Chapter 7 )
All Realizations All the Time Check for

Clayton V. Deutsch

Abstract Geostatistical simulation of mineral deposits is becoming commonplace.
The methodology and software are well established and professionals have access
to the training and checking steps required for reliable application. Managing
multiple realizations, however, remains daunting and unclear for many: (1) the
non-uniqueness of multiple realizations is disturbing; (2) many calculations
including mine planning algorithms are aimed at a single block model; and (3) there
are concerns of excessive computational requirements. The correct approach to
managing multiple realizations is reviewed: consider all realizations all the time and
base decisions on the appropriate expected value. The principles of simulation and
decision making are reviewed for resource management.

7.1 Introduction

In the context of modern geostatistics, Monte Carlo Simulation (MCS) or simply
simulation can be summarized by (1) the formulation of a problem with input
variables, a transfer function and response variables, (2) the simulation of realiza-
tions of the input variables, (3) the application of the transfer function to compute
the response variables of interest, and (4) the assembly of the simulated response
variables into a probability distribution. The distribution of response variables can
be used to understand uncertainty and, perhaps, for decision making.

The input variables could be the rock type and grade on a suitable grid, the
transfer function could be the calculation of resources and the response variables
could be the resources or reserves expressed as tonnages, grade and quantity of
metal. A comprehensive simulation study could expand the input variables to
include modeling parameters, price, costs and other economic and engineering
parameters. The transfer function could be a model of the entire mine planning and
economic forecasting process. The response variables could be key performance
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indicators such as net present value. The probability distributions of the input
variables must be established prior to simulation; typically by a mathematical model
such as the multivariate Gaussian model. The transfer function must be known to
process realizations of the input variables to response variables of interest.

The key operation in simulation is the drawing of realizations from a specified
probability distribution. This is done in a fair manner for unbiased results. Pseu-
dorandom number generators generate numbers that have properties very close to
random numbers, but are indexed to a seed. These numbers are uniform between 0
and 1, yet our input distributions are rarely uniform so the corresponding quantile is
drawn from the distribution we are simulating from, z = F ~!(r) where F(e) is the
cumulative distribution, z is the simulated value and r is the random number.

Consider a simple example of three dice. The input variables are the three
numbers showing on the faces of three fair cubic dice. The cumulative distribution
of each input variable has six equal steps. The transfer function is the summation
operator. The response is the sum. As illustrated on Fig. 7.1, one realization is
generated by three random numbers, e.g., 0.69, 0.062 and 0.78 leading to a real-
ization of 5, 1 and 5. Simulation is repeated for multiple realizations. The response
distribution shown is the result for 100 realizations. There are many points that
could be reinforced from this small example. The distribution of the input variables
must be known prior to simulation; simulation is primarily transferring input
variable uncertainty through a transfer function to response variable uncertainty.
The space of uncertainty in this example is only 6° = 216, which is a very small
number, but the space of uncertainty is practically infinite in geological modeling
where there are many variables at many locations. Categorical variables require an
arbitrary ordering. Finally, it would be wrong to focus on one realization; in this
example we should not conclude that the first and third dice are likely high numbers
and the second die is a low number. We only understand the result of simulation by
considering an ensemble of realizations. This is a critical point.

Although many theoreticians and practitioners understand this point, it is not
emphasized enough. Most software is aimed at processing one block model at a
time. Resources are often presented as a single value instead of a distribution.
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Fig. 7.1 Simulation of the outcome on three dice (left). Histogram of the sum of the outcomes on
three dice (right). One hundred realizations are shown
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There are many examples of experimental mathematics in history. The scientists
on the Manhattan Project are credited with the formulation and popularization of
Monte Carlo simulation (MCS) or simply simulation. There are interesting his-
torical references and internet resources. The framework of transferring input
uncertainty to response variable uncertainty is often referred to as simulation.
Adjectives such as Monte Carlo, stochastic or conditional are sometimes added.
The outcomes of simulating are called simulations or realizations.

The pioneers of simulation suspected where we would take the method. The
closing paragraph in Hammersley and Handscomb (1964) is telling: Usually there
are many nodes and possible paths, so many that a complete enumeration of the
situation is impossible. This suggests a fruitful field for sampling and search
procedures, but as yet little Monte Carlo work has been done here. There are
challenging problems here for research into Monte Carlo techniques on multi-
variable problems. They knew we had to sample a reasonable set of realizations
from the practically infinite space of uncertainty. They knew we would be chal-
lenged by multiple dependent variables. They did not know that 50 years later
many practitioners would still struggle managing an ensemble of realizations.

This chapter is organized into five main sections supporting a case to use all
realizations all the time. First, some principles of simulation are presented to set the
context. Second, principles of decision making in presence of uncertainty are dis-
cussed to establish that earth scientists are not alone. Thirdly, some details of
geostatistical simulation are presented to highlight important differences from
simulation of independent variables. Fourthly, some details of resource decision
making are presented to highlight important differences from the general principles
including the information effect. Finally, some possible alternatives to using all
realizations all the time are reviewed. A case is made to consider the correct
approach, that is, consider all realizations all the time and base decisions on the
appropriate expected value when required.

7.2 Simulation

In the early days of simulation there was a particular concern related to the pseu-
dorandom numbers applied in the simulation. A large part of early texts on simu-
lation is devoted to the generation of pseudorandom numbers. This concern has
largely been addressed and there is little practical concern with the pseudorandom
number generators used in most software.

Another concern is in replacing the reality with a numerical model. Many early
applications of Monte Carlo simulation were directed at solving integration and
other equations where the transfer function is a very close representation of the
physical situation. Examples of well represented physical systems are the study of
radiation shielding and reactor criticality. The simulation tracks simulated particles
through collisions where the particles are absorbed, scattered or split according to
physical principles. There were few concerns about this simulation due to the close
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correspondence between the numerical setup and the physical reality. Increasingly,
complex non-linear systems are modeled with empirical statistical models causing
more concern.

It is impossible to model the details of the natural geological processes that led to
the deposit under study. Empirical statistical models are required. Geostatistical
models do not represent the original depositional and diagenetic processes.
Although all models are wrong (Box and Draper 1987) they can be useful if
assembled carefully with established workflows and appropriate checking.

The premise of simulation is to construct many realizations that are equally
likely to be drawn. Realizations and responses more probable than others will be
drawn more often. A fundamental principle of simulation is to consider many
realizations. One hundred realizations may not be enough. The average of the one
hundred realizations on Fig. 7.1 was 9.6, yet the true expected response for that
particular process is 10.5. This suggests that the number of realizations should be
quite large. Indeed, early practitioners of simulation considered that thousands of
realizations were required unless some form of stratified or directed sampling could
be implemented. Of course, the problems considered early on were small compared
to the complexity of modern geological modeling where 10s of variables at 10s of
millions of locations are considered. In many cases, the professional and compu-
tational effort of generating more than 100s of realizations would be better spent
improving the model. This claim is supported by two observations: (1) the vari-
ability at multiple locations partially cancels out, and (2) there is too much
uncertainty in the model to expend resources on thousands of realizations.

Another fundamental principle of simulation is that all realizations are consid-
ered in downstream calculations. One application is to pass all realizations through
the transfer function to construct a distribution of responses, for example, resource
estimates. The realizations could be passed through a decision tree structure to help
support a decision. Finally, the realizations could all be used in the optimization of
decision variables. Incorrect or suboptimal decisions could be taken if too few
realizations are considered.

The concept or ranking and choosing a few realizations is motivated by the large
computational cost running realizations through a complex full physics transfer
function. The processing the realizations through a simplified transfer function
could rank the realizations and permit choosing a smaller number for the complex
full physics transfer function. Decision making and optimization applied with one
or a few realizations leads to over fitting to those realizations.

In some cases, the transfer function and decision variables are known. For
example, calculating the recoverable reserves above a specified economic cutoff. In
other cases, aspects of the decision must be optimized. For example, deciding the
ultimate pit limits, choosing drill hole locations or deciding on the destination of
mined material. If the transfer function and decision variables are known, then a
probability distribution of each critical response variable is assembled from the
realizations where the result of each realization is equally weighted. This distri-
bution provides a direct understanding of uncertainty. There are many ways of
summarizing the uncertainty. Considering the 0.1, 0.5 and 0.9 quantiles is common
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in petroleum applications, but considering the probability to be within 15% of
expected is a reasonable measure of uncertainty.
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If aspects of the decision are not finalized, then decision making and opti-
mization must be considered before calculating a distribution of the critical
response variables.

7.3 Decision Making

Decision making in presence of uncertainty has long been studied (Bernoulli 1954;
Kochenderfer 2015). The general framework of decision making could be sum-
marized by (1) define clearly stated objectives within a value system, that is, a
measure of utility (often profit), (2) enumerate the alternative decisions that could
be taken—perhaps in a decision tree, (3) compute the expected utility for all
alternatives, and (4) choose the alternative that maximizes expected utility. This
framework becomes confounded with large one-time decisions or significant
unknown unknowns that defy straightforward quantification. Grade control and
mine planning decisions are made repeatedly within a clear economic framework.

Consider a recently loaded truck. The expected profit of the material if the truck
goes to the mill would be computed by the average over all realizations, say $6.75
per tonne. The expected profit if the material goes to the waste dump is the average
of a similar calculation over all realizations, say —$2.00 per tonne. With no other
information, the truck should be sent to the mill. There are complicating factors
including sequencing, stockpiling, limited milling capacity, but the principle stands.
Decisions should be based on expected values as late as possible.

Decisions are based on the average over all realizations and not on one particular
realization. The realizations are simply a means to represent uncertainty. One
realization should not be chosen for decision making because that would mean
ignoring other equally likely possibilities; the expectation is the only way to resolve
the ambiguity of multiple realizations. The decision is also made as late as possible.
Calling a block of material in a long term resource model ore may be convenient as
an interim decision for planning purposes, but this decision would certainly be
revisited with production sampling at the time of grade control.



136 C. V. Deutsch

There is another aspect to taking the expected value as late as possible. The
expected value is calculated with the last numbers considered: utility or profit. The
expected value should not be taken earlier. The correct decision would not always
be found if the grades were averaged and the decision based on the utility computed
from the expected grade. Many calculations are non-linear and the utility computed
on the average of realizations is not the average (expected) utility computed on the
realizations.

The distributions of payoff/utility for each possible decision are evaluated to
determine the best decision. Some decisions may be completely dominated by
others, that is, the best possible payoff of a dominated decision is less than the worst
payoff of an alternative. All dominated decisions should be rejected. Some decisions
are stochastically dominated by others (Levy 2016). That is, each quantile on the
payoff distribution is less than the same quantile on an alternative. Decision makers
should also reject all stochastically dominated decisions. The expected utility would
be considered when multiple decisions remain to establish the optimal one.

A challenge in many geological resource application problems is that the deci-
sion involves many different options. The precise sequence of extraction or the
position of all production wells is combinatorial and all options cannot be con-
sidered. Optimization algorithms are implemented where the objective function is
the appropriate expected value of profit or utility over all realizations. The distri-
bution of uncertainty in utility is only known once optimization is complete.

The utility function quantifies our position on risk; however, it is not simple to
establish the utility function in practice. One approach based on the idea of the
efficient frontier could be considered (Francis, and Dongcheol 2013; Hanoch and
Levy 1969). Decisions are optimized based on maximum expected profit and
minimum risk. The ones that are not dominated are retained as the efficient frontier.
Judgement could be used to evaluate the differences between these decisions and to
choose a path forward.

Efficient
Frontier

Expected Value

Risk

7.4 Geostatistical Simulation

The simulation of mineral deposits has evolved significantly over the last twenty
years. The simulation is often hierarchical and multivariate with unequally sampled
data and parameter uncertainty. A variety of techniques are used to create
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realizations that reproduce all available data and represent the variability that may
influence the planning and decision making process (Caers 2011; Chileés and
Delfiner 2012).

The scope of this chapter is not to present details of geostatistical simulation
(Deutsch and Journel 1998; Goovaerts 1997). The main steps in managing the
results will be reviewed. The transfer functions of greatest interest are resources and
reserves within reasonably large volumes, uncertainty versus data spacing, uncer-
tainty and variability in mine planning and sometimes optimization of blending and
other engineering designs. Parameter uncertainty is important for the resources
within large volumes. Data uncertainty is important with unequally sampled vari-
ables (common with geometallurgical and geomechanical variables). The steps in
geostatistical simulation could be divided into five unit operations.
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e Model Setup involves the formulation of the modeling workflow. A hierarchi-
cal modeling of the deposit limits, rock types and multiple grades is specified.
The grid node spacing relative to production volumes of interest must be cho-
sen. The model setup defines the software algorithms and input parameters for
each step. The number of realizations is chosen at the start to ensure that there is
one realization of parameters for each realization of data for each realization of
the deposit. 100 or 200 realizations is common.

e Parameter Uncertainty amounts to simulating realizations of all of the mod-
eling parameters identified in the Model Setup including those for gross volume
uncertainty, rock type proportion uncertainty, histogram uncertainty, variogram
uncertainty and multivariate relationship uncertainty. The multivariate spatial
bootstrap is widely used. The uncertainty in some global parameters may be
specified by experience.

e Data Uncertainty involves two main aspects. The first is sampling realizations
of the available data if the uncertainty in the data is considered important. For
example, there may be a 10% relative error in the data based on the data
collection and processing. A spatial bootstrap could be considered to get the
uncertainty in the mean error, then realizations of the data would be assembled.
The second aspect, if required, is to fill missing data (data imputation) and
downscale data with a larger support than the rest of the data (Barnett and
Deutsch 2015).

e Simulate Realizations is the operation where deposit models of all variables are
assembled. These would follow the steps identified in the Model Setup. There
would be one realization for every data and parameter realization. These are
constructed hierarchically and with the correct dependencies by rock-type and
between all variables. These realizations have to be checked to the greatest
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extent possible. The process of conditioning the realizations will update the
prior uncertainty quantified in the second step. A schematic illustration of the

realizations is shown below.
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e Process in Transfer Function involves evaluating every realization for all cal-
culations of interest. Local uncertainty can be computed for any block size.
Resources can be computed for the entire deposit, within a mine plan or for
different elevations. An ultimate pit could be computed for every realization. The
economic performance of each realization could be evaluated. The uncertainty in
each response variable is known non-parametrically through the distribution of
responses. The expected response can be computed as an average of the responses.

The uncertainty is directly observed. It is common to assess sensitivity by
indexing each realization by summary input parameters, for example, the gross rock
volume, proportions of rock types, average grades, variogram ranges, and corre-
lation coefficients. Then, the relationship between the input parameters and the
response variables can be fit by a response surface and the sensitivity evaluated and
presented by tornado charts. Further post processing is discussed below.

7.5 Resource Decision Making

All realizations should be used all the time. Anything that can be computed on one
block model can be computed on one hundred, then the distribution of the response
variable of interest can be assembled and summarized by expected value and other
statistics. If a decision must be made, then the decision variable (economic value for
ore, leach, dump...) can be computed on all realizations (Da Cruz 2000; Tversky
and Kahneman 1992). The expected response determines the optimal decision.
When a mine plan is specified, then it is straightforward to evaluate all real-
izations through the plan and observe the uncertainty in key response variables due
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to the present state of incomplete knowledge. Sometimes the plan is not fixed and
the realizations are to be used for planning and optimization. In principle this is not
difficult. The objective function is the expected performance over all realizations.
Some realizations may perform poorly with a particular plan and some better, but it
is the expected value of the performance over all realizations that is the function to
optimize (Pyrcz and Deutsch 2014). Considering the concept of the efficient
frontier, the risk may be penalized to consider decisions that more reasonably suit
the organizations position on risk.

Fixing a production plan and running multiple realizations through the plan can
be somewhat pessimistic since this assumes the plan cannot change in the future. In
fact, more data becomes available as mining proceeds and the plan can adapt to the
new knowledge.

Additional drilling is done to improve delineation ahead of production (Dam-
sleth et al. 1992). Production sampling improves short-term mine planning and
leads to a better understanding of the deposit. Uncertainty will resolve itself as
production takes place and the mineral deposit is exposed for our greater under-
standing. The life-of-mine plan is updated on a regular basis (often yearly). A base
case long term plan can be established with the current uncertainty and different
options explored. The value of future information could be determined by simu-
lating the additional data; this was the idea of the Simulated Learning Model (Cuba
et al. 2014). There is flexibility for the plan to adapt to the future, but not change the
past.

Flexibility is reduced as mining takes place. There is value in future flexibility
(Stirling 2012). A slightly poorer decision, based on currently expected perfor-
mance, with greater future flexibility may be better than a slightly better decision
with less flexibility. The simultaneous optimization over multiple realizations
should consider this flexibility.

Optimizing over all realizations simultaneously and considering all realizations
through all engineering designs is correct, but difficult for some practitioners to
accept (Bratvold et al. 2003; Guyaguler and Horne 2001; Wang et al. 2012). The
computational challenges are exaggerated. The computers now are more than 100
times faster than they were about 10 years ago. Also, the ability to use multiple
cores and GPUs means that we do not need to compromise much on the complexity
of our calculations to consider all realizations all the time. The attraction of a single
numerical geological model is undeniable. Most software does not permit easy
visualization of multiple realizations. Although the ensemble of realizations should
be managed together, the non-uniqueness of multiple realizations is disturbing. The
simplest alternative is to use a kriged model for planning and all reporting purposes;
the simulated realizations are reserved for uncertainty statements and an under-
standing of variability.
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7.6 Alternatives to All Realizations

Some simple summary models are useful. The probability to meet an economic
threshold is useful; high probability is good. The local probability to exceed, say,
the global 0.75 quantile is also useful to identify the areas that are surely high: if
this probability is high (say over 0.9), then the area is surely high. The local
probability to be below, say, the global 0.25 quantile is useful to identify areas that
are surely low: if this probability is high (say over 0.9), then the area is surely low.
The local variance or the probability to be within 15% of expected are also useful
summary measures.

Another approach is to collapse uncertainty into a few summary measures and
base planning on them. For example, multiple realizations could be summarized by
proportions of ore and waste over multiple realizations within reasonable planning
volumes. One could even consider that each block has a proportion of ore and a
proportion of waste. The block will be found to be all ore or all waste in the future;
the proportions are simply used to collapse uncertainty.

Summarizing multiple realizations is useful. The summaries make use of the
multiple realizations. Plans optimized on a summary are never as good as plans
optimized over all realizations simultaneously (primarily due to the complexity and
non-linearity of most planning operations); however, it may be the only practical
approach offered by the available software.

The realizations are equally probable; there is no right one and there is no P50
one and we have no idea if one is closer to the truth than the others. A dangerous
practice emerged in the early days of simulation: run the realizations through a
quick to calculate transfer function, rank the realizations by the quick-to-calculate
response, then consider only selected realizations (say, the P10, P50 and P90) in the
“real” more complicated transfer function.

In general, individual realizations should never be singled out for calculations.
There is much about a single realization that depends on the random number
generator and that is not real. Any one realization could be misleading. There are
some specific calculations that could be done with one realization because the
variability at specific locations (that we do not trust) averages out over multiple
realizations. Blending studies and drilling spacing studies are two examples. It may
be enough to run one or a few realizations through a simulation of the homoge-
nization steps to understand the probability of plant upsets and undesirable cir-
cumstances. The variability at multiple locations reflects the overall variability and
the specific location/time is not critical.

In almost all cases, the simplest and most robust approach is to consider all
realizations and take expected values at the end to report a single result.
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7.7 Concluding Remarks

Monte Carlo Simulation is a well-established experimental mathematical approach
to transfer uncertainty in input geological and engineering variables through to
response variables. The primary aim of this chapter was to point out the danger of
using one realization instead of an ensemble of realizations. One realization may
fall near the middle based on a quick-to-calculate response variable and yet it could
be unusually high in some places and low in others. Planning on one realization
could be misleading. The nonlinearity and complexity of many real response
variables requires the ensemble of realizations to be considered for proper planning
and uncertainty assessment. All realizations all the time — anything less will not
give correct results.
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