Skip to main content

Biochemical Recurrence After Radiation Therapy

  • Chapter
  • First Online:
Book cover Prostate Cancer

Abstract

Our patient was considered intermediate risk status prior to his original treatment. At this point he has experienced a biochemical failure and has a very strong potential for disease recurrence. With a PSA of 4.5, metastasis is less likely, but imaging modalities are not adequately sensitive to eliminate the possibility of metastatic foci. At this point we have a very healthy gentleman with what appears to be local recurrence of previously intermediate risk prostate cancer. Without any treatment, this recurrence has the potential to metastasize and cause morbidity and even mortality in this patient. We recommend discussing the local salvage therapy options. We might recommend salvage radical prostatectomy in this case, ensuring the patient has a good understanding that the procedure has a significant risk of altering his quality of life and that these risks are elevated above the typical patient undergoing primary radical prostatectomy. If the patient selects this treatment option, we would recommend both a TRUS biopsy to confirm local disease and a fluciclovine PET scan to increase our confidence in the presence of both local recurrence and absence of nodal disease or metastasis. Other local salvage therapies are certainly options as well. The patient could also consider a watchful waiting approach with plans to initiate ADT at the time of detection of clinical metastasis. Note that ongoing studies will soon further our understanding of the role of newer ADT modalities in the BCR setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohler JL, Armstrong AJ, Bahnson RR, et al. Prostate cancer, version 1.2016. J Natl Compr Cancer Netw. 2016;14:19.

    Article  Google Scholar 

  2. Wisenbaugh ES, Andrews PE, Ferrigni RG, et al. Proton beam therapy for localized prostate cancer 101: basics, controversies, and facts. Rev Urol. 2014;16:67.

    PubMed  PubMed Central  Google Scholar 

  3. Kuban DA, Thames HD, Levy LB, et al. Long-term multi-institutional analysis of stage T1–T2 prostate cancer treated with radiotherapy in the PSA era. Int J Radiat Oncol Biol Phys. 2003;57:915.

    Article  Google Scholar 

  4. Kattan MW, Zelefsky MJ, Kupelian PA, et al. Pretreatment Nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer. J Clin Oncol. 2000;18:3352.

    Article  CAS  Google Scholar 

  5. Zietman AL, DeSilvio ML, Slater JD, et al. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA. 2005;294:1233.

    Article  CAS  Google Scholar 

  6. Zietman AL, Bae K, Slater JD, et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95-09. J Clin Oncol. 2010;28:1106.

    Article  Google Scholar 

  7. Coen JJ, Zietman AL, Rossi CJ, et al. Comparison of high-dose proton radiotherapy and brachytherapy in localized prostate cancer: a case-matched analysis. Int J Radiat Oncol Biol Phys. 2012;82:e25.

    Article  Google Scholar 

  8. Bolla M, Collette L, Blank L, et al. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet. 2002;360:103.

    Article  CAS  Google Scholar 

  9. Widmark A, Klepp O, Solberg A, et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet. 2009;373:301.

    Article  CAS  Google Scholar 

  10. Tyrrell CJ, Payne H, See WA, et al. Bicalutamide (‘Casodex’) 150mg as adjuvant to radiotherapy in patients with localised or locally advanced prostate cancer: results from the randomised early prostate cancer Programme. Radiother Oncol. 2005;76:4.

    Article  CAS  Google Scholar 

  11. Pilepich MV, Winter K, Lawton CA, et al. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma—long-term results of phase III RTOG 85–31. Int J Radiat Oncol Biol Phys. 2005;61:1285.

    Article  CAS  Google Scholar 

  12. Zagars GK, Johnson DE, von Eschenbach AC, et al. Adjuvant estrogen following radiation therapy for stage C adenocarcinoma of the prostate: long-term results of a prospective randomized study. Int J Radiat Oncol Biol Phys. 1988;14:1085.

    Article  CAS  Google Scholar 

  13. D’Amico AV, Schultz D, Loffredo M, et al. Biochemical outcome following external beam radiation therapy with or without androgen suppression therapy for clinically localized prostate cancer. JAMA. 2000;284:1280.

    Article  Google Scholar 

  14. Jones CU, Hunt D, McGowan DG, et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med. 2011;365:107.

    Article  CAS  Google Scholar 

  15. D’Amico AV, Manola J, Loffredo M, et al. 6-month androgen suppression plus radiation therapy vs radiation therapy alone for patients with clinically localized prostate cancer: a randomized controlled trial. JAMA. 2004;292:821.

    Article  Google Scholar 

  16. Zietman AL, Tibbs MK, Dallow KC, et al. Use of PSA nadir to predict subsequent biochemical outcome following external beam radiation therapy for T1-2 adenocarcinoma of the prostate. Radiother Oncol. 1996;40:159.

    Article  CAS  Google Scholar 

  17. Critz FA, Williams WH, Holladay CT, et al. Post-treatment PSA ≤0.2 ng/ml defines disease freedom after radiotherapy for prostate cancer using modern techniques. Urology. 1999;54:968.

    Article  CAS  Google Scholar 

  18. Crook JM, Bahadur YA, Bociek RG, et al. Radiotherapy for localized prostate carcinoma. The correlation of pretreatment prostate specific antigen and nadir prostate specific antigen with outcome as assessed by systematic biopsy and serum prostate specific antigen. Cancer. 1997;79:328.

    Article  CAS  Google Scholar 

  19. Ray ME, Thames HD, Levy LB, et al. PSA nadir predicts biochemical and distant failures after external beam radiotherapy for prostate cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys. 2006;64:1140.

    Article  Google Scholar 

  20. Klayton TL, Ruth K, Buyyounouski MK, et al. PSA doubling time predicts for the development of distant metastases for patients who fail 3DCRT or IMRT using the phoenix definition. Pract Radiat Oncol. 2011;1:235.

    Article  Google Scholar 

  21. Epstein JI, Egevad L, Amin MB, et al. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol. 2016;40:244.

    PubMed  Google Scholar 

  22. D’Amico AV, Renshaw AA, Sussman B, et al. Pretreatment psa velocity and risk of death from prostate cancer following external beam radiation therapy. JAMA. 2005;294:440.

    Article  Google Scholar 

  23. Lee AK, Levy LB, Cheung R, et al. Prostate-specific antigen doubling time predicts clinical outcome and survival in prostate cancer patients treated with combined radiation and hormone therapy. Int J Radiat Oncol Biol Phys. 2005;63:456.

    Article  Google Scholar 

  24. Loeb S, Feng Z, Ross A, et al. Can we stop prostate specific antigen testing 10 years after radical prostatectomy? J Urol. 2012;186:500.

    Article  Google Scholar 

  25. Sanda MG, et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J Urol. 2017.

    Google Scholar 

  26. Crook JM, Perry GA, Robertson S, et al. Routine prostate biopsies following radiotherapy for prostate cancer: results for 226 patients. Urology. 1995;45:624.

    Article  CAS  Google Scholar 

  27. Crook J, Malone S, Perry G, et al. Postradiotherapy prostate biopsies: what do they really mean? Results for 498 patients. Int J Radiat Oncol Biol Phys. 2000;48:355.

    Article  CAS  Google Scholar 

  28. Zwahlen DR, Smith R, Andrianopoulos N, et al. Prostate-specific antigen bounce after permanent iodine-125 prostate brachytherapy—an Australian analysis. Int J Radiat Oncol Biol Phys. 2011;79:179.

    Article  CAS  Google Scholar 

  29. Poyet C, Hof D, Sulser T, et al. Artificial prostate-specific antigen persistence after radical prostatectomy. J Clin Oncol. 2012;30:e62.

    Article  CAS  Google Scholar 

  30. Rodriguez MA, Escutia MA, Antolin AR, et al. PSA bounce phenomenon after local treatment with radiation for prostate cancer. Arch Esp Urol. 2012;65:21.

    PubMed  Google Scholar 

  31. Hanlon AL, Pinover WH, Horwitz EM, et al. Patterns and fate of PSA bouncing following 3D-CRT. Int J Radiat Oncol Biol Phys. 2001;50:845.

    Article  CAS  Google Scholar 

  32. Yamamoto Y, Offord CP, Kimura G, et al. Tumour and immune cell dynamics explain the PSA bounce after prostate cancer brachytherapy. Br J Cancer. 2016;115:195.

    Article  CAS  Google Scholar 

  33. Bernstein MB, Ohri N, Hodge JW, et al. Prostate-specific antigen bounce predicts for a favorable prognosis following brachytherapy: a meta-analysis. J Contemp Brachytherapy. 2013;5:210.

    Article  Google Scholar 

  34. Consensus statement: guidelines for PSA following radiation therapy. American Society for Therapeutic Radiology and Oncology Consensus Panel. Int J Radiat Oncol Biol Phys. 1997;37:1035.

    Google Scholar 

  35. Zietman AL, Christodouleas JP, Shipley WU. PSA bounces after neoadjuvant androgen deprivation and external beam radiation: impact on definitions of failure. Int J Radiat Oncol Biol Phys. 2005;62:714.

    Article  Google Scholar 

  36. Cookson MS, Aus G, Burnett AL, et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association prostate guidelines for localized prostate cancer update panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol. 2007;177:540.

    Article  CAS  Google Scholar 

  37. Roach M, Hanks G, Thames H, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys. 2006;65:965.

    Article  Google Scholar 

  38. Denham JW, Kumar M, Gleeson PS, et al. Recognizing false biochemical failure calls after radiation with or without neo-adjuvant androgen deprivation for prostate cancer. Int J Radiat Oncol Biol Phys. 2009;74:404.

    Article  Google Scholar 

  39. Horwitz EM, Thames HD, Kuban DA, et al. Definitions of biochemical failure that best predict clinical failure in patients with prostate cancer treated with external beam radiation alone: a multi-institutional pooled analysis. J Urol. 2005;173:797.

    Article  Google Scholar 

  40. Abramowitz MC, Li T, Buyyounouski MK, et al. The Phoenix definition of biochemical failure predicts for overall survival in patients with prostate cancer. Cancer. 2008;112:55.

    Article  Google Scholar 

  41. Choueiri TK, Dreicer R, Paciorek A, et al. A model that predicts the probability of positive imaging in prostate cancer cases with biochemical failure after initial definitive local therapy. J Urol. 2008;179:906.

    Article  Google Scholar 

  42. Even-Sapir E, Metser U, Mishani E, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287.

    PubMed  Google Scholar 

  43. Oyen RH, Van Poppel HP, Ameye FE, et al. Lymph node staging of localized prostatic carcinoma with CT and CT-guided fine-needle aspiration biopsy: prospective study of 285 patients. Radiology. 1994;190:315.

    Article  CAS  Google Scholar 

  44. Molinie V, Mahjoub WK, Balaton A. Histological modifications observed in prostate after preserving treatments for prostate cancer and their impact on Gleason score interpretation. Ann Pathol. 2008;28:363.

    Article  Google Scholar 

  45. Einspieler I, Rauscher I, Duwel C, et al. Detection efficacy of hybrid 68Ga-PSMA ligand PET/CT in prostate cancer patients with biochemical recurrence after primary radiation therapy defined by phoenix criteria. J Nucl Med. 2017;58:1081.

    Article  Google Scholar 

  46. Segall GM. PET/CT with sodium 18F-fluoride for management of patients with prostate cancer. J Nucl Med. 2014;55:531.

    Article  CAS  Google Scholar 

  47. Parker WP, Davis BJ, Park SS, et al. Identification of site-specific recurrence following primary radiation therapy for prostate cancer using C-11 choline positron emission tomography/computed tomography: a nomogram for predicting extrapelvic disease. Eur Urol. 2017;71:340.

    Article  Google Scholar 

  48. Grossfeld GD, Stier DM, Flanders SC, et al. Use of second treatment following definitive local therapy for prostate cancer: data from the capsure database. J Urol. 1998;160:1398.

    Article  CAS  Google Scholar 

  49. Peters M, Moman MR, van der Poel HG, et al. Patterns of outcome and toxicity after salvage prostatectomy, salvage cryosurgery and salvage brachytherapy for prostate cancer recurrences after radiation therapy: a multi-center experience and literature review. World J Urol. 2013;31:403.

    Article  Google Scholar 

  50. Tran H, Kwok J, Pickles T, et al. Underutilization of local salvage therapy after radiation therapy for prostate cancer. Urol Oncol. 2014;32:701.

    Article  Google Scholar 

  51. Faria SL, Mahmud S, Souhami L, et al. No immediate treatment after biochemical failure in patients with prostate cancer treated by external beam radiotherapy. Urology. 2006;67:142.

    Article  Google Scholar 

  52. Pinover WH, Horwitz EM, Hanlon AL, et al. Validation of a treatment policy for patients with prostate specific antigen failure after three-dimensional conformal prostate radiation therapy. Cancer. 2003;97:1127.

    Article  Google Scholar 

  53. Freedland SJ, Humphreys EB, Mangold LA, et al. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA. 2005;294:433.

    Article  CAS  Google Scholar 

  54. Pound CR, Partin AW, Eisenberger MA, et al. Natural history of progression after psa elevation following radical prostatectomy. JAMA. 1999;281:1591.

    Article  CAS  Google Scholar 

  55. Chade DC, Eastham J, Graefen M, et al. Cancer control and functional outcomes of salvage radical prostatectomy for radiation-recurrent prostate cancer: a systematic review of the literature. Eur Urol. 2012;61:961.

    Article  Google Scholar 

  56. Pisters LL, Leibovici D, Blute M, et al. Locally recurrent prostate cancer after initial radiation therapy: a comparison of salvage radical prostatectomy versus cryotherapy. J Urol. 2009;182:517.

    Article  Google Scholar 

  57. Gotto GT, Yunis LH, Vora K, et al. Impact of prior prostate radiation on complications after radical prostatectomy. J Urol. 2010;184:136.

    Article  Google Scholar 

  58. Bates AS, Samavedi S, Kumar A, et al. Salvage robot assisted radical prostatectomy: a propensity matched study of perioperative, oncological and functional outcomes. Eur J Surg Oncol. 2015;41:1540.

    Article  CAS  Google Scholar 

  59. Nguyen PL, D’Amico AV, Lee AK, et al. Patient selection, cancer control, and complications after salvage local therapy for postradiation prostate-specific antigen failure: a systematic review of the literature. Cancer. 2007;110:1417.

    Article  Google Scholar 

  60. Chade DC, Shariat SF, Cronin AM, et al. Salvage radical prostatectomy for radiation-recurrent prostate cancer: a multi-institutional collaboration. Eur Urol. 2011;60:205.

    Article  Google Scholar 

  61. Touma NJ, Izawa JI, Chin JL. Current status of local salvage therapies following radiation failure for prostate cancer. J Urol. 2005;173:373.

    Article  Google Scholar 

  62. Xia J, Trock BJ, Gulati R, et al. Overdetection of recurrence after radical prostatectomy: estimates based on patient and tumor characteristics. Clin Cancer Res. 2014;20:5302.

    Article  Google Scholar 

  63. Peters M, Maenhout M, van der Voort van Zyp JR, et al. Focal salvage iodine-125 brachytherapy for prostate cancer recurrences after primary radiotherapy: a retrospective study regarding toxicity, biochemical outcome and quality of life. Radiother Oncol. 2014;112:77.

    Article  Google Scholar 

  64. Yamada Y, Okihara K, Iwata T, et al. Salvage brachytherapy for locally recurrent prostate cancer after external beam radiotherapy. Asian J Androl. 2015;17:899.

    Article  Google Scholar 

  65. Chen CP, Weinberg V, Shinohara K, et al. Salvage HDR brachytherapy for recurrent prostate cancer after previous definitive radiation therapy: 5-year outcomes. Int J Radiat Oncol Biol Phys. 2013;86:324.

    Article  Google Scholar 

  66. Zerini D, Jereczek-Fossa BA, Fodor C, et al. Salvage image-guided intensity modulated or stereotactic body reirradiation of local recurrence of prostate cancer. Br J Radiol. 2015;88:20150197.

    Article  CAS  Google Scholar 

  67. Finley DS, Belldegrun AS. Salvage cryotherapy for radiation-recurrent prostate cancer: outcomes and complications. Curr Urol Rep. 2011;12:209.

    Article  Google Scholar 

  68. Bahn DK, Lee F, Silverman P, et al. Salvage cryosurgery for recurrent prostate cancer after radiation therapy: a seven-year follow-up. Clin Prostate Cancer. 2003;2:111.

    Article  Google Scholar 

  69. Spiess PE, Katz AE, Chin JL, et al. A pretreatment nomogram predicting biochemical failure after salvage cryotherapy for locally recurrent prostate cancer. BJU Int. 2010;106:194.

    Article  Google Scholar 

  70. Jones JS, Rewcastle JC, Donnelly BJ, et al. Whole gland primary prostate cryoablation: initial results from the cryo on-line data registry. J Urol. 2008;180:554.

    Article  Google Scholar 

  71. Eisenberg ML, Shinohara K. Partial salvage cryoablation of the prostate for recurrent prostate cancer after radiotherapy failure. Urology. 2008;72:1315.

    Article  Google Scholar 

  72. Spiess PE, Lee AK, Leibovici D, et al. Presalvage prostate-specific antigen (PSA) and PSA doubling time as predictors of biochemical failure of salvage cryotherapy in patients with locally recurrent prostate cancer after radiotherapy. Cancer. 2006;107:275.

    Article  CAS  Google Scholar 

  73. Kanthabalan A, Peters M, Van Vulpen M, et al. Focal salvage high-intensity focused ultrasound in radiorecurrent prostate cancer. BJU Int. 2017;120(2):246–56.

    Article  CAS  Google Scholar 

  74. Gelet A, Chapelon JY, Poissonnier L, et al. Local recurrence of prostate cancer after external beam radiotherapy: early experience of salvage therapy using high-intensity focused ultrasonography. Urology. 2004;63:625.

    Article  Google Scholar 

  75. Uddin Ahmed H, Cathcart P, Chalasani V, et al. Whole-gland salvage high-intensity focused ultrasound therapy for localized prostate cancer recurrence after external beam radiation therapy. Cancer. 2012;118:3071.

    Article  Google Scholar 

  76. Ahmed HU, Cathcart P, McCartan N, et al. Focal salvage therapy for localized prostate cancer recurrence after external beam radiotherapy: a pilot study. Cancer. 2012;118:4148.

    Article  Google Scholar 

  77. Shah TT, Peters M, Kanthabalan A, et al. PSA nadir as a predictive factor for biochemical disease-free survival and overall survival following whole-gland salvage HIFU following radiotherapy failure. Prostate Cancer Prostatic Dis. 2016;19:311.

    Article  CAS  Google Scholar 

  78. Rouviere O, Sbihi L, Gelet A, et al. Salvage high-intensity focused ultrasound ablation for prostate cancer local recurrence after external-beam radiation therapy: prognostic value of prostate MRI. Clin Radiol. 2013;68:661.

    Article  CAS  Google Scholar 

  79. Billia M, Siddiqui KM, Chan S, et al. Assessment of histopathological features of needle biopsy in recurrent prostate cancer following salvage high-intensity focused ultrasound. Can Urol Assoc J. 2016;10:416.

    Article  Google Scholar 

  80. Murat F-J, Poissonnier L, Rabilloud M, et al. Mid-term results demonstrate salvage high-intensity focused ultrasound (HIFU) as an effective and acceptably morbid salvage treatment option for locally radiorecurrent prostate cancer. Eur Urol. 2009;55:640.

    Article  Google Scholar 

  81. Warmuth M, Johansson T, Mad P. Systematic review of the efficacy and safety of high-intensity focussed ultrasound for the primary and salvage treatment of prostate cancer. Eur Urol. 2010;58:803.

    Article  Google Scholar 

  82. Ost P, Bossi A, Decaestecker K, et al. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: a systematic review of the literature. Eur Urol. 2015;67:852.

    Article  Google Scholar 

  83. Ost P, Jereczek-Fossa BA, As NV, et al. Progression-free survival following stereotactic body radiotherapy for oligometastatic prostate cancer treatment-naive recurrence: a multi-institutional analysis. Eur Urol. 2016;69:9.

    Article  Google Scholar 

  84. Picchio M, Berardi G, Fodor A, et al. (11)C-choline PET/CT as a guide to radiation treatment planning of lymph-node relapses in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2014;41:1270.

    Article  CAS  Google Scholar 

  85. Casamassima F, Masi L, Menichelli C, et al. Efficacy of eradicative radiotherapy for limited nodal metastases detected with choline PET scan in prostate cancer patients. Tumori. 2011;97:49.

    Article  CAS  Google Scholar 

  86. Jilg CA, Rischke HC, Reske SN, et al. Salvage lymph node dissection with adjuvant radiotherapy for nodal recurrence of prostate cancer. J Urol. 2012;188:2190.

    Article  CAS  Google Scholar 

  87. Herr HW, O’Sullivan M. Quality of life of asymptomatic men with nonmetastatic prostate cancer on androgen deprivation therapy. J Urol. 2000;163:1743.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Martin B.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martin, C., Lowrance, W. (2018). Biochemical Recurrence After Radiation Therapy. In: Chang, S., Cookson, M. (eds) Prostate Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-78646-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78646-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78645-2

  • Online ISBN: 978-3-319-78646-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics