Skip to main content

Effect of Varicocele Treatment on Oxidative Stress Markers and Sperm DNA Fragmentation

  • Chapter
  • First Online:
Book cover Varicocele and Male Infertility

Abstract

Varicocele manifests as a dilatation and convolution of the pampiniform plexus, which results in venous stasis that induces heat stress and hypoxia in the male reproductive tract. These insults increase the burden of oxidative stress by promoting production of reactive chemical species, depleting cellular stores of antioxidants, and altering activities of enzymes responsible for cellular metabolism. As a consequence of these derangements, direct and indirect markers of oxidative stress are elevated in the testes and semen of men with clinically significant varicocele. Sperm nuclear DNA is also damaged in this oxidative milieu, most commonly through strand breaks that result in fragmentation. Varicocele repair via surgical intervention or percutaneous embolization aims to occlude the internal spermatic vein and ameliorate the heat stress and hypoxia that accompany venous reflux. Antioxidant therapy aims to reduce oxidative stress by augmenting the cellular capacity to neutralize reactive chemical species. Current data support varicocele repair in infertile men with clinically detectable disease and abnormal semen parameters. There is a wealth of evidence demonstrating that varicocelectomy ameliorates markers of oxidative stress and sperm DNA fragmentation, effects that are sustained throughout the postoperative period. Though antioxidants have also been shown to temporarily improve these metrics, it is unclear how medical therapy alone affects fertility in men with varicocele. Use of antioxidants as adjuvant to surgical repair is an active area of investigation, with some evidence supporting augmentation of male fertility following varicocelectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griendling KK, Touyz RM, Zweier JL, et al. Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system. Circ Res. 2016;119(5):e39–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 2007;2(2):219–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2014;30(1):11–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2009;14(4):840–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20(2):61–9.

    Article  CAS  PubMed  Google Scholar 

  7. Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol. 2004;2:12.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32(1):1–17.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Agarwal A, Cho CL, Esteves SC, Majzoub A. Reactive oxygen species and sperm DNA fragmentation. Transl Androl Urol. 2017;6(Suppl 4):S695–6.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Venkatesh S, Shamsi MB, Deka D, Saxena V, Kumar R, Dada R. Clinical implications of oxidative stress & sperm DNA damage in normozoospermic infertile men. Indian J Med Res. 2011;134(3):396–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9(12):678–90.

    Article  CAS  PubMed  Google Scholar 

  12. Durairajanayagam D, Agarwal A, Ong C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod Biomed Online. 2015;30(1):14–27.

    Article  CAS  PubMed  Google Scholar 

  13. Abd-Elmoaty MA, Saleh R, Sharma R, Agarwal A. Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. Fertil Steril. 2010;94(4):1531–4.

    Article  CAS  PubMed  Google Scholar 

  14. Mostafa T, Anis T, Imam H, et al. Seminal reactive oxygen species-antioxidant relationship in fertile males with and without varicocele. Andrologia. 2009;41(2):125–9.

    Article  CAS  PubMed  Google Scholar 

  15. Mehraban D, Ansari M, Keyhan H, et al. Comparison of nitric oxide concentration in seminal fluid between infertile patients with and without varicocele and normal fertile men. Urol J. 2005;2(2):106–10.

    PubMed  Google Scholar 

  16. Sakamoto Y, Ishikawa T, Kondo Y, et al. The assessment of oxidative stress in infertile patients with varicocele. BJU Int. 2008;101(12):1547–52.

    Article  CAS  PubMed  Google Scholar 

  17. Xu Y, Xu QY, Yang BH, et al. Relationship of nitric oxide and nitric oxide synthase with varicocele infertility [Chinese]. Zhonghua Nan Ke Xue. 2008;14(5):414–7.

    CAS  PubMed  Google Scholar 

  18. Aksoy Y, Ozbey I, Aksoy H, et al. Seminal plasma nitric oxide concentration in oligo- and/or asthenozoospermic subjects with/without varicocele. Arch Androl. 2002;48(3):181–5.

    Article  CAS  PubMed  Google Scholar 

  19. Koksal IT, Tefekli a UM, et al. The role of reactive oxygen species in testicular dysfunction associated with varicocele. BJU Int. 2000;86(4):549–52.

    Article  CAS  PubMed  Google Scholar 

  20. Skandhan KP, Rajahariprasad A. The process of spermatogenesis liberates significant heat and the scrotum has a role in body thermoregulation. Med Hypotheses. 2007;68(2):303–7.

    Article  CAS  PubMed  Google Scholar 

  21. Shiraishi K, Takihara H, Naito K. Testicular volume, scrotal temperature, and oxidative stress in fertile men with left varicocele. Fertil Steril. 2009;91.(Suppl. 4:1388–91.

    Article  PubMed  Google Scholar 

  22. Salisz JA, Kass EJ, Steinert BW. The significance of elevated scrotal temperature in an adolescent with a varicocele. Adv Exp Med BioI. 1991;286:245–51.

    Article  CAS  Google Scholar 

  23. Alvarez JG, Storey BT. Spontaneous lipid peroxidation in rabbit and mouse epididymal spermatozoa: dependence of rate on temperature and oxygen concentration. Biol Reprod. 1985;32(2):342–51.

    Article  CAS  PubMed  Google Scholar 

  24. Guo J, Jia Y, Tao SX, et al. Expression of nitric oxide synthase during germ cell apoptosis in testis of cynomolgus monkey after testosterone and heat treatment. J Androl. 2009;30(2):190–9.

    Article  CAS  PubMed  Google Scholar 

  25. Santoro G, Romeo C, Impellizzeri P, et al. Nitric oxide synthase patterns in normal and varicocele testis in adolescents. BJU Int. 2001;88(9):967–73.

    Article  CAS  PubMed  Google Scholar 

  26. Walczak-Jedrzejowska R, Wolski JK, Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male infertility. Cent European J Urol. 2013;66(1):60–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gosalvez J, Lopez-Fernandez C, Fernandez JL, Sc E, Johnston SD. Unpacking the mysteries of sperm DNA fragmentation: ten frequently asked questions. J Reprod Biotechnol Fertil. 2015;4:1–16.

    Article  Google Scholar 

  28. Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  29. Moskovtsev SI, Jarvi K, Mullen JB, et al. Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril. 2010;93(4):1142–6.

    Article  CAS  PubMed  Google Scholar 

  30. Dorostghoal M, Kazeminejad SR, Shahbazian N, Pourmehdi M, Jabbari A. Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia. 2017;49(10):e12762.

    Article  CAS  Google Scholar 

  31. Iommiello VM, Albani E, Di Rosa A, et al. Ejaculate oxidative stress is related with sperm DNA fragmentation and round cells. Int J Endocrinol. 2015;2015:321901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Henkel R, Kierspel E, Slalf T, et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83(3):635–42.

    Article  CAS  PubMed  Google Scholar 

  33. Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75(4):674–7.

    Article  CAS  PubMed  Google Scholar 

  34. Esteves SC, Sharma RK, Gosalvez J, Agarwal A. A translational medicine appraisal of specialized andrology testing in unexplained male infertility. Int Urol Nephrol. 2014;46(6):1037–52.

    Article  PubMed  Google Scholar 

  35. Aitken RJ, De Luliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2009;32(1):46–56.

    Article  CAS  PubMed  Google Scholar 

  36. Ishikawa T, Fujioka H, Ishimura T, et al. Increased testicular 8-hydroxy-2′-deoxyguanosine in patients with varicocele. BJU Int. 2007;100(4):863–6.

    Article  CAS  PubMed  Google Scholar 

  37. Dieamant F, Petersen CG, Mauri AL, et al. Semen parameters in men with varicocele: DNA fragmentation, chromatin packaging, mitochondrial membrane potential, and apoptosis. JBRA Assist Reprod. 2017;21(4):295–301.

    PubMed Central  PubMed  Google Scholar 

  38. Smith R, Kaune H, Parodi D, et al. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod. 2006;21(4):986–93.

    Article  CAS  PubMed  Google Scholar 

  39. Zini A, Dohle G. Are varicoceles associated with increased deoxyribonucleic acid fragmentation? Fertil Steril. 2011;96(6):1283–7.

    Article  CAS  PubMed  Google Scholar 

  40. Wang YJ, Zhang RQ, Lin YJ, et al. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod Biomed Online. 2012;25(3):307–14.

    Article  CAS  PubMed  Google Scholar 

  41. Diegidio P, Jhaveri JK, Ghannam S, et al. Review of current varicocelectomy techniques and their outcomes. BJU Int. 2011;108(7):1157–72.

    Article  PubMed  Google Scholar 

  42. Evers JLH, Collins JA. Assessment of efficacy of varicocele repair for male subfertility: a systematic review. Lancet. 2003;361:1849–52.

    Article  PubMed  Google Scholar 

  43. Lombardo F, Sansone A, Romanelli F, et al. The role of antioxidant therapy in the treatment of male infertility: an overview. Asian J Androl. 2011;13(5):690–7.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Garg H, Kumar R. An update on the role of medical treatment including antioxidant therapy in varicocele. Asian J Androl. 2016;18(2):222–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Vane JR, Botting RM. Anti-inflammatory drugs and their mechanism of action. Inflamm Res. 1998;47(Suppl 2):S78–87.

    Article  CAS  PubMed  Google Scholar 

  46. Sheehan MM, Ramasamy R, Lamb DJ. Molecular mechanisms involved in varicocele-associated infertility. J Assist Reprod Genet. 2014;31(5):521–6.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hurtado de Catalfo GE, Ranieri-Casilla A, Marra FA, et al. Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy. Int J Androl. 2007;30(6):519–30.

    Article  CAS  PubMed  Google Scholar 

  48. Mostafa T, Anis TH, El-Nashar A, et al. Varicocelectomy reduces reactive oxygen species levels an increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl. 2001;24(5):261–5.

    Article  CAS  PubMed  Google Scholar 

  49. Yesilli C, Mungan G, Seckiner I, et al. Effect of varicocelectomy on sperm creatine kinase, HspA2 chaperone protein (creatine kinase-M type), LDH, LDH-X, and lipid peroxidation product levels in infertile men with varicocele. Urology. 2005;66(3):610–5.

    Article  PubMed  Google Scholar 

  50. Rodriguez Pena MR, Alescio L, Ressell A, et al. Predictors of improved seminal parameters and fertility after varicocele repair in young adults. Andrologia. 2009;41(5):277–81.

    Article  CAS  PubMed  Google Scholar 

  51. Lacerda JI, Del Guidice PT, da Silva BF, et al. Adolescent varicocele: improved sperm function after varicocelectomy. Fertil Steril. 2011;95(3):944–9.

    Article  Google Scholar 

  52. Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2013;10(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  53. Chen SS, Huang WJ, Chang LS, Wei YH. Attenuation of oxidative stress after varicocelectomy in subfertile patients with varicocele. J Urol. 2008;179(2):639–42.

    Article  CAS  PubMed  Google Scholar 

  54. Cervellione RM, Cervato G, Zampieri N, et al. Effect of varicocelectomy on the plasma oxidative stress parameters. J Pediatric Surg. 2006;41(2):403–6.

    Article  Google Scholar 

  55. Dada R, Bilal Shamsi M, Venkatesh S, et al. Attenuation of oxidative stress & DNA damage in varicocelectomy: implications in infertility management. Indian J Med Res. 2010;132(6):728–30.

    PubMed Central  PubMed  Google Scholar 

  56. Agarwal A, Sharma RK, Desai NR, et al. Role of oxidative stress in pathogenesis of varicocele and infertility. Urology. 2009;73(3):461–9.

    Article  PubMed  Google Scholar 

  57. Shiraishi K, Naito K. Generation of 4-hydroxy-2-nonenal modified proteins in testes predicts improvement in spermatogenesis after varicocelectomy. Fertil Steril. 2006;86(1):233–5.

    Article  CAS  PubMed  Google Scholar 

  58. Redmon JB, Carey P, Pyror JL. Varicocele—the most common cause of male factor infertility? Human Reprod Update. 2002;8(1):53–8.

    Article  Google Scholar 

  59. Chiba K, Fujisawa M. Clinical outcomes of varicocele repair in infertile men: a review. World J Mens Health. 2016;34(2):101–9.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Roque M, Esteves SC. Effect of varicocele repair on sperm DNA fragmentation: a review. Int Urol Nephrol. 2018;50(4):583–603.

    Article  CAS  PubMed  Google Scholar 

  61. Zini A, Azhar R, Baazeem A, Gabriel MS. Effect of microsurgical varicocelectomy on human sperm chromatin and DNA integrity: a prospective trial. Int J Androl. 2011;34(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  62. Smit M, Romijn JC, Wildhagen MF, et al. Decreased sperm DNA fragmentation after surgical varicocelectomy. J Urol. 2013;189(Suppl 1):S146–50.

    PubMed  Google Scholar 

  63. Li F, Yamaguchi K, Okada K, et al. Significant improvement of sperm DNA quality after microsurgical repair of varicocele. Syst Biol Reprod Med. 2012;58(5):274–7.

    Article  PubMed  Google Scholar 

  64. La Vignera S, Condorelli R, Vicari E, et al. Effects of varicocelectomy on sperm DNA fragmentation, mitochondrial function, chromatin condensation, and apoptosis. J Androl. 2012;33(3):389–96.

    Article  CAS  PubMed  Google Scholar 

  65. Ni K, Steger K, Yang H, et al. Sperm protamine mRNA ratio and DNA fragmentation index represent reliable clinical biomarkers for men with varicocele after microsurgical varicocele ligation. J Urol. 2014;192(1):170–6.

    Article  CAS  PubMed  Google Scholar 

  66. Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res. 2017;11(5):IE01–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Rizvi S, Raza sT, Ahmed F, et al. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ Med J. 2014;14(2):e157–65.

    PubMed Central  PubMed  Google Scholar 

  68. Geva E, Bartoov B, Zabludovsky N, et al. The effect of antioxidant treatment on human spermatozoa and fertilization rate in an in vitro fertilization program. Fertil Steril. 1996;66(3):430–4.

    Article  CAS  PubMed  Google Scholar 

  69. Suleiman SA, Ali ME, Zaki ZM, et al. Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl. 1996;17(5):530–7.

    CAS  PubMed  Google Scholar 

  70. Padayatty S, Levine M. Vitamin C physiology: the known and the unknown and Golilocks. Oral Dis. 2016;22(6):463–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Chan AC. Partners in defense, vitamin E and vitamin C. Can J Physiol Pharmacol. 1993;71(9):725–31.

    Article  CAS  PubMed  Google Scholar 

  72. Greco E, Romano S, Iacobelli M, et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod. 2005;20(9):2590–4.

    Article  CAS  PubMed  Google Scholar 

  73. Kodama H, Yamaguchi R, Fukuda J, et al. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68(3):519–24.

    Article  CAS  PubMed  Google Scholar 

  74. Omu AE, Al-Azemi MK, Kehinde EO, et al. Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Med Princ Pract. 2008;17(2):108–16.

    Article  CAS  PubMed  Google Scholar 

  75. Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr. 2001;20(6):591.

    Article  CAS  PubMed  Google Scholar 

  76. Nadjarzadeh A, Sadeghi MR, Amirjannati N, et al. Coenzyme Q10 improves seminal oxidative defense but does not affect on semen parameters in idiopathic oligoasthenoteratozoospermia: a randomized double-blind, placebo controlled trial. J Endocrinol Investig. 2011;34(8):e224–8.

    CAS  Google Scholar 

  77. Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med. 2009;30(1–2):1–12.

    Article  CAS  Google Scholar 

  78. Vernet P, Aitken RJ, Drevet JR. Antioxidant strategies in the epididymis. Mol Cell Endocrinol. 2004;216(1–2):31–9.

    Article  CAS  PubMed  Google Scholar 

  79. Lenzi A, Picardo M, Gandini L, et al. Glutathione treatment of dyspermia: effect on the lipoperoxidation process. Hum Reprod. 1994;9(11):2044–50.

    Article  CAS  PubMed  Google Scholar 

  80. Bremer J. Carnitine—metabolism and functions. Physiol Rev. 1983;63(4):1420–80.

    Article  CAS  PubMed  Google Scholar 

  81. Lenzi A, Lombardo F, Sgro P, et al. Use of carnitine therapy in selected cases of male factor infertility: a double-blind crossover trial. Fertil Steril. 2003;79(2):292–300.

    Article  PubMed  Google Scholar 

  82. Vicari E, La Vignera S, Calogero AE. Antioxidant treatment with carnitines is effective in infertile patients with prostatovesiculoepididymitis and elevated seminal leukocyte concentrations after treatment with nonsteroidal anti-inflammatory compounds. Fertil Steril. 2002;78(6):1203–8.

    Article  PubMed  Google Scholar 

  83. Cavallini G, Ferraretti AP, Gianaroli L, Biagiotti G, Vitali G. Cinnoxicam and L-carnitine/acetyl carnitine treatment for idiopathic and varicocele associated oligoasthenospermia. J Androl. 2004;25(5):761–70.

    Article  CAS  PubMed  Google Scholar 

  84. Showell MG, Mackenzie-Proctor R, Brown J, et al. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2014;(12):CD007411.

    Google Scholar 

  85. Azizollahi G, Azizollahi S, Babaei H, Kianinejad M, Baneshi MR, Nematollahi-mahani SN. Effects of supplement therapy on sperm parameters, protamine content and acrosomal integrity of varicocelectomized subjects. J Assist Reprod Genet. 2013;30(4):593–9.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Chen YW, Niu YH, Wang DQ, et al. Effect of adjuvant drug therapy after varicocelectomy on fertility outcome in males with varicocele-associated infertility: systemic review and meta-analysis. Andrologia. 2018;50(8):e13070.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neel Parekh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naelitz, B., Parekh, N. (2019). Effect of Varicocele Treatment on Oxidative Stress Markers and Sperm DNA Fragmentation. In: Esteves, S., Cho, CL., Majzoub, A., Agarwal, A. (eds) Varicocele and Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-319-79102-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79102-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79101-2

  • Online ISBN: 978-3-319-79102-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics