Skip to main content

Optimal Vehicle Suspensions: A System-Level Study of Potential Benefits and Limitations

  • Chapter
  • First Online:
Book cover Vehicle Dynamics of Modern Passenger Cars

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 582))

Abstract

Fundamental ride and handling aspects of active and semi-active suspensions are presented in a systematic way starting with simple vehicle models as basic building blocks. Optimal, mostly Linear-Quadratic (H2), principles are used to gradually reveal and explore key system characteristics where each additional model Degree-of-Freedom (DoF) brings new insight into potential system benefits and limitations. The chapter concludes with practical considerations and examples including some that go beyond the more traditional ride and handling benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akatsu, Y. N., Fukushima, K., Takahashi, M., Satch, M., & Kawarazaki, Y. (1990). An active suspension employing an electrohydraulic pressure control systems. SAE Paper No. 905123.

    Google Scholar 

  • Alleyne, A. (1997). Improved vehicle performance using combined suspension and braking forces. Vehicle System Dynamics, 27(4), 235–265.

    Article  Google Scholar 

  • Anderson, B. D. O., & Moore, J. B. (1971). Linear optimal control. London: Prentice-Hall International.

    MATH  Google Scholar 

  • Anderson, B. D. O., & Vongpanitlers, S. (1973). Network analysis and synthesis. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Anderson, B. D. O., & Moore, J. B. (1990). Optimal control. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Anderson, Z. M., Morton, S., Jackowski, Z. J., & Bavetta, R. (2013, March 5). Inventors; Levant Power Corporation, assignee. System and method for control for regenerative energy generators. United States patent US 8,392,030.

    Google Scholar 

  • Anonymous. (1972). A guide to the evaluation of human exposure to whole body vibration. ISO/DIS 2631, International Standard Organization, New York.

    Google Scholar 

  • Anonymous. (2007). FMVSS No. 126. Electronic Stability Control Systems. National Center for Statistics and Analysis.

    Google Scholar 

  • Anonymous. (2017a). https://en.wikipedia.org/wiki/Active_Body_Control.

  • Anonymous. (2017b). http://www.incose.org/AboutSE/WhatIsSE.

  • Anonymous. (2017c). https://en.wikipedia.org/wiki/V-Model.

  • Asgari, J., & Hrovat, D. ( 1991). Bond graph models of vehicle 2D ride and handling dynamics. In Proceedings of the 1991 ASME Winter Annual Meeting, Publication DE-Vol. 40 (Advanced Automotive Technologies 1991), Atlanta, December 1991.

    Google Scholar 

  • Athans, M., & Falb, P. L. (1966). Optimal control. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Barak, P. (1985). On a ride control algorithm for heave, pitch and roll motions of a motor vehicle. Ph.D. Thesis, Wayne State University, Detroit, MI.

    Google Scholar 

  • Barak, P., & Hrovat, D. (1988). Application of the LQG approach to design of an automotive suspension for 3D vehicle models. In Proceedings of the International Conference on Advanced Suspensions. London, UK: IMECHE.

    Google Scholar 

  • Bendat, J. S., & Piersol, A. G. (1971). Random data. New York: Wiley.

    MATH  Google Scholar 

  • Bender, E. K. (1967a). Optimization of the random vibration characteristics of vehicle suspensions using random process theory. ScD Thesis, MIT, Cambridge, MA.

    Google Scholar 

  • Bender, E. K. (1967b). Optimum linear control of random vibrations. In Proceedings of the JACC (pp. 135–143).

    Google Scholar 

  • Bender, E. K., Karnopp, D. C., & Paul, I. L. (1967). On the optimization of vehicle suspensions using random process theory. ASME Paper No. 67-Tran-12.

    Google Scholar 

  • Bodie, M. O., & Hac, A. Closed loop yaw control of vehicles using magneto-rheological dampers. SAE Technical Paper No. 2000-01-0107.

    Google Scholar 

  • Carbonaro, O. (1990). Hydractive suspension electronic control system. SAE Paper No. 905101. In Proceedings of the 23rd FISITA Congress, Torino, Italy (pp. 779–783).

    Google Scholar 

  • Chalasani, R. M. (1986). Ride performance potential of active suspension systems—Part II: Comprehensive analysis based on full-car model. ASME Monograph AMD-80, DSC-1.

    Google Scholar 

  • Chance, B. K. (1984). Continental Mark VII/Lincoln continental electronically-controlled air suspension (EAS) system. SAE Technical Paper 840342.

    Google Scholar 

  • Chatillon, M., Jezequel, L., Coutant, P., & Baggio, P. (2006). Hierarchical optimization of the design parameters of a vehicle suspension system. Vehicle System Dynamics, 44(11), 817–839.

    Article  Google Scholar 

  • Chen, H., Sun, P., & Guo, K. (2003). A multi-objective control design for active suspensions with hard constraints. Proceedings of the American Control Conference, 5, 4371–4376.

    Google Scholar 

  • Clarke, P. (2012). Mass dampers. Retrieved August 22, 2012, from https://racemagazine.com.au/editorial/mass-dampers.

  • Crosby, M., & Karnopp, D. C. (1973). The active damper—A new concept for shock and vibration control. Shock and Vibration Bulletin, Part H (Washington, D.C.).

    Google Scholar 

  • Čorić, M., Deur, J., Xu, L., Tseng, H. E., & Hrovat, D. (2016a). Optimization of active suspension control inputs for improved vehicle ride performance. Vehicle System Dynamics, 54(7), 1004–1030.

    Article  Google Scholar 

  • Čorić, M., Deur, J., Kasać, J., Tseng, H. E., & Hrovat, D. (2016b). Optimization of active suspension control inputs for improved vehicle handling performance. Vehicle System Dynamics, 54(11), 1574–1600.

    Article  Google Scholar 

  • Čorić, M., Deur, J., Xu, L., Tseng, H. E., & Hrovat, D. (2017). Optimisation of active suspension control inputs for improved active safety systems performance. Vehicle System Dynamics. https://doi.org/10.1080/00423114.2017.1340652.

    Article  Google Scholar 

  • Davis, R. I. & Patil, P. B. (1991). Electrically powered active suspension for a vehicle. US Patent 5,060,959.

    Google Scholar 

  • Deur, J., Čorić, M., Kasać, J., Assadian, F., & Hrovat, D. (2014). Application of computational optimal control to vehicle dynamics. In H. Waschl et al. (Eds.), Optimization and optimal control in automotive systems (pp. 131–145). Cham: Springer.

    Chapter  Google Scholar 

  • Dodds, C. J., & Robson, J. D. (1973). The description of road surface roughness. Journal of Sound and Vibration, 31(2), 175–183.

    Article  Google Scholar 

  • Doyle, J. (1978). Guaranteed margins for LQG regulators. IEEE Transaction on Automatic Control, 23(4), 756–757.

    Article  Google Scholar 

  • Edmunds, D. (2012). 2012 Tesla Model S signature performance suspension walkaround. [Online]. Retrieved September 26, 2012, from http://www.edmunds.com/car-reviews/track-tests/2012-tesla-model-s-signature-performance-suspension-walkaround.html.

  • Elbeheiry, S. A., Karnopp, D. C., Elaraby, M. E., & Abdelraaouf, A. M. (1995). Advanced ground vehicle suspension systems—A classified bibliography. Vehicle System Dynamics, 24, 231–258.

    Article  Google Scholar 

  • Evers, W.-J. (2010, May). Improving driver comfort in commercial vehicles. Ph.D. Thesis, TU Eindhoven, Eindhoven.

    Google Scholar 

  • Evers, W. J., Besselink, I. J. M., van der Knaap, A. C. M., & Nijmeijer, H. (2008). Analysis of a variable geometry active suspension. In Proceeding of International Symposium on Advanced Vehicle Control (AVEC) (pp. 350–355).

    Google Scholar 

  • Fearnsides, J. J., Hedrick, J. K., & Firouztash, H. (1974). Specification of ride quality criteria for transportation systems: The state of the art and new approach. High Speed Ground Transportation Journal, 8(2), 125–132.

    Google Scholar 

  • Fridman, E. (2014). Introduction to time delay systems: Analysis and control. Birkhauser.

    Google Scholar 

  • Giorgetti, N., Bemporad, A., Tseng, H. E., & Hrovat, D. (2006). Hybrid model predictive control application towards optimal semi-active suspension. International Journal of Control, 79(5), 521–533.

    Article  MathSciNet  Google Scholar 

  • Gobbi, M., & Mastinu, G. (2001). Analytical description and optimization of the dynamic behaviour of passively suspended road vehicles. Journal of Sound and Vibration, 245(3), 457–481.

    Article  Google Scholar 

  • Goran, M., & Smith, R. (1996). Insights gained from active suspension development. In Proceedings of the 26th FISITA Congress (pp. 2486–2514).

    Google Scholar 

  • Goran, M. B., Bachrach, B., & Smith, R. E. (1992). The design and development of a broad bandwidth active suspension concept car. SAE Paper No. 925100. In Proceedings of the 24th FISITA Congress, London, UK (pp. 231–252).

    Google Scholar 

  • Goto, T., Kizu, R., Sato, H., Ohnuma, T., & Ohno, H. (1990). Toyota active suspension control for the 1989 Celica. In Proceedings of the 22nd ISATA Conference, Paper 900007 (pp. 857–864).

    Google Scholar 

  • Gysen, B. L., Paulides, J. J., Janssen, J. L., & Lomonova, E. A. (2010). Active electromagnetic suspension system for improved vehicle dynamics. IEEE Transactions on Vehicular Technology, 59(3), 1156–1163.

    Article  Google Scholar 

  • Hac, A. (1992). Optimal linear preview control of active vehicle suspension. Vehicle System Dynamics, 21, 167–195.

    Article  Google Scholar 

  • Hancock, M. (2006). Vehicle handling control using active differentials. Ph.D. Thesis, University of Loughborough, UK.

    Google Scholar 

  • Hedrick, J. K., & Butsuen, T. (1990). Invariant properties of automotive suspensions. Proceedings of the Institution of Mechanical Engineers, 204, 21–27.

    Article  Google Scholar 

  • How, J. P., & Frazzoli, E. (2010). Feedback control systems. On line course, Section 19, at https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-30-feedback-control-systems-fall-2010/.

  • Hrovat, D. (1982). A class of active LQG optimal actuators. Automatica, 18(1), 117–119.

    Article  Google Scholar 

  • Hrovat, D. (1988). Influence of unsprung weight on vehicle ride quality. Journal of Sound and Vibration, 124(3), 497–516.

    Article  Google Scholar 

  • Hrovat, D. (1990). Optimal active suspension structures for quarter-car vehicle models. Automatica, 26(5), 845–860.

    Article  Google Scholar 

  • Hrovat, D. (1991a). Optimal suspension performance for 2-D vehicle models. Journal of Sound and Vibration, 146(1), 93–110.

    Article  Google Scholar 

  • Hrovat, D. (1991b, June). Optimal active suspensions for 3D vehicle models. In Proceedings of the 1991 American Control Conference, Boston (pp. 1534–1541).

    Google Scholar 

  • Hrovat, D. (1993, June) Applications of optimal control to advanced automotive suspension design. Special Issue of the ASME Journal of Dynamic Systems Measurement and Control commemorating 50 years of the DSC division.

    Google Scholar 

  • Hrovat, D. (1997). Survey of advanced suspension developments and related optimal control applications. Automatica, 33(10), 1781–1817.

    Article  MathSciNet  Google Scholar 

  • Hrovat, D. (2014). Active and semi-active suspension control. In G. Mastinu & M. Plöchl (Eds.), Road and off-road vehicle system dynamics handbook. CRC Press.

    Chapter  Google Scholar 

  • Hrovat, D., & Hubbard, M. (1981). Optimum vehicle suspensions minimizing RMS rattle-space, sprung-mass acceleration and Jerk. ASME Journal of Dynamic Systems, Measurement and Control, 103(3).

    Article  Google Scholar 

  • Hrovat, D., & Margolis, D. L. (1975). Realistic road-track systems simulation using digital computers. In Proceedings of the Winter Computer Simulation Conference, Sacramento, CA.

    Google Scholar 

  • Hrovat, D., Asgari, J., & Fodor, M. (2000). Automotive mechatronic systems. In C. T. Leondes (Ed.), Mechatronic systems, techniques and applications: Volume 2—Transportation and vehicle systems (pp. 1–98). Gordon and Breach Science Publishers, 2000.

    Google Scholar 

  • Hrovat, D., Margolis, D. L., & Hubbard, M. (1988, September). An approach toward the optimal semi-active suspension. ASME Journal of Dynamic Systems, Measurement and Control, 110(3).

    Article  Google Scholar 

  • Hrovat, D., Jankovic, M., Kolmanovsky, I., Magner, S., & Yanakiev, D. (2011a). Powertrain controls. In W. S. Levine (Ed.), The control handbook: Control system applications (2nd ed., pp. 2.1–2.48). CRC Press.

    Google Scholar 

  • Hrovat, D., Tseng, H. E., Lu, J., Deur, J., Assadian, F., Borrelli, F., & Falcone, P. (2011b). Vehicle controls. In W. S. Levine (Ed.), The control handbook: Control system applications (2nd ed., pp. 3.1–3.60). CRC Press.

    Google Scholar 

  • Hrovat, D., Di Cairano, S., Tseng, H. E., & Kolmanovsky, I. V. (2012, October). The development of model predictive control in automotive industry: A survey. In Proceedings of the 2012 IEEE International Conference on Control Applications (CCA), Dubrovnik, Croatia (pp. 295–302).

    Google Scholar 

  • Karlsson, N., Ricci, M., Hrovat, D., & Dahleh, M. (2000). A suboptimal nonlinear active suspension. Proceedings of the 2000 American Control Conference (Vol. 6, pp. 4036–4040).

    Google Scholar 

  • Karlsson, N., Teel, A., & Hrovat, D. (2001a). A backstepping approach to control of active suspensions. Proceedings of the 40th IEEE Conference on Decision and Control (Vol. 5, pp. 4170–4175).

    Google Scholar 

  • Karlsson, N., Dahleh, M., & Hrovat, D. (2001b). Nonlinear active suspension with preview. Proceedings of the 2001 American Control Conference (Vol. 4, 2640–2645).

    Google Scholar 

  • Karnopp, D. C. (1968). Continuum model study of preview effects in actively suspended long trains. Journal of the Franklin Institute, 285(4), 251–260.

    Article  MathSciNet  Google Scholar 

  • Karnopp, D. C. (1987). Active suspension based on fast load levelers. Vehicle System Dynamics, 16, 355–380.

    Article  Google Scholar 

  • Karnopp, D. C., & Rosenberg, R. C. (1970). Application of bond graph techniques to the study of vehicle drive line dynamics. ASME Journal of Basic Engineering, 355–362.

    Article  Google Scholar 

  • Karnopp, D. C., & Trikha, A. K. (1969). A comparative study of optimization techniques for shock and vibration isolation. ASME Journal of Engineering for Industry, 91(4), 1128–1132.

    Article  Google Scholar 

  • Karnopp, D. C., Margolis, D. L., & Rosenberg, R. C. (2012). System dynamics: A unified approach (5th ed.). Hoboken, New Jersey: Wiley.

    Book  Google Scholar 

  • Korosec, K. (2014). Potholes and Tesla’s Model S: Never the twain shall meet [Online]. Retrieved September 19, 2014, from http://fortune.com/2014/09/19/tesla-model-s-suspension-upgrade/.

  • Krtolica, R., & Hrovat, D. (1992, April). Optimal active suspension control based on a half-car model: An analytical solution. IEEE Transactions on Automatic Control, (37).

    Google Scholar 

  • Kwakernaak, H., & Sivan, R. (1972). Linear optimal control systems. New York: Wiley Interscience.

    MATH  Google Scholar 

  • Levine, W. S. (Ed.). (2011). The control handbook (2nd ed.). CRC Press, 2011.

    Google Scholar 

  • Margolis, D. L. (1978). Bond graphs, normal modes, and vehicular structures. Vehicle System Dynamics, 7(1), 49–63.

    Article  Google Scholar 

  • Mastinu, G., & Ploechl, M. (2014). Road and off-road vehicle system dynamics handbook, Chapters 22 and 31. CRC Press.

    Google Scholar 

  • Merker, T., Gaston, G., & Olaf, T. (2002). Active Body Control (ABC) the DaimlerChrysler active suspension and damping system. SAE Technical Paper 2002-21-0054.

    Google Scholar 

  • Moran, T. (2004, October 11). A new suspension’s magnetic appeal. New York Times.

    Google Scholar 

  • Nastasić, Ž., & Deák Jahn, G. (2002). Citroen technical guide [Online]. http://www.citroenkerho.fi/xantia/pdf/tekniikka/Tekniikkaopas.pdf.

  • Nicolas, R. (2014). Intelligent suspension system of Lincoln MKZ help mitigating pothole damage [Online]. Retrieved March 20, 2014, from http://www.car-engineer.com/intelligent-suspension-system-lincoln-mkz-help-mitigating-pothole-damage/.

  • Novak, M., & Valasek, M. (1996). A new concept of semi-active control of truck’s suspension. In Proceedings of AVEC’96 (pp. 141–152).

    Google Scholar 

  • Pacejka, H. B. (2006). Tyre and vehicle dynamics. Amsterdam: Elsevier.

    MATH  Google Scholar 

  • Papageorgiou, C., & Smith, M. C. (2006). Positive real synthesis using matrix inequalities for mechanical networks: Application to vehicle suspension. IEEE Transactions on Control Systems Technology, 14(3), 423–435.

    Article  Google Scholar 

  • Pevsner, J. M. (1957, January). Equalizing types of suspension. Automobile Engineer.

    Google Scholar 

  • Pilbeam, R. C., & Sharp, R. S. (1993). On the preview control of limited bandwidth vehicle suspensions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Engineering, 207(D3), 185–194.

    Google Scholar 

  • Rajamani. (2012). Vehicle dynamics and control (2nd ed.). Springer.

    Google Scholar 

  • Richard, J. P. (2003). Time-delay systems: An overview of some recent advances and open problems. Automatica, 39(10), 1667–1694.

    Article  MathSciNet  Google Scholar 

  • Rill, G. (1983). The influence of correlated random road excitation processes on vehicle vibration. In Proceedings of the 8th IAVSD Symposium on the Dynamics of Vehicle on Roads and on Railway Tracks, Cambridge, Massachusetts (pp. 449–459).

    Article  Google Scholar 

  • Saberi, A., & Sannuti, P. (1987). Cheap and singular controls for linear quadratic regulators. IEEE Transaction on Automatic Control, 32, 208–219.

    Article  MathSciNet  Google Scholar 

  • Safonov, M., & Athans, M. (1977). Gain and phase margins for multiloop LQG regulators. IEEE Transactions on Automatic Control, 22(2), 361–368.

    Article  MathSciNet  Google Scholar 

  • Sage, A. P., & White, C. C. (1977). Optimum system control (2nd ed.). Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Scarborough, C. (2011). Lotus Renault GP: Fluid Inerter. Retrieved November 29, 2011, from https://scarbsf1.wordpress.com/2011/11/29/lotus-renault-gp-fluid-inerter/.

  • Scheibe, F., & Smith, M. C. (2009). Analytical solutions for optimal ride comfort and tyre grip for passive vehicle suspensions. Vehicle System Dynamics, 47(10), 1229–1252.

    Article  Google Scholar 

  • Sevin, E., & Pilkey, W. D. (1971). Optimum shock and vibration isolation. The Shock and Vibration Information Center, United States Department of Defense.

    Google Scholar 

  • Sharp, R. S. (1998). Variable geometry active suspension for cars. Computing & Control Engineering Journal, 9(5), 217–222.

    Article  Google Scholar 

  • Sharp, R. S., & Crolla, D. A. (1987). Road vehicle suspension design—A review. Vehicle System Dynamics, 16(3), 167–192.

    Article  Google Scholar 

  • Sherman, D. (2011). Tenneco’s Kinetic Suspension, the Anti Anti-Roll Bar, Car and Driver. July 2011 issue.

    Google Scholar 

  • Smith, C. C. (1976). On using the ISO standard to evaluate the ride quality of broad-band vibration spectra in transportation vehicles. ASME J. of Dynamic Systems, Measurement, and Control, 98(4), 440–443.

    Article  Google Scholar 

  • Smith, C. C., McGehee, D. Y., Healey, A. J. (1978). The prediction of passenger riding comfort from acceleration data. ASME Journal of Dynamic Systems, Measurement, and Control, 100, 34–41.

    Article  Google Scholar 

  • Smith, M. C. (2002). Synthesis of mechanical networks: The inerter. IEEE Transactions on Automatic Control, 47(10), 1648–1662.

    Article  MathSciNet  Google Scholar 

  • Smith, M. C. (2011). Control for Formula One. In T. Samad & A. Annaswamy (Eds.), The Impact of Control Technology. IEEE Control Systems Society.

    Google Scholar 

  • Smith, M. C., & Walker, G. W. (2000). Performance limitations and constraints for active and passive suspensions: A mechanical multi-port approach. Vehicle System Dynamics, 33(3), 137–168.

    Article  Google Scholar 

  • Smith, M. C., & Wang, F. C. (2004). Performance benefits in passive vehicle suspensions employing inerters. Vehicle System Dynamics, 42(4), 235–257.

    Article  Google Scholar 

  • Smith, R. E. (1982). Amplitude characteristics of Dearborn Test Track roadways. Ford Motor Company memorandum, SRM-82-26, Dearborn, MI.

    Google Scholar 

  • Smith, R. E., & Sigman, D. R. (1981). Experimental verification of a linear rigid body model. Ford Motor Company Research Report.

    Google Scholar 

  • Streiter, I. R. (2008). Active preview suspension system. ATZ Worldwide, 110(5), 4–11.

    Article  Google Scholar 

  • Thompson, A. G. (1971). Design of active suspensions. Proceedings of the Institution of Mechanical Engineers, 185, 553–563.

    Article  Google Scholar 

  • Tseng, H. E., & Hedrick, J. K. (1994). Semi-active control laws-optimal and sub-optimal. Vehicle System Dynamics, 23(1), 545–569.

    Article  Google Scholar 

  • Tseng, H. E., & Hrovat, D. (2015). State of the art survey: Active and semi-active suspension control. Vehicle System Dynamics, 53(7), 1034–1062.

    Article  Google Scholar 

  • Tseng, H. E., Ashrafi, B., Madau, D., et al. (1999). The development of vehicle stability control at Ford. IEEE ASME Transaction on Mechatronics, 4(3), 223–234.

    Article  Google Scholar 

  • Tumova, G. (2004). Delft Active Suspension (DAS-II). Research Report OND1281145 [Online]. http://www.narcis.nl/research/RecordID/OND1281145.

  • Ulsoy, A. G., Hrovat, D., & Tseng, T. (1994). Stability robustness of LQ and LQG active suspensions. ASME Journal of Dynamic Systems, Measurement and Control, 116(1), 123–131.

    Article  Google Scholar 

  • Ulsoy, A. G., Peng, H., & Cakmakci, M. (2012). Automotive control systems. Cambridge University Press.

    Google Scholar 

  • van der Knapp, A. (1989). Design of a low power anti-roll/pitch system for a passenger car. Delft University of Technology, Vehicle Research Laboratory, Report 89.3VT.2628.

    Google Scholar 

  • Valasek, M., Kejval, J., Maca, J., & Smilauer, V. (2003). Bridge-friendly truck suspension. In Proceedings of the 18th IAVSD Symposium (vol. 41, pp. 13–22).

    Google Scholar 

  • Valášek, M., Novak, M., Šika, Z., & Vaculin, O. (1997). Extended ground-hook-new concept of semi-active control of truck’s suspension. Vehicle System Dynamics, 27(5–6), 289–303.

    Article  Google Scholar 

  • Valasek, M., Sveda, J., & Sika, Z. (1998). Soil-friendly off-road suspension. Vehicle System Dynamics, 44(sup1), 479–488.

    Article  Google Scholar 

  • Venhovens, P. T., & van der Knaap, A. M. (1995). Delft active suspension (DAS) background theory and physical realization. Smart Vehicles, 139–165.

    Google Scholar 

  • Venhovens, P., van der Knaap, A., & Pacejka, H. (1992). Semiactive vibration and attitude control. In Proceedings of the International Symposium on Advanced Vehicle Control (AVEC) (pp. 170–175).

    Google Scholar 

  • Wada, T. (2016). Motion sickness in automated vehicles. In Proceedings of the AVEC ’16 Conference, Munich, Germany.

    Chapter  Google Scholar 

  • Watanabe, Y., & Sharp, R. S. (1999). Mechanical and control design of a variable geometry active suspension system. Vehicle System Dynamics, 32(2–3), 217–235.

    Article  Google Scholar 

  • Weisstein, E. W. (2017). Fourier transform. From MathWorld—A Wolfram web resource. http://mathworld.wolfram.com/FourierTransform.html, 2017.

  • Xu, L., Tseng, H. E., & Hrovat, D. (2016, July). Hybrid model predictive control of active suspension with travel limits and nonlinear tire contact force. In Proceedings of the 2016 ACC, Boston, MA.

    Google Scholar 

  • Young, J. W., & Wormley, D. N. (1973). Optimization of linear vehicle suspensions subjected to simultaneous guideway and external force disturbances. ASME Journal of Dynamic Systems, Measurement, and Control, 213–219.

    Article  Google Scholar 

  • van Zanten, A. (2014). Control of horizontal vehicle motion. In G. Mastinu & M. Ploechl (Eds.), Road and off-road vehicle system dynamics handbook (pp. 1094–1174). Boca Raton, FL: CRC Press.

    Google Scholar 

Download references

Acknowledgements

Assistance of Dr. Li Xu and Dr. Mirko Čorić in preparation of these class notes and related slides, and the help of Professor Rill with some figures, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davor Hrovat .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix we establish the LQG-optimal trade-off line for the 1 DoF model of Fig. 7. We start with the covariance (Lyapunov) equation

$$ \left( {A - BK} \right)X + X\left( {A - BK} \right)^{T} = - G\Gamma G^{T} $$
(61)

where in our case GT= [−1 0] and Γ = 1 since we are dealing with normalized covariance,

$$ X = \left[ {\begin{array}{*{20}c} {X_{1} } & {X_{3} } \\ {X_{3} } & {X_{2} } \\ \end{array} } \right] $$
(62)

where,

$$ X_{1} = \left( {X_{1,rms,norm} } \right)^{2} , {\text{ and }}X_{2} = \left( {X_{2,rms,norm} } \right)^{2} $$
(63)

Define

$$ A_{CL} = A - BK = \left[ {\begin{array}{*{20}c} 0 & 1 \\ { - k_{1} } & { - k_{2} } \\ \end{array} } \right] $$
(64)

with optimal control gains

$$ k_{1} = r^{ - 1/2} ,\quad \, k_{2}^{{}} = \sqrt 2 r^{ - 1/4} $$
(65)

then the covariance equation becomes

$$ A_{CL} X + XA_{CL}^{T} = -GG^{T} $$
(66)

or

$$ \left[ {\begin{array}{*{20}c} {2X_{3} } & {X_{2} - k_{1} X_{1} - k_{2} X_{3} } \\ {X_{2} - k_{1} X_{1} - k_{2} X_{3} } & { - 2k_{1} X_{3} - 2k_{2} X_{2} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {-1} & 0 \\ 0 & 0 \\ \end{array} } \right] $$
(67)

Solving for X1, X2, and X3,

$$ X_{1} = \frac{3}{2\sqrt 2 }r^{1/4} ,\quad X_{2} = \frac{1}{2\sqrt 2 }r^{-1/4} ,\quad \, X_{3} = -\frac{1}{2} $$
(68)

from where we get the normalized rms rattlespace

$$ x_{1,rms,norm} = \sqrt {X_{1} } = \frac{\sqrt 3 }{{\sqrt {2\sqrt 2 } }}r^{1/8} $$
(69)

The normalized rms sprung mass acceleration then follows from

$$ U = KXK^{T} = \frac{1}{2\sqrt 2 }r^{ - 3/4} $$
(70)

so that

$$ U = \frac{27}{64}X_{1}^{ - 3} $$
(71)

resulting in the normalized rms acceleration versus rattlespace equation

$$ u_{rms,norm} = \frac{3\sqrt 3 }{8}x_{1,rms,norm}^{ - 3} $$
(72)

which was used to plot the corresponding optimal trade-off line in Fig. 13.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hrovat, D., Eric Tseng, H., Deur, J. (2019). Optimal Vehicle Suspensions: A System-Level Study of Potential Benefits and Limitations. In: Lugner, P. (eds) Vehicle Dynamics of Modern Passenger Cars. CISM International Centre for Mechanical Sciences, vol 582. Springer, Cham. https://doi.org/10.1007/978-3-319-79008-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79008-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79007-7

  • Online ISBN: 978-3-319-79008-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics