J. L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529, 212–215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suau, A., Bonnet, R., Sutren, M., Godon, J. J., Gibson, G. R., Collins, M. D., & Doré, J. (1999). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Applied and Environmental Microbiology, 65, 4799–4807.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sugihara, P. T., Sutter, V. L., Attebery, H. R., Bricknell, K. S., & Finegold, S. M. (1974). Isolation of Acidaminococcus fermentans and Megasphaera elsdenii from normal human feces. Applied Microbiology, 27, 274–275.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Suhr, M. J., & Hallen-Adams, H. E. (2015). The human gut mycobiome: Pitfalls and potentials – a mycologist’s perspective. Mycologia, 107, 1057–1073.

    Article  PubMed  CAS  Google Scholar 

  • Suhr, M. J., Banjara, N., & Hallen-Adams, H. E. (2016). Sequence-based methods for detecting and evaluating the human gut mycobiome. Letters in Applied Microbiology, 62, 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., Hashiba, H., Kok, J., & Mierau, I. (2000). Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization. Applied and Environmental Microbiology, 66, 2502–2512.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang, C., Ahmed, K., Gille, A., Lu, S., Grone, H. J., Tunaru, S., & Offermanns, S. (2015). Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nature Medicine, 21, 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Tasse, L., Bercovici, J., Pizzut-Serin, S., Robe, P., Tap, J., Klopp, C., Cantarel, B. L., Coutinho, P. M., Henrissat, B., Leclerc, M., et al. (2010). Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Research, 20, 1605–1612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tazoe, H., Otomo, Y., Kaji, I., Tanaka, R., Karaki, S. I., & Kuwahara, A. (2008). Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. Journal of Physiology and Pharmacology, 59(Suppl 2), 251–262.

    PubMed  Google Scholar 

  • Tolhurst, G., Heffron, H., Lam, Y. S., Parker, H. E., Habib, A. M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F., & Gribble, F. M. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes, 61, 364–371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Topping, D. L., & Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81, 1031–1064.

    Article  PubMed  CAS  Google Scholar 

  • Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., Sogin, M. L., Jones, W. J., Roe, B. A., Affourtit, J. P., et al. (2009). A core gut microbiome in obese and lean twins. Nature, 457, 480–484.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Linnenbrink, M., Kunzel, S., Fernandes, R., Nadeau, M. J., Rosenstiel, P., & Baines, J. F. (2014). Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proceedings of the National Academy of Sciences of the United States of America, 111, E2703–E2710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winter, S. E., Winter, M. G., Xavier, M. N., Thiennimitr, P., Poon, V., Keestra, A. M., Laughlin, R. C., Gomez, G., Wu, J., Lawhon, S. D., et al. (2013). Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science, 339, 708–711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolin, M. J., & Miller, T. L. (1983). Carbohydrate fermentation. In D. J. Hentges (Ed.), Human intestinal microflora in health and disease (p. 19). New York, London: Academic Press.

    Google Scholar 

  • Worsoe, J., Fynne, L., Gregersen, T., Schlageter, V., Christensen, L. A., Dahlerup, J. F., Rijkhoff, N. J., Laurberg, S., & Krogh, K. (2011). Gastric transit and small intestinal transit time and motility assessed by a magnet tracking system. BMC Gastroenterology, 11, 145.

    Article  PubMed  Google Scholar 

  • Woting, A., Clavel, T., Loh, G., & Blaut, M. (2010). Bacterial transformation of dietary lignans in gnotobiotic rats. FEMS Microbiology Ecology, 72, 507–514.

    Article  PubMed  CAS  Google Scholar 

  • Wren, A. M., & Bloom, S. R. (2007). Gut hormones and appetite control. Gastroenterology, 132, 2116–2130.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science, 334, 105–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong, Y., Miyamoto, N., Shibata, K., Valasek, M. A., Motoike, T., Kedzierski, R. M., & Yanagisawa, M. (2004). Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proceedings of the National Academy of Sciences of the United States of America, 101, 1045–1050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, J., Mahowald, M. A., Ley, R. E., Lozupone, C. A., Hamady, M., Martens, E. C., Henrissat, B., Coutinho, P. M., Minx, P., Latreille, P., et al. (2007). Evolution of symbiotic bacteria in the distal human intestine. PLoS Biology, 5, e156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao, C. K., Muir, J. G., & Gibson, P. R. (2016). Review article: Insights into colonic protein fermentation, its modulation and potential health implications. Alimentary Pharmacology & Therapeutics, 43, 181–196.

    Article  CAS  Google Scholar 

  • Ze, X., Duncan, S. H., Louis, P., & Flint, H. J. (2012). Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME Journal, 6, 1535–1543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zoetendal, E. G., Raes, J., van den Bogert, B., Arumugam, M., Booijink, C. C., Troost, F. J., Bork, P., Wels, M., de Vos, W. M., & Kleerebezem, M. (2012). The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. The ISME Journal, 6, 1415–1426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Haller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haller, D. (2018). Intestinal Microbiome in Health and Disease: Introduction. In: Haller, D. (eds) The Gut Microbiome in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90545-7_1

Download citation

Publish with us

Policies and ethics