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Abstract. The emergence of generic interfaces, encapsulating algorith-
mic aspects in pattern-based constructions, has greatly alleviated the
development of data-intensive and stream-processing applications. In
this paper, we complement the basic patterns supported by GrPPI,
a C++ General and Reusable Parallel Pattern Interface of the state-
of-the-art, with the advanced parallel patterns Pool, Windowed-Farm,
and Stream-Iterator. This collection of advanced patterns is basically
oriented to some domain-specific applications, ranging from the evolu-
tionary to the real-time computing areas, where compositions of basic
patterns are not capable of fully mimicking algorithmic behavior of their
original sequential codes. The experimental evaluation of the advanced
patterns on a set of domain-specific use-cases, using different back-ends
(C++ Threads, OpenMP and Intel TBB) and pattern-specific param-
eters, reports remarkable performance gains. We also demonstrate the
benefits of the GrPPI pattern interface from the usability and flexibil-
ity points of view.
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1 Introduction

The advent of the heterogeneous HPC architectures in the last decade paved the
way in improving performance of data-intensive and stream-processing applica-
tions [21]. This fact, however, posed a number of challenges to developers for
exploiting available resources of parallel hardware. An example among these
challenges is the variety of programming frameworks existing for multi-/many-
core CPUs, GPUs, co-processors, DSPs or FPGAs units present in heterogeneous
platforms [8]. Therefore, it becomes clear that additional expertise is required,
not only to develop applications using those frameworks, but also to select and
tune them optimally to operate on these architectures. The lack of unified inter-
faces, integrating available processor-specific programming frameworks in a stan-
dalone layer, makes the development an even more complex task.
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With the recent emergence of pattern-based programming frameworks,
encapsulating algorithmic aspects using a building blocks approach, this aspect
has been relieved when programming for parallel platforms [16]. Basically, par-
allel patterns offer a way to implement robust, readable and portable solu-
tions while hiding away the complexity behind concurrency mechanisms, e.g.,
thread management, synchronizations or data sharing. Numerous examples of
pattern-based programming frameworks, such as SkePU [9], FastFlow [3] or Intel
TBB [19], can be found in the literature. Nevertheless, most of these frameworks
are not generic enough nor offer unified pattern interfaces [5]. To tackle these
issues, the recent interface GrPPI [20], accommodates a unified layer of generic
and reusable parallel patterns on the top of existing execution environments and
pattern-based frameworks. However, we find that the core patterns offered by
this interface do not fully match in some domain-specific use cases, e.g., evolu-
tionary and symbolic algorithms.

To deal with this issue, we extend GrPPI with a collection of advanced par-
allel patterns targeted to domain-specific applications and evaluate their per-
formance on a set of use cases from different computing areas. Specifically, this
paper contributes with the following:

– We complement the core patterns supported by GrPPI with the advanced
parallel patterns: Pool, Windowed-Farm, and Stream-Iterator.

– We demonstrate the flexibility and the composability of the advanced patterns
in the GrPPI interface context.

– We assess the usability of the patterns with respect to the number of lines of
code (LOCs) that have to be modified in order to parallelize the selected use
cases.

– We evaluate the performance gains by using these patterns on a set of
domain-specific use cases and varying configurations of parallelism degree
and problem-specific parameters.

The remainder of this paper is organized as follows. Section 2 revisits some
related works about parallel programming frameworks and domain-specific pat-
terns. Section 3 states the formal definition of the advanced parallel patterns sup-
ported by GrPPI. Section 4 describes the interface adopted for the new patterns
presented in this paper. Section 5 evaluates these patterns from the usability and
performance points of view under three different use cases. Section 6 gives a few
concluding remarks and future works.

2 Related Work

In the literature, we found numerous works proposing parallel patterns targeted
to modern architectures for developing applications. In a first place, we find
several open-source pattern libraries oriented exclusively to multi-core proces-
sors, e.g., Intel Thread Building Blocks (TBB) [19], RaftLib [4] or Kanga [14],
and others supporting also accelerators, such as, SkePU [9], which allows hybrid
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CPU–GPU configurations. We also encounter commercial solutions in the state-
of-the-art, such as Thrust [17] and SYCL [13] for CUDA and OpenCL devices,
respectively. Simultaneously, standardized interfaces are being progressively
developed. This is the case of C++ STL algorithms, available in the forth-
coming C++17, that start defining parallel versions of already existing STL
algorithms [11]. Similar implementations to the parallel STL can also be found
as third-party libraries, e.g., HPX [12] and GrPPI [20].

All in all, we observe that these frameworks provide a collection of classic
parallel patterns targeted to data and stream-processing applications, e.g., the
Map, Reduce, MapReduce, Pipeline and Farm patterns. However, none of them
natively supplies advanced patterns. As stated in the previous section, we refer
to advanced patterns to those constructions that match the algorithmic behav-
ior of some particular domain-specific applications coming from, e.g., the sym-
bolic computing, control theory, biology, wireless sensor networks or real-time
stream processing domains. In this sense, we find that only some pattern-based
frameworks in the literature have pushed forward the development of complex,
high-level patterns. For instance, the FastFlow [3] library recently provided the
Pool [2] and the Windowed-Farm [7] patterns, two commonly used structures in
evolutionary and stream-intensive applications, respectively. On the other hand,
the MALLBA library [1] offers a collection of high-level skeletons for combina-
torial optimization which deals with parallelism in a user-friendly and efficient
manner. In any case, the high-level patterns offered by these frameworks are
not generic enough to be easily leveraged when developing parallel applications.
The contribution of this paper is mainly focused on complementing the GrPPI
library of basic parallel patterns with a new set of advanced patterns match-
ing the algorithms that commonly appear in, e.g., genetic, sensor networks or
real-time applications.

3 Advanced Parallel Patterns

Patterns have been generally defined as recurring strategies for solving problems
from a wide spectrum of areas, such as architecture, object-oriented program-
ming and software architecture [15,16]. In our case, we take advantage of parallel
software design patterns, since they provide a mechanism to encapsulate algo-
rithmic features and are able to make applications more robust, portable and
reusable. Also, if these patterns are properly tuned, they can achieve a good
balance between parallel scalability and data locality.

As observed, several solutions in the state-of-the-art offer collections of basic
parallel patterns as a “building blocks” modeling strategy for developing stream
processing and data-intensive applications. However, while many of the algo-
rithms found in general-purpose applications match directly those patterns, there
exist situations in which those have to be composed among them in order to com-
ply with the algorithm requirements. Furthermore, we identify some domain-
specific algorithms, in which those basic patterns do not match any of these
constructions or have to be composed in a very complex way in order to sat-
isfy the problem prerequisites. This occurs in many algorithms that come from
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the evolutionary and symbolic computing [10] domain, wireless sensor networks
algorithms [6] or in real-time processing engines [18]. Therefore, we determine
the need for supporting advanced patterns in order to simplify the development
of complex algorithms related to the aforementioned application domains.

In the following, we describe formally three new parallel patterns that can
be eventually incorporated during the parallelization task of such applications:
Pool, Windowed-Farm and Stream-Iterator.

Pool. This pattern models the evolution of a population of individuals matching
many evolutionary computing algorithms in the state-of-the-art [2]. Specifically,
the Pool pattern is comprised of four different functions that are applied iter-
atively to a population P of individuals of type α (see Fig. 1(a)). First, the
selection function S: α∗ → α∗ selects a subset of individuals belonging to P.
Next, the selected individuals are processed by means of the evolution function
E: α∗ → α∗, which may produce any number of new or modified individuals. The
resulting set of individuals computed by E are filtered through a filter function
F: α∗ → α∗, and eventually inserted into the population. Finally, the termina-
tion function T: α∗ → {true, false} determines in each iteration whether the
evolution process should be finished or continued. To guarantee the correctness
of the parallel version of this pattern, both functions S and E should be pure,
i.e., they can be computed in parallel with no side effects.

(a) Pool. (b) Windowed-Farm.

(c) Stream-Iterator. (d) Farm–Stream-Iterator.

Fig. 1. Advanced parallel patterns.

Windowed-Farm. This stream-oriented pattern delivers “windows” of processed
items to the output stream. Basically, this pattern applies the function WF over
consecutive contiguous collections of x input items of type α and delivers the
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resulting windows of y items of type β to the output stream (see Fig. 1(b)).
Optionally, these windows can have an overlap factor, i.e., the number of items
in the window wi that are also part of the window wi+1. The parallelization of
this pattern requires a pure function WF: α∗ → β∗ for processing item collections.

Stream-Iterator. This stream pattern is intended to recurrently compute the pure
function F: α → α on a single stream input item until a specific condition, deter-
mined by the boolean function T: α → {true, false}, is met. Additionally, in each
iteration the result of the function F is delivered to the output stream, depending
on a boolean output guard function G: α → {true, false} (see Fig. 1(c)). Note
that this pattern, due to its nature, does not provide any parallelism degree by
itself and can be classified as a pattern modifier. Therefore, the parallel version
of this construction is only achieved when it is composed with some other core
stream pattern, e.g., using Farm or Pipeline as for the function F. An example of
Stream-Iterator composed with a Farm pattern is shown in Fig. 1(d).

4 Description

In this section, we extend our generic and reusable parallel pattern interface
(GrPPI) for C++ applications, previously presented in [20], with the advanced
parallel patterns described in Sect. 3. In general, GrPPI takes full advantage of
modern C++ features, metaprogramming concepts and generic programming to
act as switch between the parallel programming models OpenMP, C++ threads
and Intel TBB. Its design allows users to leverage the aforementioned execution
frameworks just in a single and compact interface, hiding away the complexity
behind the use of concurrency mechanisms with negligible overheads. Further-
more, the modularity of GrPPI permits to easily integrate new patterns, while
composing them to arrange more complex ones. Thanks to these properties,
GrPPI can be used to implement a wide range of existing stream-processing
and data-intensive applications with relative small efforts, having as a result
portable codes that can be executed on multiple platforms.

Next, we describe in detail the interfaces of the advanced parallel patterns
offered by GrPPI and demonstrate its composability.

Pool. The GrPPI interface designed for the Pool pattern, shown in Listing 1.1,
receives the execution model, the population (popul), the selection (select),
evolving (evolve), filtering (filter) and termination (term) functions, and the
number of selections that will be performed. Initially, the parallel pattern imple-
mentation of GrPPI divides the number of selections among the concurrent
processing entities that will select and evolve the population individuals. After-
wards, the resulting individuals are merged and forwarded to the sequential
filtering and termination functions. Finally, only if the termination condition is
met, the Pool parallel pattern finishes and delivers the resulting population. On
the contrary, the whole process is repeated again with the evolved population.
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The parallelism of this pattern is controlled via the execution model parame-
ter, which can be set to operate in sequential or in parallel, through the different
supported frameworks; e.g. to use C++ threads, the parameter should be set
to parallel execution thr. In this case, any execution model can optionally
receive, as an argument, the number of entities to be used for the parallel exe-
cution, e.g., parallel execution thr{6} would use 6 worker threads. If this
argument is not given, the interface takes by default the number of threads set
by the underlying platform.

Windowed-Farm. The interface for the Windowed-Farm pattern, described in List-
ing 1.2, receives the execution model, the stream consumer (in), the Farm (task)
and the producer (out) functions. This pattern also receives the size and the over-
lap factor of the windows.1 Specifically, the in function reads from the input
stream as many items as required to fill the window buffer. Next, this buffer
is forwarded to one of the concurrent entities, which will compute the func-
tion task in a Farm-like fashion. Therefore, the parallel implementation of this
GrPPI pattern is offered by the Farm construction. Finally, the items collections
resulting from the task function are delivered to the output stream. Note that,
depending on the user requirements, this pattern can deliver items windows in
an ordered way by properly configuring the execution model.

Stream-Iterator. The GrPPI interface for the Stream-Iterator pattern, detailed
in Listing 1.3, takes the execution model, the stream consumer (in), the kernel
(task) and the producer (out) functions. This pattern also receives two boolean
functions: the termination (term) and output guard (guard) functions. In the
first step, the in function reads items from the input stream and a worker thread
executes the kernel task function for each item. Next, the termination function
term is evaluated with the resulting item to determine if the kernel should be
re-executed on the same input item. Additionally, the output guard function
decides whether an item should be delivered to the output stream or not.

As stated in the previous section, the parallelism of the Stream-Iterator pat-
tern is only obtained when it is composed with a basic GrPPI parallel pattern,
e.g., Farm or Pipeline. As an example of composition, the code in Listing 1.4
1 Note that while the current Windowed-Farm pattern only supports count-based win-

dows, in the future we plan to extend its interface to cover time-based, slide-by-tuple
and delta-based windowing models.



Supporting Advanced Patterns in GrPPI 61

implements a Stream-Iterator, in which the kernel task function has been com-
posed with the Pipeline pattern. Therefore, the kernel is computed in parallel by 2
worker threads. Note that the optional, as for the return type in the consumer
function lambda, is used to indicate the end of the stream when constructed
without arguments. As can be seen, thanks to GrPPI, it is possible to compose
advanced with basic parallel patterns in order to increase the parallelism degree.

5 Evaluation

In this section, we perform an experimental evaluation of the three novel
advanced patterns from the usability and performance points of view. To do
so, we use the following hardware and software components:

– Target platform. The evaluation has been carried out on a server platform
comprised of 2× Intel Xeon Ivy Bridge E5-2695 v2 with a total of 24 cores
running at 2.40 GHz, 30 MB of L3 cache and 128 GB of DDR3 RAM. The OS
is a Linux Ubuntu 14.04.2 LTS with the kernel 3.13.0-57.

– Software. To develop the parallel versions and to implement the proposed
interfaces, we leveraged the execution environments C++11 threads and
OpenMP 4.5, and the pattern-based parallel framework Intel Threading
Building Blocks (TBB). The C++ compiler used to assemble GrPPI is GCC
v5.0.

– Use cases. To evaluate the advanced patterns, we use three different synthetic
use cases targeting problems from different domains.

• The Pool pattern has been evaluated on a benchmark that solves the travel-
ing salesman problem (TSP) using a regular evolutionary algorithm. This
NP-problem computes the shortest possible route among different cities,
visiting them only once and returning to the origin city.

• To evaluate the Windowed-Farm, we use a benchmark that computes aver-
age window values from an emulated sensor readings.

• For the Stream-Iterator, we leverage a benchmark that reduces the resolu-
tion of the images appearing in the input stream, and produces the images
with concrete resolutions to the output stream.
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In the following sections, we analyze the usability, in terms of lines of
code, and the performance of the GrPPI advanced patterns using the above-
mentioned benchmarks with varying configurations of parallelism degree, prob-
lem size and execution frameworks.

5.1 Usability Analysis

In this section we analyze the usability and flexibility of the advanced pattern
interfaces. To analyze these aspects, we assess the number of modified lines of
code (LOCs) required to implement the parallel versions of the use case algo-
rithms. Then, we compare the modified LOCs leveraging the GrPPI interface
with respect to using directly the supported frameworks. Table 1 summarizes
the percentage of modified LOCs in the sequential algorithm in order to imple-
ment the parallel versions of the use cases algorithms. As observed, the OpenMP
and TBB versions require less LOCs, given that these frameworks provide high-
level interfaces hiding away the complexity behind concurrency mechanisms. For
instance, OpenMP 4.5 offers the depend clause in task directives which enforces
additional constraints on the scheduling of tasks. However, the analogous imple-
mentation in C++ threads requires the use of explicit communication channels
(e.g. multiple-produce/multiple-consumer queues) and synchronization mecha-
nisms (e.g. locks, condition variables and atomic variables). On the other hand,
using the GrPPI interface for parallelizing a given application is simpler than
using directly the above-mentioned programming frameworks. On average, the
LOCs that have to be modified in order to incorporate an advanced GrPPI
pattern, is 28%. An additional advantage of GrPPI is its capability to easily
switch among execution frameworks, since it is only required to replace a single
argument in the pattern function call.

Table 1. Percentage of modified lines of code w.r.t. the sequential version.

Advanced pattern % of modified lines of code

C++ Threads OpenMP Intel TBB GrPPI

Pool +55.0% +70.0% +55.0% +22.5%

Windowed-Farm +152.1% +75.8% +51.7% +31.0%

Stream-Iterator +153.5% +56.4% +46.1% +30.8%

5.2 Performance Analysis of the Pool Pattern

Next, we evaluate the Pool pattern on a benchmark that solves the TSP problem
using a population of 50 individuals representing feasible routes. We also set
the benchmark to perform a total of 200 iterations, each of them making 200
selections. Figure 2(a) shows the performance gains when varying the number
of threads, from 2 to 24, and using the three available GrPPI back-ends: C++
threads, OpenMP and Intel TBB, with respect to the sequential version. As
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can be seen, the speedup increases roughly at a linear rate when increasing the
number of threads for all frameworks. Concretely, we observe that between 2
and 12 threads the efficiency is sustained in the range of 91%–98%. However, for
24 threads the frameworks OpenMP and Intel TBB deliver an efficiency of 80%,
while for C++ threads it slightly decreases to 77%. This is mainly due to the
better resource usage made by the OpenMP and Intel TBB runtime schedulers.

As a complementary evaluation, we set the number of threads to 12 and vary
the number of selections from 10 and 200. According to the results shown in
Fig. 2(b), the speedup grows hand in hand with the number of selections, since
the Pool pattern only parallelizes the selection and evolution functions. This
indicates that increasing the number of selections improves the load balance
among the worker threads and pays off the parallelization overheads related to
thread synchronizations and communications.
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Fig. 2. Pool speedup varying with varying number of threads and selections.

5.3 Performance Analysis of the Windowed-Farm Pattern

In this section, we evaluate the performance of the Windowed-Farm using a syn-
thetic benchmark that computes average window values from an input stream
of sensor readings. Specifically, the sensor in this benchmark has been config-
ured to read samples at 1 kHz and the pattern window size has been set to 100
elements with 90% of overlap among windows. Figure 3(a) shows the speedup
when the number of threads increases from 2 to 24. The main observation is
that all execution frameworks scale with the increasing number of threads and
behave similarly, given that the OpenMP and Intel TBB runtime schedulers do
not provide any major advantage over the C++ threads implementation in this
concrete use case. This is because the internal Farm pattern leads, by nature,
to well balanced workloads among threads. Note that a Farm is comprised of a
pool of threads that constantly retrieve items from the input stream and apply
the same function over them. On the other hand, we also observe an almost
linear scaling for increasing number of threads. This is mainly caused because
the Farm pattern can theoretically scale up to Tf

Ta
, being Tf the computation

time of the window average value and Ta the interarrival time of windows in the
input stream. To demonstrate this strong scaling, we experimentally measured
the computation time of the average function, which was, on average, 220 ms
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Fig. 3. Windowed-Farm speedup with varying number of threads and window size.

and the interarrival window time that was 10 ms. Therefore, applying the afore-
mentioned formula, we get 22 as for the maximum theoretical speedup.

As an additional experiment, we evaluate the behavior of the Windowed-Farm
pattern when increasing the window size, using 12 threads and the aforemen-
tioned configuration that uses a fixed overlapping factor of 90%. As can be
observed from Fig. 3(b), the speedup decreases for increasing window sizes, as
the number of non-overlapping items among windows also increases. This basi-
cally occurs because the interarrival time of window Ta increases, restricting
proportionally the maximum parallelism degree.

5.4 Performance Analysis of the Stream-Iterator Pattern

Finally, we analyze the performance of the GrPPI Stream-Iterator pattern using
the above-mentioned benchmark, in charge of processing square images and halv-
ing their sizes on each iteration until reaching concrete resolutions. Specifically,
the size of the input images is fixed to 8,192 pixels, and the output images, for
each input, have sizes of 128, 512 and 1,024. Figure 4(a) illustrates the bench-
mark speedup when varying the number of threads from 2 to 24 for the different
GrPPI back-ends. In this case, when the number of threads ranges between 2
and 12, the efficiency attained is roughly 75%, while for 24 this is degraded to
48% for all programming frameworks. This effect is mainly caused by the fact
that each of the threads involved in the Farm pattern, part of the Stream-Iterator,
are simultaneously accessing to different input images. Therefore, these memory
accesses become a bottleneck due to constant cache misses when the threads
perform the computation of the task function of the pattern. In general, these
results suggest a memory bandwidth limitation in this particular benchmark.

To gain insights into the performance degradation detected in the previous
analysis, we perform an additional experiment in which we set the number of
threads to 24 and vary the input image sizes from 2,048 to 16,384. Figure 4(b)
depicts the performance gains for the different execution frameworks when vary-
ing the image size in the preceding range. Again, we observe a slight speedup
decrease for increasing image sizes, which confirms our prior impressions. As an
example, if we assume 22 worker threads in the internal Farm pattern, individu-
ally processing images with resolution of 2,048 × 2,048 pixels (represented with
matrices of integers), these require about 352 MiB of memory. Therefore, not
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Fig. 4. Stream-Iterator speedup with varying number of threads and image size.

fitting in any of the available cache levels and leading to an increased L2/L3
cache miss rate when they are simultaneously accessed. All in all, this issue is
mainly due to the inherent memory-bound nature of this specific use case.

6 Conclusions

In this paper, we have extended GrPPI, a generic and reusable parallel pat-
tern interface, with the advanced parallel patterns Pool, Windowed-Farm and
Stream-Iterator, targeted to domain-specific applications. With the unified inter-
face, thanks to the use of C++ templates and metaprogramming techniques,
these patterns can be executed in parallel using any of the currently supported
back-ends: C++ threads, OpenMP and Intel TBB. Furthermore, their compact
design facilitates the development of the domain-specific applications, improving
at the same time their portability and maintainability.

As demonstrated through the experimental evaluation, the use cases imple-
mented with the proposed patterns attain remarkable speedup gains compared
with their corresponding sequential versions. Although in some cases, the par-
allelism degree is limited by the pattern nature. We also proved that leveraging
GrPPI reduces considerably the number of LOCs that have to be modified in
the original codes to turn them parallel with respect to using the parallel frame-
works directly. In general, we believe that these advanced patterns can eventually
be incorporated in domain-specific applications so as to easily parallelize them,
without having a deep understanding of existing parallel programming frame-
works or third-party interfaces.

As future work, we plan to support other advanced parallel patterns in
GrPPI, such as the keyed stream farm, stream pool and image convolution. Fur-
thermore, we intend to include other execution environments as for the offered
parallel frameworks, e.g., FastFlow or SkePU. An ultimate goal is to provide
support for accelerators via CUDA Thrust and OpenCL SYCL.
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