
Chapter 6
A Statistical Analysis of the Jacobian
in Retrievals of Satellite Data

Noel Cressie

Abstract Remote sensing has become an essential component of the geosciences

(the study of Earth and its system components). Remote sensing measurements are

almost always energies measured in selected parts of the electro-magnetic spectrum.

That is, the geophysical variable of interest is only observed indirectly; a forward

model relates the energies to the variable(s) of interest and other elements of the

state. The first derivative of that forward model with respect to the state is known

as the Jacobian. In this chapter, we review the importance of the Jacobian to infer-

ring the state, and we use it to diagnose which state elements may be difficult to

estimate. We develop the Statistical Significance Filter and flag those state elements

that consistently fail to get through the filter.

6.1 Introduction

Remote sensing of the environment is a fundamentally important part of humans’

quest to understand the Earth system and how the different components interact (e.g.,

climate, water, carbon). In the future, this knowledge may be critical to our survival.

Satellite and aircraft campaigns allow a “bird’s-eye view” of large parts of Earth,

but not all campaigns are alike. For example, polar-orbiting satellites allow global

coverage, passive instruments rely on the sun’s reflected light and do not take mea-

surements when there are clouds or when it is night, and programs such as NASA’s

ASCENDS will measure day or night, anywhere on the orbit track.

In this chapter, a passive instrument on a polar-orbiting satellite, namely Japan’s

Greenhouse Gases Observing Satellite (GOSAT), will be used as a leading example.

However, the idea behind what I shall present is general and could apply to many

remote sensing inversion problems involving a non-linear forward model. In such
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problems, the goal is to infer a hidden state from energies detected by an instrument

sensitive to certain known bands of the electro-magnetic spectrum.

Section 6.2 of this chapter gives a statistical framework behind the problem

of uncertainty quantification of retrieved states. Section 6.3 calls out the Jacobian

matrix as an important component of the retrieval algorithm and defines a unit-free

Jacobian for subsequent statistical analysis. That analysis is described in Sect. 6.4,

where a Statistical Significance Filter is defined. In Sect. 6.5, this methodology is

applied to a number of retrievals taken over Australia, where certain state elements

are flagged as being potentially difficult to estimate. The last section, Sect. 6.6, fin-

ishes with a discussion of the results obtained.

6.2 A Statistical Framework for Satellite Retrievals

The biases, variances, and mean squared prediction errors of retrievals need to be

calculated in the general setting of a nonlinear forward model. The book by Rodgers

(2000) has a section on error analysis, but it approaches the problem mostly from

a numerical-sensitivity viewpoint. The strongly statistical viewpoint given here cal-

culates the first two moments of a retrieval and the distribution of elements of the

associated Jacobian matrix (defined below as K). In the case where relationships

are non-linear, the well known “delta method” (based on Taylor-series expansions;

e.g., Meyer 1975, Chap. 10) gives approximate (to leading orders) biases and mean

squared prediction errors of the estimators (Cressie and Wang 2013).

The n
𝜀
-dimensional radiances Y are related to the n

𝛼
-dimensional state X through

a non-linear forward model,

Y = F(X) + 𝜺, (6.1)

where the state vectorX includes volume mixing ratios of CO2 at prespecified geopo-

tential heights, the error vector 𝜺 ∼ Gau(0,S
𝜀
), and X and 𝜺 are statistically indepen-

dent. Further, there is an a priori assumption that

X = X
𝛼
+ 𝜶, (6.2)

where 𝜶 ∼ Gau(0,S
𝛼
). Notice that if there is consistent bias present in the retrieval,

this can be accounted for by adding it to X
𝛼
, leaving the assumption, 𝜶 ∼ Gau(0,S

𝛼
),

intact. Define the matrices,

K(x) ≡ 𝜕F(x)
𝜕x

≡

(
𝜕Fi(x)
𝜕xj

∶ i = 1,… , n
𝜀
; j = 1,… , n

𝛼

)
(6.3)

G(x) ≡ {S−1
𝛼

+K(x)′S−1
𝜀
K(x)}−1K(x)′S−1

𝜀
(6.4)

A(x) ≡ G(x)K(x) , (6.5)

where x is any atmospheric state. (Recall that the true state is denoted as X.)
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The n
𝜀
× n

𝛼
matrix K(⋅) is called the Jacobian. Partial derivatives of K(⋅) repre-

sent the degree of non-linearity in the forward model. In the case of a linear forward

model, K is constant, and any partial derivatives of it are zero.

An estimate of X, sometimes called a retrieval, is often obtained by choosing an

̂X that allows F( ̂X) to be “close to” Y, subject to smoothness conditions on ̂X. This

regularisation is usually defined as follows: Minimise

(Y − F(X))′S−1
𝜀
(Y − F(X)) + (X − X

𝛼
)′S−1

𝛼
(X − X

𝛼
) (6.6)

with respect to X, which results in the retrieval ̂X.

The n
𝛼
× n

𝜀
matrix G(⋅) represents a type of “gain” matrix in the relationship

between retrieval ̂X and data Y; that is,

̂X = X
𝛼
+G( ̂X)(Y − F(X

𝛼
) −K( ̂X)X

𝛼
) + “remainder”.

In the linear case, G is constant and the “remainder” term is zero.

The n
𝛼
× n

𝛼
matrixA(⋅) yields the averaging kernel matrix in the relation between

retrieval and true state; that is,

̂X = X
𝛼
+ A( ̂X)(X − X

𝛼
) + “remainder”.

In the linear case, A is constant, the “remainder” term is G𝜺, and recall that 𝜺 is

independent of X.

In this section, I discuss the bias vector and the mean-squared-prediction-error

(MSPE) matrix of the retrieval, ̂X. The bias vector is defined as:

E( ̂X − X) = E( ̂X) − E(X) = E( ̂X) − X
𝛼
,

where recall that X
𝛼

is the prior mean of the state vector X.

The MSPE matrix is defined as:

E(( ̂X − X)( ̂X − X)′) = var( ̂X − X) + (E( ̂X) − X
𝛼
)(E( ̂X) − X

𝛼
)′ ,

where var( ̂X − X) is the covariance matrix of the retrieval error, ̂X − X. The MSPE

matrix can be a more appropriate statistical measure of uncertainty than the covari-

ance matrix of retrieval error when there is bias present. When the bias is zero, the

two measures of uncertainty are the same.

When the forward model is linear, it is easily seen (e.g., Rodgers 2000) that the

bias vector,

E( ̂X − X) = 0 . (6.7)
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That is, in the linear case, ̂X is unbiased. Further, in the linear case, the MSPE matrix

can be derived exactly and written in a number of equivalent ways. From Connor et al.

(2008), Cressie and Wang (2013),

E(( ̂X − X)( ̂X − X)′) = E(var(X|Y)) ≡ ̂S , (6.8)

where the MSPE matrix is given by

̂S = {S−1
𝛼

+K′S−1
𝜀
K}−1 = (A − I)S

𝛼
(A − I)′ +GS

𝜀
G′

. (6.9)

When the forward model is nonlinear, the bias of ̂X is nonzero, and the equalities in

(6.9) are no longer true. However, from the “delta method,” Cressie et al. (2016) show

that (6.7) and (6.9) hold, to leading order. In what follows, a leading-order analysis is

carried out. This amounts to assuming the forward model to be locally linear, which is

a weaker assumption than assuming global linearity, namelyY = c +KX + 𝜺, across

the whole state space defined by all possible values of X.

The locally linear forward model is derived using a Taylor-series expansion:

Y = F(X) + 𝜺

= F(X0) +
𝜕F(x)
𝜕x

||||x=X0

× (X − X0) + 𝝀

≡ c(X0) +K(X0)X + 𝝀 ,

where 𝝀 models the lack of fit of the local linear model (about the linearisation point

x = X0) to F(X). The linearisation point X0 is often chosen to be the prior mean X
𝛼
,

but I want to emphasise here that it need not be.

6.3 The Jacobian Matrix and its Unit-Free Version

The Jacobian matrix is the first derivative of the n
𝜀
-dimensional forward function

vector, F(x), with respect to the n
𝛼
-dimensional state x. From the definition given in

(6.3), it is an n
𝜀
× n

𝛼
matrix. Write the matrix as (Kij), and note that the units of Kij

are radiance (energy) per unit of state-space element j.
Define the vectors,

(𝜎2
𝜀,1,… , 𝜎

2
𝜀,n

𝜀

)′ ≡ diag(S
𝜀
)

(𝜎2
𝛼,1,… , 𝜎

2
𝛼,n

𝛼

)′ ≡ diag(S
𝛼
) ,

where diag(⋅) is a matrix operator that extracts a vector made up of the matrix’s

diagonal elements. Then the unit-free Jacobian is defined as follows:
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𝜙ij ≡ Kij𝜎𝛼,j∕𝜎𝜀,i ; i = 1,… , n
𝜀
, j = 1,… , n

𝛼
. (6.10)

During the retrieval, the most difficult and time-consuming part is to minimise (6.6);

for example, using a Levenberg-Marquardt algorithm requires evaluation of the Jaco-

bian matrix at each iteration of the minimisation. Let K̂ij be a generic Jacobian ele-

ment used during the retrieval. Then define the corresponding unit-free version as,

𝜙̂ij ≡ K̂ij𝜎𝛼,j∕𝜎𝜀,i , (6.11)

and denote ̂𝚽 ≡ (𝜙̂ij) as the n
𝜀
× n

𝛼
unit-free Jacobian matrix.

For satellite retrievals, the data vector Y can often be partitioned as

Y = (Y′
1,… ,Y′

K)
′
,

where

Yk ≡ (Yi ∶ i ∈ bandk)′ , (6.12)

and band1,… , bandK are mutually exclusive index sets that represent a grouping of

radiances according to which bands of the electro-magnetic spectrum they belong.

For example, Japan’s GOSAT and NASA’s Orbiting Carbon Observatory-2 (OCO-2)

instruments have K = 3 bands, corresponding to the oxygen A band (OA), the weak

carbon dioxide band (WC), and the strong carbon dioxide band (SC); our analysis

in Sect. 6.5 uses data from GOSAT’s three bands. Another example is from NASA’s

Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite, which

has K = 4 bands, corresponding to four geophysical variables, namely temperature,

water vapour, ozone, and carbon dioxide.

In what follows, we abbreviate “bandk” to “bk.” Because the unit-free Jacobian

has elements that are potentially comparable, we can partition it and analyse it in

comparable ways. Recall that the index j corresponds to a given element of the state

vector, for example, a water-vapour scale factor or a near-surface carbon-dioxide

volume mixing ratio. Then fix the state element j, and consider the behaviour of the

jth column as row i varies within individual bands. That is, for a fixed j, consider

{𝜙̂ij ∶ i ∈ bk} (6.13)

to be a random sample from a distribution indexed by k, for bands k = 1,… ,K.

Consequently, instead of thinking about n
𝜀
⋅ n

𝛼
entries in the Jacobian, attention

turns to n
𝛼
⋅ K distributions. For example, for the retrievals from GOSAT data that

are being considered here, n
𝜀
= 2240, n

𝛼
= 112, and K = 3. Hence, the pair (j, k)

indexes one of 336 possible distributions, whose mean, 𝜇jk, is of primary interest. For

j a fixed element of the state vector, if 𝜇j1 = 𝜇j2 = ⋯ = 𝜇jK = 0, then that element is

poorly determined by the data alone; see Sect. 6.4. This is a flag that says the (prior)
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mean and precision of the jth state element need to be specified very carefully in the

second term of (6.6) in order to obtain an acceptably precise retrieval X̂j.

6.4 Statistical Significance Filter

To leading order, the forward model (6.1) can be written as,

Y = c +K1X1 +⋯ +Kn
𝛼

Xn
𝛼

+ 𝜺, (6.14)

which is a multiple-regression model with known, typically different, intercepts

given by the elements of c; known covariates K1,… ,Kn
𝛼

(the n
𝛼

columns of K); and

unknown regression coefficients X1,… ,Xn
𝛼

. Clearly, if Kj is zero, then Xj will not

be estimable. Further, if for a given j, {|Kij| ∶ i = 1,… , n
𝜀
} are uniformly “small,”

then the uncertainty associated with the estimate of Xj will be large.

In the previous section, we noted that for remote sensing retrievals, the n
𝜀

ele-

ments in Y can be partitioned into K bands, Y1,… ,YK . Then write (6.14) equiva-

lently as K equations. In obvious notation that respects the partitioning,

Yk = ck +K1kX1 +⋯ +Kn
𝛼
kXn

𝛼

+ 𝜺k ; k = 1,… ,K , (6.15)

where {Kjk ∶ j = 1,… , n
𝛼
} are the n

𝛼
vectors corresponding to the kth band.

Clearly, if Kjk = 0, then its unit-free version, 𝚽jk, is also 0. Hence, the problem

of whether Xj is poorly determined in the forward model (6.1) can be addressed in a

statistical manner by considering the retrieval’s unit-free Jacobian entries {𝜙̂ij ∶ i =
1,… , n

𝜀
} as K arrays of random variables, {𝜙̂ij ∶ i ∈ bk}, for k = 1,… ,K. If, for a

fixed j, the means 𝜇j1,… , 𝜇jk of these K arrays are all zero, then Xj will be difficult

to estimate.

6.4.1 Hypothesis Tests

Consider (6.13) and make the following assumption: For a given retrieval, a given

state element j, and a given band k,

{𝜙̂ij ∶ i ∈ bk}
iid∼ Dist(𝜇jk),

where “iid” denotes “independent and identically distributed,” and “Dist(𝜇)” denotes

a probability distribution with mean 𝜇. For this retrieval, the idea is to flag those state

elements and bands for which the null hypothesis, H0,jk ∶ 𝜇jk = 0, is not rejected. In

particular, failure to reject the composite hypothesis,
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H0,j ∶ 𝜇j1 = 𝜇j2 = ⋯ = 𝜇jK = 0 , (6.16)

implies that the jth state element will be difficult to estimate in the given retrieval.

Since the elements of {𝜙̂ij ∶ i ∈ bk} are considered to be a sample from a distri-

bution with mean 𝜇jk, I shall construct a test statistic from these unit-free Jacobian

values. A considerable amount of exploratory data analysis showed the common dis-

tributional assumption within the partitioned arrays to be largely correct, with occa-

sional gross outliers that would challenge many statistical testing procedures. Those

were controlled by transforming each 𝜙̂ij to |𝜙̂ij|1∕2, and the robust test statistic,

𝜙̃jk ≡ med{|𝜙̂ij|1∕2 ∶ i ∈ bk} , (6.17)

was used to test H0,jk ∶ 𝜇jk = 0. The composite hypothesis test {H0,j ∶ j = 1,… , n
𝛼
},

where H0,j is given by (6.16), is then carried out using a Bonferroni adjustment

(Sect. 6.4.3).

6.4.2 Distribution Theory for the Robust Test Statistic

Consider generic iid random variables W1,… ,Wm distributed according to a Gaus-

sian distribution with mean 𝜇W and variance 𝜎
2
W , which is written as Gau(𝜇W , 𝜎

2
W ).

To test

H0 ∶ 𝜇W = 0 versus H1 ∶ 𝜇W ≠ 0 , (6.18)

consider the robust test statistic,

X̃ ≡ med{|Wi|1∕2 ∶ i = 1,… ,m}. (6.19)

I now obtain distribution theory for X̃ under the null hypothesis in order to carry out

a significance test.

If Y ∼ Gau(0, 1), then E(|Y|1∕2) = 0.82216 and var(|Y|1∕2) = 0.12192, which

was derived by Cressie and Hawkins (1980). Then under H0 ∶ 𝜇W = 0, |Wi|1∕2 ⋅∼
Gau(0.82216 ⋅ 𝜎1∕2

W , 0.12192 ⋅ 𝜎W ), where “
⋅∼” denotes “is approximately distributed

as,” and the approximation is established by Cressie and Hawkins (1980). Now the

distribution of the median X̃ from a random sample X1,… ,Xm of Gaussian random

variables can be approximated as Gaussian with mean E(X̃) = E(X1), and variance

var(X̃) = 𝜋var(X1)∕2m. If all these results are combined, then under the null hypoth-

esis H0 in (6.18),

X̃ ⋅∼ Gau(0.82216 ⋅ 𝜎1∕2
W , 0.12192 ⋅ 𝜋𝜎W∕2m) .



124 N. Cressie

Clearly, the alternative hypothesis H1 in (6.18) is accepted if the test statistic X̃ is

large. At significance level 𝛼, H1 is accepted if

X̃ > 0.82216 ⋅ 𝜎1∕2
W + Φ−1(1 − 𝛼)(0.12192 ⋅ 𝜋𝜎W∕2m)1∕2 , (6.20)

where Φ−1(⋅) is the inverse cumulative distribution function of a Gau(0, 1) random

variable. In practice, an estimate of 𝜎W will be needed.

Continuing with the same approach as above, an asymptotically unbiased, robust

estimator of 𝜎W is used. Now, 𝜎W = var(|Wi|1∕2)∕0.12192, and hence var(|Wi|1∕2)
can be estimated using the median absolute deviation (MAD):

MAD ≡ med{||Wi|1∕2 − X̃| ∶ i = 1,… ,m} .

Then an asymptotically unbiased estimator of var(|Wi|1∕2) is

̂var(|Wi|1∕2) = (1.4826 ⋅ MAD)2 ,

from which the estimator

𝜎̃W ≡ (1.4826 ⋅ MAD)2∕0.12192 (6.21)

is obtained and substituted into (6.20).

My approach to constructing this robust statistic to test whether a mean is zero,

using data that may contain large, unpredictable outliers, is somewhat unusual, but

it is statistically advantageous. First, the data {W1,… ,Wm} are made resistant by

transforming to the square-root scale where variability is dampened. Then the trans-

formed data {|W1|1∕2,… , |Wm|1∕2} are used to define a robust test statistic, given

here by the median; see (6.19). Finally, the null distribution is derived, resulting in

a critical region given by (6.20) with the robust estimator (6.21) substituted in. In

the next subsection, the distribution theory derived in this subsection is used in the

context of multiple hypothesis testing, resulting in the Statistical Significance Filter.

6.4.3 Multiple Hypothesis Tests Define the Statistical
Significance Filter

The elements of the unit-free Jacobian are considered as replicates within bands,

which results in n
𝛼

(number of state elements) times K (number of bands) hypothe-

sis tests of {H0jk ∶ 𝜇jk = 0, for j = 1,… , n
𝛼

and k = 1,… ,K}. To test H0j given by

(6.16), jointly for j = 1,… , n
𝛼
, I use a family-wise error rate of 1% and conserva-

tive Bonferroni adjustments to obtain a level of significance, 𝛼 = .01∕(n
𝛼
⋅ K), that

is used in each individual hypothesis test of the null hypotheses, {H0jk}.
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The Statistical Significance Filter only allows estimates {𝜙̃jk} to get through the

filter if {H0jk} are rejected, respectively. A given state element, j say, is flagged as

problematic in a given retrieval if, simultaneously, the hypotheses H0j1,… ,H0jK are

not rejected. If it consistently happens that under similar (or different) geophysical

conditions, the jth element’s bands fail to get through the Statistical Significance Fil-

ter, that element Xj is flagged as being weakly sensitive to the radiance measurements

Y. Hence, estimation of Xj would be difficult if a very disperse prior distribution in

(6.2) were chosen for it.

In the next section, I apply the Statistical Significance Filter to 30 retrievals from

Japan’s GOSAT instrument that measures atmospheric carbon dioxide, here over

central Australia.

6.5 ACOS Retrievals of the Atmospheric State from
Japan’s GOSAT Satellite

Shown in Fig. 6.1 are 30 locations of retrievals from Japan’s GOSAT satellite, where

the ACOS (Atmospheric CO2 Observations from Space) retrieval algorithm was

used. Specifically, ACOS Version B2.8 was used here, for which n
𝛼
= 112 state ele-

ments were retrieved from n
𝜀
= 2240 radiances spread roughly equally between the

K = 3 bands, namely the OA band, the WC band, and the SC band; see Sect. 6.3.

The soundings are over an arid part of Australia with uniformly high albedo, during

the period from 5 June 2009–26 July 2009 (Source: CIRA, Colorado State Univer-

sity). The methodology and inference is illustrated on the retrieval at one of those

locations, hereafter referred to as Location 1. Results from the other 29 retrievals are

summarised at the end of this section.

A number of the state elements in B2.8 are functions of geopotential height, here

labelled as 1 (top of atmosphere) down to 20 (surface of Earth). Figure 6.2 shows

unit-free ice-cloud Jacobian values in a column of the atmosphere for Location 1;

only those values that got through the Statistical Significance Filter are shown. It

can be seen that for the ice-cloud variable, Jacobian values in the OA band are not

statistically significant at higher altitudes in the atmospheric column, and hence they

are potentially difficult to estimate. Figure 6.3 shows that the Statistical Significance

Filter applied to water vapour (H2O) in the column results in a similar set of plots.

Contrast these to Fig. 6.4, which is for the all-important carbon-dioxide (CO2) vari-

able; only values in the SC band get through the Statistical Significance Filter.

The analysis of the retrieval for Location 1 yields non-significant Jacobian entries

(i.e., forward-model derivatives near zero) in all three bands for the following state

elements:
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1, 2, 3 CO2values near the top of the atmosphere

21 H2O scale factor

23 Temperature offset

105, 107, 109 Albedo slope for the three bands

110, 111, 112 Spectral dispersion offset for the three bands

This behavior is visualised in Fig. 6.5; there, a light (green) stripe in a given band

for a given state element indicates that the corresponding mean is not significantly

different from zero. A light stripe in every band for the given state element indicates

that extra care will be needed when specifying a prior for that element. Each of the

11 elements listed above have a light stripe in every band.

The analysis was carried out on all 30 retrievals, and eight elements of the 112-

dimensional state vector emerged as always having non-significant Jacobian values

in all three bands for all 30 retrievals. They were:

Fig. 6.1 Locations of 30 retrievals from GOSAT using the ACOS Version B2.8 retrieval: 5 June

2009–26 July 2009
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Fig. 6.2 Unit-free Jacobian ice-cloud values that pass through the statistical significance filter in

the OA, WC, and SC bands. Values that did not pass through the filter are not plotted. Location 1

(out of 30 locations)
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Fig. 6.3 Unit-free Jacobian H2O values that pass through the statistical significance filter in the

OA, WC, and SC bands. Values that did not pass through the filter are not plotted. Location 1 (out

of 30 locations)
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Fig. 6.4 Unit-free Jacobian CO2 values that pass through the statistical significance filter in the

OA, WC, and SC bands. Values that did not through pass the filter are not plotted. Location 1 (out

of 30 locations)
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Fig. 6.5 A graphic showing which of the 112 elements of the state vector (horizontal axis) pass

through the statistical significance filter (dark, red colour) and which do not (light, green colour),

for “band” = OA, WC, and SC. Location 1 (out of 30 locations)



6 A Statistical Analysis of the Jacobian in Retrievals of Satellite Data 129

21 H2O scale factor

23 Temperature offset

105, 107, 109 Albedo slope for the three bands

110, 111, 112 Spectral dispersion offset for the three bands

The results indicate a lack of sensitivity of these eight elements in the forward

equation F given in (6.1), for the dry, bright, flat-terrain conditions found over cen-

tral Australia. Different land surfaces and atmospheric states would almost certainly

result in different elements being identified.

6.6 Discussion

The Jacobian matrix K is the first derivative of a vector-valued function F(x) of a

state vector x. Consistently small elements in the jth column of K indicate that the

jth element will be difficult to estimate (predict) based on data, Y, alone.

If prior information, as well as the data, is used to predict the state vector, this

research indicates that acceptable precision for estimating this jth element may

require the prior variance to be tightly constrained. For example, the element that

is the H2O scale factor is tightly constrained physically in the prior. Thus, a retrieval

of that element may cause no problem, even though its column in K fails to get

through the Statistical Significance Filter. Regarding the 20 CO2 elements that make

up the CO2 profile in the atmospheric column, the retrievals analysed here show the

importance of the strong CO2 band (SC) to its estimation. The best result would be

if all 20 ⋅ 3 = 60 hypothesis tests were rejected; at Location 1, only 17, all in the SC

band, were rejected (Fig. 6.4).

Current versions of ACOS-like retrievals have between 40–50 state elements. The

research presented here, on the statistical properties of the Jacobian, would allow a

comparison of different versions through the behaviour of their unit-free Jacobian

values. Common to all of these versions is 20 CO2 elements, and the respective

estimates of the means in each of the three bands (OA, WC, SC) can be compared

across versions.
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