
Powernightmares: The Challenge of Efficiently
Using Sleep States on Multi-core Systems

Thomas Ilsche1(B), Marcus Hähnel2, Robert Schöne1, Mario Bielert1,
and Daniel Hackenberg1

1 Center for Information Services and High Performance Computing (ZIH),
Technische Universität Dresden, 01062 Dresden, Germany

{thomas.ilsche,robert.schoene,mario.bielert,
daniel.hackenberg}@tu-dresden.de

2 Operating Systems Group, Technische Universität Dresden,
01062 Dresden, Germany

marcus.haehnel@tu-dresden.de

Abstract. Sleep states are an important and well-understood feature of
modern server and desktop CPUs that enable significant power savings
during idle and partial load scenarios. Making proper decisions about
how to use this feature remains a major challenge for operating systems
since it requires a trade-off between potential energy-savings and per-
formance penalties for long and short phases of inactivity, respectively.
In this paper we analyze the default behavior of the Linux kernel in
this regard and identify weaknesses of certain default assumptions. We
derive pathological patterns that trigger these weaknesses and lead to
‘Powernightmares’ during which power-saving sleep states are used insuf-
ficiently. Our analysis of a workstation and a large supercomputer reveals
that these scenarios are relevant on real-life systems in default configura-
tion. We present a methodology to analyze these effects in detail despite
their inherent nature of being hardly observable. Finally, we present
a concept to mitigate these problems and reclaim lost power saving
opportunities.

Keywords: Linux · Sleep state · Energy efficiency
Power consumption

1 Introduction

As energy is one of the major cost factors in data-center operations, CPU devel-
opers are constantly pushing towards more aggressive techniques to scale power
consumption with system load. One aspect to achieve this so called power pro-
portionality is the reduction of power consumption during idle phases. These
phases represent a major fraction of the run-time of desktop systems and are
also noteworthy in the server domain. How deep a CPU sleeps determines how
much power it consumes, but also how long it takes to wake up from its slumber.

c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 623–635, 2018.
https://doi.org/10.1007/978-3-319-75178-8_50



624 T. Ilsche et al.

For example, depending on the depth of the sleep a typical Haswell server
may consume 73 W in idle and wake up within 25µs or consume 126 W and wake
up within 2µs [3]. The challenge for an operating system (OS) is to ensure that
as much time as possible is spent sleeping as deeply as possible, while satisfying
the latency requirements of the system. The job of the idle governor is to strike
this balance. When investigating unexpected high power usage of one of our test
systems, we found that sometimes the default governor in Linux does not let
the system sleep as deeply as desirable for prolonged idle phases—it caused a
Powernightmare. The same effect was found in our petascale production HPC
system. We traced the cause of this inefficiency, and developed a mitigation that
wakes the system from its nightmare and lets it sleep well again.

The remainder of this work is structured as follows: We explain the details
of sleep states of modern CPUs and their use by the OS in Sect. 2, followed by a
description of the problem and when it occurs in the wild in Sect. 3. We discuss
possible solutions and describe and evaluate our mitigation approach in Sect. 4
before we conclude and give an outlook on future work in Sect. 5.

2 Background and Related Work

The ACPI standard [1] describes different power saving mechanisms. This
includes P-states, which are implemented via voltage and frequency scaling
(DVFS), T-states, which are implemented via clock modulation, and C-states
that are typically implemented via clock gating [15, Sect. 5.2.1.1] and power gat-
ing [15, Sect. 5.3.2]. The four different C-states C0 to C3 are distinguished by
ACPI. Higher C-state numbers refer to deeper sleep states with lower power
consumption and longer wake-up latencies.

2.1 Hardware Perspective on C-States

Contemporary Intel server CPUs implement C-states per core and per package,
referred to as CC -states and PC -states, respectively. Only the former can be
directly influenced by the OS, while the latter are enabled by hardware under
specific circumstances. The CC-state is the lowest of the selected C-states among
all hardware threads on the core. Similarly, the PC-state is determined by the
lowest CC-state of all cores incorporated on the package [6,7, Sect. 4.2.5].

Modern Intel server CPUs implement at least four CC-states: CC0, CC1,
CC3, and CC6 [6,7, Sect. 4.2.4]. The processor core is active and executes
instructions in CC0. In CC1 the processor core is still active and caches are
not flushed. The additional C1E does not differ from CC1 for the core itself,
but allows the package to enter PC1E, if all cores are in C1E or higher. In
CC3, core clocks are stopped, and caches are flushed. In CC6, the core applies
power gating, storing its internal state to a dedicated SRAM. The architectural
state is restored when the core returns to a lower CC-state. Another feature,
called delayed deep C-states (DDCst) is described in [7, Sect. 4.2.4.5]. Here lower
CC-states are used for a short period of time before switching to higher C-states.



Powernightmares: The Challenge of Efficiently Using Sleep States 625

To the best of our knowledge, a documentation of the mechanisms of newer Intel
server processors is currently not available. However, since they are handled like
their predecessors and their desktop counterparts, one can assume that the gen-
eral mechanisms are the same.

There are six different PC-states [7, Sect. 4.2.5]: PC0, PC1, PC1E, PC2, PC3,
and PC6. Similarly to CC0, PC0 refers to the normal operation of the package.
While in PC1, “No additional power reduction actions are taken” [6, Sect. 4.2.5],
core voltage and frequencies are reduced in PC1E. In PC3 and PC6 the last level
cache becomes inaccessible, voltages are lowered, and the power consumption of
uncore components is reduced [7, Sect. 4.2.5].

Higher C-states provide a significant power saving potential, at the cost of
higher exit latencies [13]. Intel describes hardware mechanisms that counter inef-
ficient usages of C-states [14]. These mechanisms, called promotion and demo-
tion, use hardware loops to track C-state residency history and automatically
re-evaluate OS decisions. For promotion, the hardware automatically increases
the C-state, for demotion it lowers the C-state. Intel desktop processors and
previous server processors include a feature called C1E auto-promotion [6,7,
Sect. 4.2.4]. There is no promotion to higher PC-states than PC1E. The proces-
sor core can perform demotion by choosing: (1) CC3 instead of the requested
CC6, and (2) CC1 instead of CC6/CC3. To correct wrong decisions demotions
can be reverted by a mechanism called undemotion. Whether promotion, demo-
tion, and undemotion are enabled is encoded in the PKG CST CONFIG CONTROL
register. On Intel processors, C-states can be requested by the OS in the form
of a hint argument to the mwait instruction.

2.2 Idle Power Conservation Techniques in Linux

An important feature of modern Linux systems is the so called dyntick-idle mode,
also called nohz mode or tickless. This feature reduces the number of scheduling-
clock interrupts for idle cores as opposed to having regular scheduling ticks, e.g.,
every 4 ms. In dyntick-idle mode, a core can remain in idle indefinitely. This is
the default behavior on modern systems [9].

Whenever a core has no task to be scheduled, an idle state is selected. The
cpuidle governor implements the selection policy while the cpuidle driver
implements the architecture-specific mechanism to request an idle state from
the CPU [10]. In our evaluation, we focus on high performance systems with
Intel processors, using the intel idle driver. Idle states correspond to C-states.
Linux currently provides two governors to select idle states.

The ladder governor evaluates on each call whether the previous C-state
was predicted correctly and increases or decreases the depth stepwise. Pallipadi
et al. [10, Sect. 4.1] describe that while “this works fine with periodic tick-based
kernels, this step-wise model will not work very well with tickless kernels”.

The menu governor, which is the default on tickless Linux systems, combines
several factors as a heuristic. It uses an energy break even point based on the
target residency provided by the architecture specific cpuidle driver. The
challenge is to predict the upcoming idle duration.



626 T. Ilsche et al.

The prediction algorithm starts with the known next timer event, and applies
a correction factor based on an exponential moving average on how accurate
this prediction was in the past. Idle times predicted to be longer than 50 ms are
always considered to be perfect, on grounds that longer sleeping times provide
no additional power improvement. Additionally, the repeatable-interval-detector
records the duration of 8 previous intervals and uses their average. Up to two
high values are ignored if the variance across all eight values would be too high.
If the variance is still too high among the six lowest previous times, this predictor
is ignored, otherwise the minimum of the next timer event and the repeatable-
interval-detector is used.

Further, the menu governor tries to limit the performance impact by choosing
C-states with shorter exit latencies on busy systems. Based on the load average
and number of IO wait tasks, a performance multiplier limits the ratio of pre-
dicted idle time and exit latency. A device or user can request a maximum DMA
latency for QOS purposes (PM QOS CPU DMA LATENCY). The latency requirement
is the minimum of both values. Finally, the menu governor selects the highest
enabled C-state with a target residency of no more than the predicted idle
time and an exit latency that does not exceed the latency requirement.

The heuristic relies on many values that have been determined experimen-
tally. Since its last big change1 in 2009, the menu governor has operated like that.
In principle, the ladder governor has not changed since 2007. In our work, we
focus on tickless systems running the menu governor, since it is essential from an
energy-efficiency perspective to avoid unnecessary scheduling-clock interrupts.

Considering the impact on performance and power consumption, the cpuidle
governor was a research target before. Roba and Baruch [11] propose two possi-
ble improvements for the C-state selection heuristic claiming a constant improve-
ment of 10% for their combination. One approach is based on machine learning,
the other tries to improve the responsiveness of the already existing repeatable-
interval-detector in the menu governor. Kanev et al. [8] conducted a state-of-the-
art study for typical datacenter applications. They argue that “the maximum
improvement for both power and latency with a single policy is unlikely” and
thus the menu governor is a compromise in-between. Given the strict latency
requirements in the datacenter domain, Kanev et al resort to DVFS for power
savings. However, both works focus more on improving latency instead of energy.

3 Analysis of Inconsistent Power Saving in Idle

In this section, we identify inefficient power saving decisions in Linux and demon-
strate how to trigger the effect. We also show real world occurrences on an
individual machine and across a production HPC system.

1 cpuidle: fix the menu governor to boost IO performance: https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/commit/?id=69d25870f20c4b2563304f2b79
c5300dd60a067e.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69d25870f20c4b2563304f2b79c5300dd60a067e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69d25870f20c4b2563304f2b79c5300dd60a067e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69d25870f20c4b2563304f2b79c5300dd60a067e


Powernightmares: The Challenge of Efficiently Using Sleep States 627

Table 1. Properties of systems under test

Testsystem Diana HPC system Taurus

CPU 2 × Xeon E5-2690 v3 2 × Xeon E5-2680 v3

Measurement Per socket at 500 kSa/s [4] Per socket at 100 Sa/s

System (AC) at 20 Sa/s Node (DC) at 1000 Sa/s [2]

Kernel Version 4.11.0-rc8 (8b5d11e) 2.6.32 (Bull SCS4 / RHEL 6.8)

Total system power consumption in different states

All cores C6 73.9 W (total system) 87.0 W (total node)

Core 0 C1E, others C6 106.3 W (total system) n/a∗

All cores C1E 126.1 W (total system) 130.8 W (total node)
∗The old kernel does not support disabling C-states for individual cores.

3.1 Observation

During energy efficiency research on a system with sophisticated power mea-
surement instrumentation [4], we have observed an unexpected behavior: Even
though the system is specifically configured for low idle power consumption, i.e.
few interrupts, the power consumption during idle phases was erratic. While the
baseline idle power is 73 W, sometimes after inconspicuous activities, the total
power consumption remained over 100 W for several seconds. This happened
during times without any explicit activity on the system and was observed by
the external power measurement. The behavior persisted across a wide range of
recent and historic kernel versions. We also observed this effect on a production
HPC system. The underlying issue eluded investigation for a while, in particular
because any active measurement directly impacted the effect under investigation.

3.2 Experimental Platform

For reproduction and analysis of the effect we used two systems: a workstation
for energy measurements (Diana) and a node of a petascale production HPC
system (Taurus). Both are equipped with dual socket Intel Haswell-EP CPUs
and sophisticated energy measurement instrumentation (see Table 1). All energy
measurements are calibrated and verified to high accuracy [2,4,5]. On Diana we
use the high resolution socket power measurements when observing small time
scales. Full system (AC) measurement allows us to perform analysis at larger
time scales. We fixate the core frequency with the userspace P-state governor
and disable HyperThreading to reduce the variance of the measurements. Most
of our observations relate to PC1E or higher, in which power consumption is not
affected by core frequency.

3.3 Tools to Isolate the Effect

To isolate the effect, we combined existing and newly implemented kernel trace-
points, measurement of C-state residencies via the x86 adapt kernel module [12],



628 T. Ilsche et al.

and high resolution power measurements. The power/cpu idle (for older kernels
power/power start) tracepoint provides the selected C-state for each idle gov-
ernor decission. The sched/sched switch tracepoint correlates tasks with the
CPU they are scheduled on. We added a power/menu idle tracepoint to record
the internal decision parameters of the heuristic within the menu governor.

Since we want to observe an idle system, we designed the measurement to
avoid activities as much as possible. Tracepoint events are recorded by the kernel
in a ring buffer. The measurement threads idle in poll() until the buffer is nearly
full. The only regular interruption is from reading the C-state residency counters
of the CPU via x86 adapt every 5333 ms. Even the activity of the measurement
process itself is recorded through the scheduling events. Power measurements are
recorded externally and merged into a common trace file after the experiment.

(a) Repeatedly sleeping for short intervals causing an idle time misprediction. Top:
scheduled tasks per CPU, middle: core C-state requested by the menu governor (ac-
tive [blue], C1E [green], C6 [red]), bottom: power consumption. Note that only socket
power measurements are available at this time granularity.

(b) Full duration of the Powernightmare: requested idle states, power consumption of
both sockets and full system.

Fig. 1. A synthetically triggered Powernightmare on Diana. (Color figure online)



Powernightmares: The Challenge of Efficiently Using Sleep States 629

3.4 Cause, Trigger, and Contributing Factors

The cause of the unusual high idle power consumption is a severe underes-
timation of the upcoming idle time by the menu governor. Its heuristic has
to resort to historic knowledge, as not all events can be known in advance.

#include <unistd.h>
int main() {

#pragma omp parallel
while (1) {

for (int i = 0; i < 8; i++) {
#pragma omp barrier
usleep (10);

}
sleep (10);

}
}

Listing 1. Code to reproduce under-
estimation of the menu governor

Bursts of activity with short idle times
after which the CPU idles for a long
time can confuse the heuristic. Based
on the observation of recent idle times,
the heuristic concludes that a short
idle time will follow, regardless of the
next known timer event being far in
the future. Moreover, due to discarding
long intervals in cases of high variance,
the algorithm will often not correct its
prediction after the first long idle time.
As up to two outliers are ignored by the

heuristic, it can take up to three consecutive wake-up events to recover from a
misprediction. If a CPU goes into a shallow sleep state but stays there for a long
time, it wastes power because it could be sleeping much deeper. We call this a
Powernightmare.

We use the code from Listing 1 to reliably trigger a Powernightmare. This
code repeatedly sleeps for a very short time tricking the menu governor into pre-
dicting an upcoming short idle phase, hence requesting a low C-state. An execu-
tion of this code is shown in Fig. 1a. Our test system Diana is optimized for little
background activity, tasks are scheduled infrequently. Therefore it takes up to
10 s before all involved cores are able to end their Powernightmare—especially
because it takes up to three wake-up events to correct the misprediction (see
Fig. 1b). During the shown Powernightmare, the idle consumption increases from
73 W to 125 W–109 W, depending on the number of cores in CC1. As long as at
least one core is in CC1 state, the respective socket cannot enter the PC6 state,
wasting most of the energy saving potential. The hardware C-state residency
counters are consistent with the selected C-states by the menu governor.

We have seen Powernightmares being triggered in normal operation. On the
production HPC system Taurus it occurs regularly when no jobs are running
on a node. Figure 2a shows a scheduling pattern that happens every 25 s. This
regular activity is related to the parallel Lustre filesystem and the interaction
of its pinger thread (ll ping), the OFA Infiniband network driver (kiblnd sd),
and PortalRPC daemon tasks for each CPU (ptlrpcd). As shown in Fig. 2b,
several cores remain in C1 for up to one second2. Due to regular background
activity, the Powernightmare rarely lasts more than one second on this system.

There are various other causes for Powernightmares on our test systems.
Most of the time, the cause is communication between user and/or kernel tasks
scheduled on different cores, such as systemd-journald and I/O related kernel

2 The power/power start tracepoint event does not distinguish between C1 and C1E.



630 T. Ilsche et al.

(a) Scheduling of Lustre related kernel tasks causing an idle time misprediction.

(b) After the Lustre ping (short power spike) several cores remain in C1 (green) instead
of C6 (red) for ≈1 s causing increased node power consumption.

Fig. 2. A Powernightmare in normal idle on a Taurus HPC node. (Color figure online)

tasks. Another example are updates from a GNU screen status bar that affect a
shell process and the kernel task handling the respective tty, all waiting for one
another for very short time periods. Further causes invole reading model specific
registers, which is done by a kernel worker scheduled on the specific core.

We also observed Powernightmares on an Intel Xeon Phi 7210 machine. How-
ever, the impact there is reduced, due to recurrent events on all cores every
100 ms, which allows the governor to correct a misprediction within 300 ms.

4 Optimization and Results

We identify several approaches to address the problem of wasted energy due to
Powernightmares. Further we describe our selected solution and evaluate it.

4.1 Approaching the Problem

Changing task behavior to avoid triggering a Powernightmare. In many cases
it would be possible to tune the applications or kernel tasks such that they
no longer trigger an idle time misprediction. For instance, pinning tasks that
communicate with each other on the same core could prevent short sleep times
while one task is waiting for the other. The pattern exhibited by Lustre involving
several kernel tasks per core appears to have significant potential for general
improvement. However modifying a wide variety of legacy code is intractable as
a solution. Even for newly written software, the complex interactions between
different components make it hardly feasible to address the problem this way.



Powernightmares: The Challenge of Efficiently Using Sleep States 631

Improving the idle time prediction. A C-state governor must function with
incomplete information. It is conceivable to improve the prediction in some cases,
e.g., using improved heuristics or software hints. However, there will never be
perfect information about upcoming events in general. Applications or outside
influences such as network packets cannot be generally predicted.

Biasing the prediction error. It would be possible to tune the heuristic towards
over-predicting idle times instead of under-predicting them. The resulting energy
savings come at the cost of increased latency. This trade-off could be tunable
according to user preferences. One aspect that can certainly be improved is to
not generally discard long idle times as outliers in the analysis of recent history.

C-state selection by hardware. For Intel processors, the C-state requested by the
mwait command is only a hint to the hardware, which may chose to override
this decision. However, current Intel processors offer no feature to automatically
promote the cores into CC3 or higher. A possibility would be to always request
the highest C-state and then relying on auto-demotion or delayed deep C-states
for low latency as well as auto-undemotion for low power. Then the OS would
no longer be able to enforce latency requirements.

Mitigating the impact. As any modification of the heuristic cannot improve every
possible situation, we focus on mitigating the impact of a misprediction. A simple
workaround is a program that runs a thread pinned to each core which sleeps
for 10 ms in an endless loop. Using a kernel with regular scheduling clock ticks
has a similar effect. This avoids staying in an inefficient sleep state for a long
time but comes at the cost of a permanent background noise. And while it may
save power in some situations, it does increase idle power measurably compared
to perfect deep sleeping. Inspired by this workaround, we describe a solution in
the menu governor without the disadvantages.

4.2 Fallback Timer

To mitigate the effect while avoiding permanent background noise, a core has to
wake up from a shallow sleep state only. To achieve this in the menu governor, we
set a special fallback timer if there is a very large factor between the next known
timer event and the predicted idle time. This fallback timer is set so that if the
prediction heuristic was right, the core wakes up before the timer triggers. We
then cancel the additional timer to avoid generating noise. If the heuristic was
wrong, the programmed wake-up allows to go into a higher C-state and continue
sleeping with lower power consumption. To achieve this, we instruct the kernel
to ignore the recent residency history for the upcoming idle state selection. We
choose to use the hrtimer API of the Linux kernel for our implementation. Reg-
ular timers have too low resolution and will miss their deadline by a significant
margin on tickless kernels, which would render our solution ineffective.



632 T. Ilsche et al.

Fig. 3. The fallback timer corrects a wrong C-state selection after 10ms of shal-
low sleep. Timeline diagram from top to bottom: scheduling activity, core C-states
(active [blue], C1E [green], C6 [red]), power measurements. Note that only socket power
measurements are available at this time granularity. (Color figure online)

4.3 Verification

To determine the effectiveness of our solution, we compare an unmodified kernel
against a patched kernel with enabled fallback timer. We compare normal idle
with no user activity and the worst-case trigger workload as described in List-
ing 1. Powernightmares that occur in normal operation often exhibit a strong
variance and depend on many environmental factors. For the sake of statisti-
cal significance and reproducibility, we focus the quantitative verification on the
simple synthetic workload, that is >99.99% idle, and normal idle configuration.

Figure 3 shows the timeline of a mispredicted idle time. While all cores enter
C1E after the trigger executes, the fallback timer is activated and all cores
can enter a higher C-state. The duration of 10 ms for the fallback timer is an
initial estimate and can be further experimentally refined or dynamically adapted
based on target residencies. Figure 4 shows the statistical density distribution
of power consumption samples during 20 min. If the trigger workload is active
every 10 s, the average system power consumption with the unmodified kernel is
119 W. The modified kernel with active fallback timer reduces the average power
to 74.3 W. During normal idle, in which only few Powernightmares occur, the
system consumes 75.5 W with the unmodified kernel and 73.9 W with the fallback
timer. The difference is hardly statistically significant, but the amount of outliers
is reduced and the standard deviation decreases from 8.1 W to 3.5 W by using the
fallback timer. With tickless disabled, which also implies the ladder governor,
the unmodified kernel is not affected by Powernightmares. The regular timer
interrupts increase idle power to 78.5 W. The trigger workload does not increase
that further. Our results show that the fallback timer prevents Powernightmares,
without causing additional power-overhead in normal idle configurations.

We have not observed any other occurrences of Powernightmares when using
the fallback timer. Due to the production nature of the system, we could not
apply the patch to Taurus. A fair comparison would also require to back-port
the patch to the old kernel version normally used on the system.



Powernightmares: The Challenge of Efficiently Using Sleep States 633

Fig. 4. Combined violin-/box-plot of the Diana power consumption during idle and
trigger workload using an unmodified Linux kernel, our patched kernel with fallback
timer, and an unmodified kernel with disabled tickless (nohz=off).

On our system, it takes on average 1735 cycles (0.67µs) to program a fallback
timer. Since the core has no scheduled task a that point, this cost does not impact
performance but represents a small energy overhead. When waking up before a
set fallback timer triggers, canceling it takes 390 cycles (0.15µs). This time is
added to the wake-up transition latency, which is up to 2.1µs on our system
for C1 and 15µs for C3 [3], not considering the remaining time spent in the
Linux kernel after the wake-up. Considering that this only applies whenever the
governor has to deal with conflicting information and the overhead is an order of
magnitude lower than existing latencies, we conclude that the negative impact
is insignificant for all practical purposes.

5 Summary and Outlook

In this study, we described and analyzed a pattern of inefficient use of sleep
states that leads to a significant waste of energy on idle systems. We developed
a methodology and open-source tools3 to carefully observe these anomalies with-
out altering them. Our investigation reveals that a misprediction of the default
Linux idle governor can cause the system to enter an inappropriate C-state. In
particular, systems with little background activity can stay in this shallow sleep
state for ten seconds or more, wasting significant energy-saving potential. We
designed a solution to mitigate the negative effects by setting a fallback timer
if the idle governor is unsure about the duration of a sleep phase. This allows
the system to enter a deep sleep instead of remaining in a shallow sleep state for
a long time. We demonstrated that our implementation4 effectively reduces the
average power consumption without notable negative side-effects.

3 https://github.com/tud-zih-energy/lo2s/tree/powernightmares.
4 https://github.com/tud-zih-energy/linux/tree/menu idle fallback timer.

https://github.com/tud-zih-energy/lo2s/tree/powernightmares
https://github.com/tud-zih-energy/linux/tree/menu_idle_fallback_timer


634 T. Ilsche et al.

While this study focuses on HPC systems, the effects discussed are not nec-
essarily limited to a specific architecture. The same imperfect idle governor runs
on millions of mobile devices that all rely on effective sleep-state use to conserve
battery life. Since core numbers continue to increase in most devices, so does the
likelihood that at least one will sleep badly and thus prevent shared resources
from saving power. The impact of our work increases with the gap of power con-
sumption between different sleep states. Further efforts to save energy, which rely
on increasing the time spent continuously in idle, would be very susceptible to
Powernightmares. Our work therefore contributes to the energy-proportionality
for a variety of modern and future systems.

Acknowledgement. This work is supported in part by the German Research Foun-
dation (DFG) within the CRC 912 - HAEC and by the European Union’s Horizon 2020
program in the READEX project (grant agreement number 671657). The authors thank
Thomas Kissinger for the report and initial discussion that led to this investigation.

References

1. Advanced Configuration and Power Interface (ACPI) Specification, Revision 6.1,
January 2016. uefi.org. Accessed 30 Jan 2017

2. Hackenberg, D., Ilsche, T., Schuchart, J., Schöne, R., Nagel, W.E., Simon, M.,
Georgiou, Y.: HDEEM: high definition energy efficiency monitoring. In: Interna-
tional Workshop on Energy Efficient Supercomputing (E2SC) (2014). https://doi.
org/10.1109/E2SC.2014.13

3. Hackenberg, D., Schöne, R., Ilsche, T., Molka, D., Schuchart, J., Geyer, R.: An
energy efficiency feature survey of the Intel Haswell processor. In: IEEE Inter-
national Parallel and Distributed Processing Symposium Workshop (IPDPSW)
(2015). https://doi.org/10.1109/IPDPSW.2015.70

4. Ilsche, T., Hackenberg, D., Graul, S., Schuchart, J., Schöne, R.: Power measure-
ments for compute nodes: improving sampling rates, granularity and accuracy.
In: International Green and Sustainable Computing Conference (IGSC) (2015).
https://doi.org/10.1109/IGCC.2015.7393710

5. Ilsche, T., Schöne, R., Schuchart, J., Hackenberg, D., Simon, M., Georgiou, Y.,
Nagel, W.E.: Power measurement techniques for energy-efficient computing: recon-
ciling scalability, resolution, and accuracy. In: Second Workshop on Energy-Aware
High Performance Computing (EnA-HPC) (2017, accepted for publication)

6. Intel Corporation: Desktop 4th Generation Intel Core Processor Family, Desk-
top Intel Pentium Processor Family, and Desktop Intel Celeron Processor Family,
Datasheet, vol. 1 of 2, March 2014. intel.com. Accessed 12 Aug 2016

7. Intel Corporation: Intel Xeon Processor E5–1600/E5-2600/E5-4600 v2 Product
Families, Datasheet, vol. One of Two, March 2014. intel.com. Accessed 12 Aug
2016

8. Kanev, S., Hazelwood, K., Wei, G.Y., Brooks, D.: Tradeoffs between power man-
agement and tail latency in warehouse-scale applications. In: IEEE International
Symposium on Workload Characterization (IISWC) (2014). https://doi.org/10.
1109/IISWC.2014.6983037

9. McKenney, P.E.: NO HZ: Reducing Scheduling-Clock Ticks. kernel.org. Accessed
09 May 2017

http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
https://doi.org/10.1109/E2SC.2014.13
https://doi.org/10.1109/E2SC.2014.13
https://doi.org/10.1109/IPDPSW.2015.70
https://doi.org/10.1109/IGCC.2015.7393710
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/4th-gen-core-family-desktop-vol-1-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v2-datasheet-vol-1.pdf
https://doi.org/10.1109/IISWC.2014.6983037
https://doi.org/10.1109/IISWC.2014.6983037
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt


Powernightmares: The Challenge of Efficiently Using Sleep States 635

10. Pallipadi, V., Li, S., Belay, A.: cpuidle: do nothing, efficiently. In: Proceedings of
the Ottawa Linux Symposium (OLS) (2007). kernel.org. Accessed 12 Jan 2017

11. Roba, A., Baruch, Z.: An enhanced approach to dynamic power management
for the Linux cpuidle subsystem. In: IEEE International Conference on Intelli-
gent Computer Communication and Processing (ICCP) (2015). https://doi.org/
10.1109/ICCP.2015.7312712

12. Schöne, R., Molka, D.: Integrating performance analysis and energy efficiency
optimizations in a unified environment. Comput. Sci.-Res. Dev. 29(3–4), 231–239
(2014). https://doi.org/10.1007/s00450-013-0243-7

13. Schöne, R., Molka, D., Werner, M.: Wake-up latencies for processor idle states on
current x86 processors. Comput. Sci.-Res. Dev. 30(2), 219–227 (2014)

14. Song, J.: System and method for processor utilization adjustment to improve deep
c-state use, 1 January 2013. US Patent 8,347,119

15. Weste, N.H.E., Harris, D.M.: CMOS VLSI Design - A Circuits and Sys-
tems Perspective, 4th edn. Pearson, London (2011). https://doi.org/10.1177/
002072098602300231

https://www.kernel.org/doc/ols/2007/ols2007v2-pages-119-126.pdf
https://doi.org/10.1109/ICCP.2015.7312712
https://doi.org/10.1109/ICCP.2015.7312712
https://doi.org/10.1007/s00450-013-0243-7
https://www.google.com/patents/US8347119
https://doi.org/10.1177/002072098602300231
https://doi.org/10.1177/002072098602300231

	Powernightmares: The Challenge of Efficiently Using Sleep States on Multi-core Systems
	1 Introduction
	2 Background and Related Work
	2.1 Hardware Perspective on C-States
	2.2 Idle Power Conservation Techniques in Linux

	3 Analysis of Inconsistent Power Saving in Idle
	3.1 Observation
	3.2 Experimental Platform
	3.3 Tools to Isolate the Effect
	3.4 Cause, Trigger, and Contributing Factors

	4 Optimization and Results
	4.1 Approaching the Problem
	4.2 Fallback Timer
	4.3 Verification

	5 Summary and Outlook
	References




