
Chapter 3
Testing Joint Conditional Independence
of Categorical Random Variables
with a Standard Log-Likelihood
Ratio Test

Helmut Schaeben

Abstract While tests for pairwise conditional independence of random variables

have been devised, testing joint conditional independence of several random vari-

ables seems to be a challenge in general. Restriction to categorical random vari-

ables implies in particular that their common distribution may initially be thought of

as contingency table, and then in terms of a log-linear model. Thus, Hammersley–

Clifford theorem applies, and provides insight in the factorization of the log-linear

model corresponding to assumptions of independence or conditional independence.

Such assumptions simplify the full joint log-linear model, and in turn any conditional

distribution. If the joint log-linear model corresponding to the assumption of joint

conditional independence given the conditioning variable is not sufficiently large to

explain some data according to a standard log-likelihood test, its null–hypothesis

of joint conditional independence may be rejected with respect to some significance

level. Enlarging the log-linear model by some product terms of variables and running

the log-likelihood test on different models may provide insight which variables are

lacking conditional independence. Since the joint distribution determines any con-

ditional distribution, the series of tests eventually provides insight which variables

and product terms a proper logistic regression model should comprise.

3.1 Introduction

Conditional independence is a probabilistic approach to causality (Suppes 1970;

Dawid 1979, 2004, 2007; Spohn 1980, 1994; Pearl 2009; Chalak and White 2012)

while for instance correlation is obviously not as it is a symmetric relationship. Fea-

tures of conditional independence are
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∙ Conditionally independent random variables are conditionally uncorrelated.

∙ Conditionally independent random variables may be significantly correlated or

not.

∙ Independence does not imply conditional independence and vice versa.

∙ Pairwise conditional independence does not imply joint conditional independence.

Statistical tests for pairwise conditional independence of random variables have

been devised, e.g., Bergsma (2004), Su and White (2007), Su and White (2008),

Song (2009), Bergsma (2010), Huang (2010), Zhang et al. (2011), Bouezmarni et al.

(2012), Györfi and Walk (2012), Doran et al. (2014), Ramsey (2014), Huang et al.

(2016), testing joint conditional independence of several random variables seems

to be a challenge in general. For the special case of dichotomous variables, the

“omnibus test” (Bonham-Carter 1994) and the “new omnibus test” (Agterberg and

Cheng 2002) have been suggested.

Weak conditional independence of random variables was introduced in Wong and

Butz (1999), and elaborated on in Butz and Sanscartier (2002). Extended conditional

independence has recently been introduced in Constantinou and Dawid (2015). The

definition of weak conditional independence given in Cheng (2015) refers to condi-

tional independent random events, and rephrases conditional independence in terms

of ratios of conditional probabilities rather than conditional probabilities to avoid

the distinction of conditional independence given a conditioning event or its com-

plement. This definition becomes irrelevant when proceeding from elementary prob-

ability of events to probability of random variables, and to the general definition of

conditionally independent random variables.

Conditional independence is an issue in a Bayesian approach to estimate poste-

rior (conditional) probabilities of a dichotomous random target variable in terms of

weights-of-evidence (Good 1950, 1960, 1985). In turn, conditional independence

is the major mathematical assumption of potential modeling with weights of evi-

dence, cf. (Bonham-Carter et al. 1989; Agterberg and Cheng 2002; Schaeben 2014b),

e.g., applied to prospectivity modeling of mineral deposits. The method requires a

training dataset laid out in regular cells (pixels, voxels) of equal physical size rep-

resenting the support of probabilities. The sum of posterior probabilities over all

cells equals the sum of the target variable over all cells. Deviations indicate a viola-

tion of the assumption of conditional independence, and are used as statistic of a test

(Agterberg and Cheng 2002) which involves a normality assumption. Funny enough,

ArcSDM calculates so-called normalized probabilities, i.e., posterior probabilities

rescaled so that the overall measure of conditional independence is satisfied (ESRI

2018); of course, the trick does not fix any problem. Violation of the assumption of

conditional independence does not only corrupt the posterior (conditional) probabil-

ities estimated with weights of evidence, but also their ranks, cf. (Schaeben 2014b),

which is worse. Thus, the method of weights-of-evidence requires the mathematical

modeling assumption of conditional independence to yield reasonable predictions.

However, conditional independence is an issue with respect to logistic regression,

too.
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3.2 From Contingency Tables to Log-Linear Models

A comprehensive exposure of log-linear models is Christensen (1997). Let Z
be a random vector of categorical random variables 𝖹𝓁 ,𝓁 = 0,… ,m, i.e., Z =
(𝖹0,𝖹1,… ,𝖹m)𝖳. It is completely characterized by its distribution

p
𝜅

= PZ(s𝜅) = P(Z = s
𝜅

) = P
((
𝖹0,… ,𝖹m) = (sk0 ,… , skm

))

with the multi-index 𝜅 = (k0,… , km), where sk𝓁 with k𝓁 = 1,… ,K𝓁 denotes all pos-

sible categories of the categorical random variable 𝖹𝓁 ,𝓁 = 0,… ,m. Since it is

assumed that there is a total of K𝓁 different categories with PZ𝓁 (sk𝓁 ) > 0, there is

a total of
∏m

𝓁=0 K𝓁 different categorical states for Z =
⨂m

𝓁=0 𝖹𝓁 .

The distribution of a categorical random vector may initially be thought of as

being provided by contingency tables. More conveniently, the distribution of a cat-

egorical random vector Z can generally be written in terms of a log-linear model

as

log p
𝜅

=
∑

𝜅

w
𝜅

f 𝜅Z (z)

with

w
𝜅

= log p
𝜅

,

f 𝜅Z (z) = 1I{s
𝜅

}(z) = 1I{sk0 ,…,skm}
(z0,… , zm).

3.3 Independence, Conditional Independence of Random
Variables

If the random variables 𝖹𝓁 ,𝓁 = 1,… ,m, are independent, then the joint probabil-

ity of any subset of random variables 𝖹𝓁 can be factorized into the product of the

individual probabilities, i.e.,

P⨂
𝓁∈M Z𝓁 =

⨂

𝓁∈M
P𝖹𝓁

.

where M denotes any non-empty subset of the set {1,… ,m}. In particular

PZ = P⨂m
𝓁=1 𝖹𝓁

=
m⨂

𝓁=1
P𝖹𝓁

.

If the random variables 𝖹𝓁 ,𝓁 = 1,… ,m, are conditionally independent given 𝖹0,

then the joint conditional probability of any subset of random variables 𝖹𝓁 given 𝖹0
can be factorized into the product of the individual conditional probabilities, i.e.,
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P⨂
𝓁∈M 𝖹𝓁 ∣𝖹0

=
⨂

𝓁∈M
P𝖹𝓁 ∣𝖹0

, (3.1)

and in particular

P⨂m
𝓁=1 𝖹𝓁 ∣𝖹0

=
m⨂

𝓁=1
P𝖹𝓁 ∣𝖹0

.

3.4 Logistic Regression, and Its Special Case
of Weights-of-Evidence

Conditional expectation of a dichotomous random target variable 𝖹0 given a m–

variate random predictor vector Z = (𝖹1,… ,𝖹m)𝖳 is equal to a conditional prob-

ability, i.e.,

E(𝖹0 ∣ Z) = P(𝖹0 = 1 ∣ Z).

Then the ordinary logistic regression model (without interaction terms) neglecting

the error term yields

logitP(𝖹0 = 1 ∣ Z) = 𝛽0 + 𝜷𝖳Z, 𝛽0 ∈ ℝ,𝜷 ∈ ℝm
.

Omitting the error term it can be rewritten in terms of a probability as

P
(
𝖹0 = 1 ∣ Z

)
= 𝛬

(
𝛽0 + 𝜷𝖳Z

)
,

where 𝛬 denotes the logistic function. The logistic regression model with interaction

terms reads in terms of a logit transformed probability

logitP(𝖹0 = 1 ∣ Z) = 𝛽0 +
∑

𝓁

𝛽𝓁𝖹𝓁 +
∑

𝓁i,…,𝓁j

𝛽𝓁i,…,𝓁j
𝖹𝓁i

…𝖹𝓁j

)
, (3.2)

and in terms of a probability

P
(
𝖹0 = 1 ∣ Z

)
= 𝛬

⎛
⎜
⎜
⎝
𝛽0 +

∑

𝓁

𝛽𝓁𝖹𝓁 +
∑

𝓁i,…,𝓁j

𝛽𝓁i,…,𝓁j
𝖹𝓁i

…𝖹𝓁j

)⎞⎟
⎟
⎠
.

If all predictor variables are dichotomous variables and conditionally independent

given the target variable then the parameters of the ordinary logistic regression model

simplify to

𝛽0 = logitP(𝖹0 = 1) +W (0)
, 𝛽𝓁 = C𝓁 , 𝓁 = 1,… ,m,
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with contrasts

C𝓁 = W (1)
𝓁 −W (0)

𝓁 , 𝓁 = 1,… ,m,

defined as differences of weights of evidence

W (1)
𝓁 = ln

P(𝖹𝓁 = 1 ∣ 𝖹0 = 1)
P(𝖹𝓁 = 1 ∣ 𝖹0 = 0)

, W (0)
𝓁 = ln

P(𝖹𝓁 = 0 ∣ 𝖹0 = 1)
P(𝖹𝓁 = 0 ∣ 𝖹0 = 0)

,

and with W (0) =
∑m

𝓁=1 W
(0)
𝓁 provided all conditional probabilities are different from

0 (Schaeben 2014b). Obviously the model parameters become independent of one

another, and can be estimated by mere counting. This special case of a logistic regres-

sion model is usually referred to as the method of “weights-of-evidence”. In turn, the

canonical generalization of Bayesian weights-of-evidence is logistic regression.

That weights of evidence W𝓁 agree with the logistic regression parameters 𝛽𝓁 in

case of joint conditional independence becomes obvious when recalling

C𝓁 = W (1
𝓁 ) −W (0)

𝓁

= ln
P(𝖹𝓁 = 1 ∣ 𝖹0 = 1)
P(𝖹𝓁 = 1 ∣ 𝖹0 = 0)

− ln
P(𝖹𝓁 = 0 ∣ 𝖹0 = 1)
P(𝖹𝓁 = 0 ∣ 𝖹0 = 0)

= ln
(O(𝖹0 = 1 ∣ 𝖹𝓁 = 1)
O(𝖹0 = 1 ∣ 𝖹𝓁 = 0)

)
= 𝛽𝓁 ,

which is the log odds ratio, the usual interpretation of 𝛽𝓁 (Hosmer and Lemeshow

2000).

If Z comprises m dichotomous predictor variables 𝖹𝓁 ,𝓁 = 1,… ,m, there are 2m
possible different realizations zk, k = 1,… , 2m, of Z. Then

n∑

i=1

̂P
(
𝖹0 = 1 ∣ Z = z (i)

)
=

2m∑

k=1

̂P(𝖹0 = 1 ∣ Z = zk) H(Z = zk)

=
2m∑

k=1

̂P(𝖹0 = 1 ∣ Z = zk) n ̂P(Z = zk)

= n̂P(𝖹0 = 1) =
n∑

i=1
z0(i),

where the last equation is an application of the formula of total probability. It is a con-

stitutive equation to estimate the parameters of a logistic regression model and holds

always for fitted logistic regression models. With respect to weights-of-evidence,

the test statistic of the so-called “new omnibus test” of conditional independence

(Agterberg and Cheng 2002) is



72 H. Schaeben

t =
n∑

i=1

(
̂P
(
𝖹0 = 1 ∣ Z = z (i)

)
− z0(i)

)

and should not be too large for conditional independence to be reasonably assumed.

3.5 Hammersley–Clifford Theorem

Rephrasing the proper statement (Lauritzen 1996) casually, the Hammersley–Clifford

Theorem states that a probability distribution with a positive density satisfies one of

the Markov properties with respect to an undirected graph G if and only if its density

can be factorized over the cliques of the graph. Since the distribution of a categori-

cal random vector can be represented in terms of a log-linear model, Hammersley–

Clifford theorem applies. Given (m + 1) random variables 𝖹0,… ,𝖹m, there is a total

of
(m+1
𝓁+1

)
different product terms each involving (𝓁 + 1) variables, 𝓁 = 0,… ,m, sum-

ming to a total of
∑m

𝓁=0
(m+1
𝓁+1

)
= 2m+1 − 1 different terms. Thus there is a total of

(m + 1) single variable terms, and a total of 2m+1 − (m + 2) multi variable terms.

The full log-linear model encompasses all terms and reads

log p
𝜅

=
m∑

𝓁=0

∑

𝛼∈Cm+1
𝓁+1

∑

𝜅(𝛼)
𝜙
𝜅(𝛼) 1Is

𝜅(𝛼)
(z

𝜅(𝛼)) (3.3)

where 𝛼 ∈ Cm+1
𝓁+1 denotes an (𝓁 + 1)-combination of the set {1,… ,m + 1} ⊂ ℕ, and

𝜅(𝛼) = (ki1 ,… , ki𝓁+1 ) denotes a multi-index with (𝓁 + 1) entries ki𝓁 = 1,… ,Ki𝓁 , for

𝓁 = 0,… ,m. The random vector Z
𝜅(𝛼) is the product of any tuple of (𝓁 + 1) compo-

nents of Z, the total number of which is
(m+1
𝓁+1

)
.

Assumptions of independence or conditional independence simplify the distri-

bution of Z, i.e., its full log-linear model, considerably. Assuming independence

for all its components 𝖹𝓁 ,𝓁 = 0,… ,m, the log-linear model simplifies according

to Eq. (3.1) to

log p
𝜅

=
m∑

𝓁=0
log pk𝓁 =

m∑

𝓁=0

K𝓁∑

k𝓁=1
𝜙k𝓁 1I{sk𝓁 }(z𝓁), (3.4)

where 𝜙k𝓁 = log pk𝓁 .

Assuming joint conditional independence of all components 𝖹𝓁 ,𝓁 = 1,… ,m,

given 𝖹0, the log-linear model, Eq. (3.3), simplifies according to Eq. (3.1) to

log p
𝜅

=
m∑

𝓁=0

K𝓁∑

k𝓁=1
𝜙k𝓁 1I{sk𝓁 }(z𝓁) +

m∑

𝓁=1

∑

𝛼∈{0,𝓁}

∑

𝜅(𝛼)
𝜙
𝜅(𝛼) 1I{s

𝜅(𝛼)}(z𝜅(𝛼)). (3.5)
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Thus the latter model, Eq. (3.5), assuming conditional independence differs from

the model for independence, Eq. (3.4), in the additional product terms 𝖹0 ⊗ 𝖹𝓁 ,𝓁 =
1,… ,m.

Any violation of joint conditional independence given 𝖹0 results in additional

cliques of the graph and in additional product terms. Assuming that conditional inde-

pendence given 𝖹0 does not hold for a particular subset 𝖹𝓁1
,… ,Z𝓁k

of variables 𝖹𝓁
results in an enlarging of the log-linear model of Eq. (3.5) by additional terms refer-

ring to 𝖹0 ⊗
⨂k

𝓁=1
⨂

𝓁i∈Ck
𝓁
𝖹𝓁i

and
⨂k

𝓁=1
⨂

𝓁i∈Ck
𝓁
𝖹𝓁i

, respectively.

3.6 Testing Joint Conditional Independence of Categorical
Random Variables

The statistic of the likelihood ratio test (Neyman and Pearson 1933; Casella and

Berger 2001) is the ratio of the maximized likelihood of a restricted model and the

maximized likelihood of the full model. The assumption of the likelihood ratio test

concerns the choice of the model family of distributions.

The null-hypothesis is that a given log-linear model is sufficiently large to repre-

sent the joint distribution. If the random variables are categorical, the full log-linear

model is always sufficiently large as was explicitly shown above. More interesting

are tests whether a smaller log-linear model is sufficiently large. Testing the null-

hypothesis whether a log-linear model encompassing one-variable and two-variable

terms, all of which involve 𝖹0, is sufficiently large provides a test of conditional

independence of all 𝖹𝓁 ,𝓁 = 1,… ,m, given 𝖹0 because this log-linear model is suf-

ficiently large in case of conditional independence given𝖹0. Thus, a reasonable rejec-

tion of the initial null-hypothesis implies a reasonable rejection of the assumption of

conditional independence given 𝖹0.

3.7 Conditional Distribution, Logistic Regression

Since the joint distribution implies all marginal and conditional distribution, respec-

tively, the conditional distribution

P𝖹0∣
⨂m

𝓁=1 𝖹𝓁
=

P⨂m
𝓁=0 𝖹𝓁

P⨂m
𝓁=1 𝖹𝓁

(3.6)

is explicitly given here by

P⨂m
𝓁=0 𝖹𝓁

(sk0 ,… , sk𝓁 )
P⨂m

𝓁=1 𝖹𝓁
(sk1 ,… , sk𝓁 )

=
P⨂m

𝓁=0 𝖹𝓁
(sk0 ,… , sk𝓁 )

∑K0
k0=1

P⨂m
𝓁=0 𝖹𝓁

(sk0 , sk1 ,… , sk𝓁 )
.
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Assuming independence, Eq. (3.6) immediately reveals

P𝖹0∣
⨂m

𝓁=1 𝖹𝓁
= P𝖹0

.

Assuming conditional independence of all 𝖹𝓁 ,𝓁 = 1,… ,m, given 𝖹0 and further

that 𝖹0 is dichotomous, then

P𝖹0∣
⨂m

𝓁=1 𝖹𝓁
(1 ∣ sk1 ,… , sk𝓁 ) =

P⨂m
𝓁=0 𝖹𝓁

(1, sk1 ,… , sk𝓁 )
∑1

i=0 P⨂m
𝓁=0 𝖹𝓁

(i, sk1 ,… , sk𝓁 )
(3.7)

with

P⨂m
𝓁=0 𝖹𝓁

(1, sk1 ,… , sk𝓁 ) = exp

(

𝜙1 +
m∑

𝓁=1
𝜙k𝓁 +

m∑

𝓁=1

K𝓁∑

k𝓁=1
𝜙1,k𝓁

)

and

1∑

i=0
P⨂m

𝓁=0 𝖹𝓁
(i, sk1 ,… , sk𝓁 ) =

1∑

i=0
exp

(

𝜙i +
m∑

𝓁=1
𝜙k𝓁 +

m∑

𝓁=1

K𝓁∑

k𝓁=1
𝜙i,k𝓁

)

Thus,

P⨂m
𝓁=0 𝖹𝓁

(1, sk1 ,… , sk𝓁 )
∑1

s=0 P⨂m
𝓁=0 𝖹𝓁

(s, sk1 ,… , sk𝓁 )

=
exp

(
𝜙11I{1}(𝟣) +

∑m
𝓁=1 𝜙1,k𝓁1I{1,sk𝓁 }(𝟣,𝖹𝓁)

)

∑1
s=0 exp

(
𝜙s1I{s}(𝟣) +

∑m
𝓁=1 𝜙k𝓁1I{s,sk𝓁 }(𝟣,𝖹𝓁)

)

=
exp

(
𝜙1 +

∑m
𝓁=1 𝜙1,sk𝓁

1I{sk𝓁 }(𝖹𝓁)
)

1 + exp
(
𝜙1 +

∑m
𝓁=1 𝜙1,k𝓁1I{sk𝓁 }(𝖹𝓁)

)

= 𝛬

(
𝜙1 +

m∑

𝓁=1
𝜙1,k𝓁1I{sk𝓁 }(𝖹𝓁)

)
.

Finally,

P𝖹0∣
⨂m

𝓁=1 𝖹𝓁
= 𝛬

(
𝛽0 +

m∑

𝓁=1
𝛽𝓁𝖹𝓁

)
,

which is obviously logistic regression

logitP𝖹0∣
⨂m

𝓁=1 𝖹𝓁
= 𝛽0 +

m∑

𝓁=1
𝛽𝓁𝖹𝓁 . (3.8)
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It should be noted that additional product terms in the joint probability P⨂m
𝓁=0 𝖹𝓁

on

the right hand side of Eq. (3.7) of the form
⨂k

𝓁=1
⨂

𝓁i∈Ck
𝓁
𝖹𝓁i

including 𝖹𝓁 ,𝓁 =
1,… ,m, only, i.e., not including 𝖹0, would not effect the form of the conditional

probability, Eq. (3.8). Additional product terms of the form 𝖹0 ⊗
⨂k

𝓁=1
⨂

𝓁i∈Ck
𝓁
𝖹𝓁i

,

i.e., including 𝖹0, result in a logistic regression model with interaction terms,

Eq. (3.2).

Ordinary logistic regression is optimum, if the joint probability of the (dichoto-

mous) target variable and the predictor variables is of log-linear form and all pre-

dictor variables are jointly conditionally independent given the target variable; in

particular, it is optimum if the predictor variables are categorical and jointly condi-

tionally independent given the target variable (Schaeben 2014a). Logistic regression

with interaction terms is optimum, if the joint probability of the (dichotomous) target

variable and the predictor variables is of log-linear form and the interaction terms

correspond to lacking conditionally independence given the target variable; for cat-

egorical predictor variables, interaction terms can compensate for any lack of condi-

tional independence exactly. Logistic regression with interaction terms is optimum

in case of lacking conditional independence (Schaeben 2014a).

3.8 Practical Applications

The practical application of the log-likelihood ratio test of joint conditional indepen-

dence generally includes the following steps

∙ test the null-hypothesis that the full log-linear model is sufficiently large to repre-

sent the joint probability of all predictor variables and the target variables;

∙ if the first null-hypothesis is not reasonably rejected, test the null-hypotheses that

smaller log-linear models are sufficiently large; in particular;

∙ test the null hypothesis that the log-linear model without any interaction term is

sufficiently large;

∙ if the final null-hypothesis is rejected, then the predictor variables must not be

assumed to be jointly conditionally independent given the target variable.

3.8.1 Practical Application with Fabricated Indicator Data

3.8.1.1 The Data Set BRY

The data set BRY is derived from the https://en.wikipedia.org/wiki/Conditional_

independence. Initially it comprises three random events B, R, Y , denoting the sub-

sets of the set of all 49 pixels which are blue, red or yellow with given probabili-

ties P(B) = 18
49

= 0.367,P(R) = 16
49

= 0.326,P(Y) = 12
49

= 0.244. The random events

https://en.wikipedia.org/wiki/Conditional_independence
https://en.wikipedia.org/wiki/Conditional_independence
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Fig. 3.1 Map images of random events B,R,Y .

B,R,Y are distinguished from their corresponding random indicator variables 𝖡,𝖱,𝖸
defined as usually, e.g.,

𝖡(𝜔) = 1IB(𝜔), 𝜔 ∈ 𝛺,

where 1I denotes the indicator variable. They are assigned to pixels of a 7 × 7 digital

map image, Fig. 3.1.

It should be noted that in this example any spatial references are solely owed to

the purpose of visualization as map images, and that the test itself does not take any

spatial references or spatially induced dependences into account.

Checking independence according to its definition in reference to random events,

the figures

P(B ∩ R) = 0.122, P(B) P(R) = 0.119

indicate that the random events B and R are not independent. However, the deviation

is small.

Next, conditional independence is checked in terms of its definition referring to

random events. Since conditional independence of the random events B and R given

Y does not imply conditional independence of the random events B and R given the

complement ∁Y , two checks are required. The results are

P(B ∩ R ∣ Y) = 1
6
= P(B ∣ Y) P(R ∣ Y)

P(B ∩ R ∣ ∁Y) = 4
37

≠

(12
37

)2
= P(B ∣ ∁Y) P(R ∣ ∁Y),

and indicate that the random events B and R are conditionally independent given the

random event Y , but that they are not conditionally independent given the comple-

ment ∁Y . It should be noted that the deviation of the joint conditional probability and

the product of the two individual conditional probabilities in terms of their ratio is

1.027. In fact, the events B and R are conditionally independent given either Y or ∁Y
if one white pixel, e.g. pixel (1,7) with 𝖡 = 𝖱 = 𝖸 = 0, is omitted.
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Generalizing the view to random variables 𝖡,𝖱,𝖸 and their unique joint real-

ization as shown in Fig. 3.1, Pearson’s 𝜒

2
test with Yates’ continuity correction

of the null-hypothesis of independence of the random variables 𝖡 and 𝖱 given the

data returns a p-value of 1 indicating that the null-hypothesis cannot reasonably be

rejected.

The likelihood ratio test is applied with respect to the log-linear distribution corre-

sponding to the null-hypothesis of conditional independence and results in a p-value

of 0.996 indicating that the null-hypothesis cannot reasonably be rejected.

Thus, given the data the tests suggest to infer that the random variables 𝖡 and 𝖱
are independent and conditionally independent given the random variable 𝖸.

3.8.1.2 The Data Set SCCI

The next data set SCCI comprises three random events B1,B2,T with given proba-

bilities P(B1) = P(B2) = P(T) = 7
49

= 7
49

= 0.142. They are assigned to pixels of a

7 × 7 digital map image, Fig. 3.2.

Checking independence according to its definition for random events, the figures

P(B1 ∩ B2) = 0.102, P(B1) P(B2) = 0.020

indicate that the random events B1 and B2 are not independent.

Next, conditional independence is checked in terms of its definition referring to

random events. Since conditional independence of the random events B1 and B2
given T does not imply conditional independence of the random events B1 and B2
given ∁T , two checks are required. The results are

P(B1 ∩ B2 ∣ T) = 0.714 ≠ 0.734 = P(B1 ∣ T) P(B2 ∣ T)
P(B1 ∩ B2 ∣ ∁T) = 0 ≠ 0.0005 = P(B1 ∣ ∁T) P(B2 ∣ ∁T),
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Fig. 3.2 Map images of random events B1,B2,T with P(B1) = P(B2) = P(T) = 7
49

= 7
49

= 0.142.
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and indicate that the random events B1 and B2 are neither conditionally independent

given the random event T nor given the complement ∁T .

Testing the null-hypothesis of independence of the random variables 𝖡1 and 𝖡2
with Pearson’s 𝜒

2
test with Yates’ continuity correction given the data returns a p-

value of practically equal to 0 indicating that the null-hypothesis should be rejected.

The likelihood ratio test is applied with respect to the log-linear distribution corre-

sponding to the null-hypothesis of conditional independence and results in a p-value

of 0.825 indicating that the null-hypothesis cannot reasonably be rejected.

Thus, given the data the tests imply that the random variables 𝖡1 and 𝖡2 are not

independent but conditionally independent given the random variable 𝖳.

3.9 Discussion and Conclusions

Since pairwise conditional independence does not imply joint conditional indepen-

dence, the 𝜒

2
-test (Bonham-Carter 1994) of independence given 𝖹0 = 1 does not

apply to checking the modeling assumption of weights-of-evidence. The disadvan-

tage of both the “omnibus” test (Bonham-Carter 1994) and the “new omnibus” test

(Agterberg and Cheng 2002) is twofold. First, it involves an assumption of normal

distribution which itself should be subject to a test. Second, weights-of-evidence has

to be applied to calculate the test statistic which is the sum of all predicted conditional

probabilities within the training data set. If the test actually suggests rejection of the

null-hypothesis of conditional independence, the user learns that the application of

weights-of-evidence was not mathematically authorized to predict the conditional

probabilities. The standard likelihood ratio test suggested here resolves both short-

comings.
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