
Container-Based Support for Autonomic Data
Stream Processing Through the Fog

Antonio Brogi , Gabriele Mencagli , Davide Neri(B) , Jacopo Soldani ,
and Massimo Torquati

Department of Computer Science, University of Pisa, Pisa, Italy
{brogi,mencagli,davide.neri,soldani,torquati}@di.unipi.it

Abstract. We present a container-based architecture for supporting
autonomic data stream processing application on fog computing infras-
tructures. Our architecture runs applications as Docker containers, and
it exploits the native features of Docker to dynamically scale up/down
the resources of a fog node assigned to the applications running on it.
Preliminary results demonstrate that Docker containers are appropriate
for building migratable autonomic solutions on fog infrastructures.

Keywords: Data stream processing · Autonomic computing · Fog
IoT · Docker

1 Introduction

Fog computing [23] aims at distributing computing, storage and networking
resources along the cloud-to-IoT continuum, closer to the edge of the network
where millions of connected devices produce huge data flows. Many applications
(e.g., intelligent transportation, emergency management or e-health) need to
process such data flows by meeting compelling time requirements which cannot
be satisfactorily met by traditional cloud+IoT solutions, typically because of
latency and/or bandwidth limitations [6].

To suitably host autonomic data stream parallel applications on fog infra-
structures, new solutions for the dynamic management of resources within and
across fog nodes are needed. Container-based virtualisation can help solving this
need [18,19], and the objective of this paper is precisely to investigate how to
use it to dynamically manage autonomic applications on fog infrastructures.

We present a container-based architecture for supporting autonomic data
stream processing applications on fog infrastructures. The architecture exploits
containerisation to dynamically scale the resources assigned to each deployed
application. Each fog node hosts a fog node controller, which interacts with the
controllers of the autonomic applications deployed on such node. The objective
of the interaction is to dynamically scale up and down the resources assigned
to hosted applications. Fog node controllers of different nodes also interact to
support the migration of deployed applications. Fog node controllers and appli-
cations are deployed as Docker containers.
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 17–28, 2018.
https://doi.org/10.1007/978-3-319-75178-8_2

http://orcid.org/0000-0003-2048-2468
http://orcid.org/0000-0002-6263-7723
http://orcid.org/0000-0002-4758-4328
http://orcid.org/0000-0002-2435-3543
http://orcid.org/0000-0001-6323-3459


18 A. Brogi et al.

The rest of this paper is structured as follows. We first discuss two motivating
examples that illustrate needs and benefits of dynamic resource management
within/across different fog nodes (Sect. 2). After introducing Docker (Sect. 3),
we describe the proposed architecture for supporting data stream processing on
fog infrastructures (Sect. 4). We also present the results of two experiments that
show the feasibility of the proposed container-based support (Sect. 5). We finally
discuss related work (Sect. 6) and we draw some concluding remarks (Sect. 7).

2 Motivating Examples

We hereby describe two basic examples that motivate the development of our
architecture. The first example describes a scenario of intra-fog node resource
management and orchestration, through the synergical interaction between a fog
node controller (FNC) and application controllers (ACs), which run the autonomic
logic of the streaming applications deployed on such node. The second example
focuses on the more complex and challenging case of inter-fog node adaptation.

Intra-fog node scenario. Each fog node, besides being interconnected to var-
ious data providers (e.g., sensors, IoT and edge devices), can be connected to an
overlay of fog nodes and eventually to a traditional cloud system (Fig. 1, left).

Within a fog node, various streaming applications can run. Each streaming
application is characterised by (i) a set of data providers that feed the applica-
tion with a continuous flow of data items to be processed, and (ii) a set of data
consumers that will retrieve real-time data analytics produced by the applica-
tion. We also envision that each application should be designed with an auto-
nomic logic inside, responsible for scaling up/down the resources utilised by the
application and/or other application-dependent configuration knobs (e.g., load
balancing policies, scheduling disciplines). While some reconfigurations are exe-
cuted transparently to the fog infrastructure, other reconfigurations may need a
proper interaction with the FNC (e.g., resource scaling).

Things Things

Cloud

Fog Node

FNC

resource allocation 
requests/reply

Streaming app.

AC

Streaming comp.

AC

Streaming comp.

AC
scaling

scaling

scaling

Fog Node

Fig. 1. Fog computing architecture and internal behaviour of a fog node.

Consider an application consuming a data stream generated by a set of mobile
devices localised near to a fog node, and processing the most recent data items



Container-Based Support for Autonomic Data Stream Processing 19

using a sliding-window model [2] according to a feasible parallel pattern (like
those in [8]). To keep up with the arrival rate, the AC of the considered applica-
tion may decide to increase the parallelism degree of such application in order
to process input data faster. While the AC is in charge of reconfiguring the appli-
cation to exploit additional resources (e.g., by spawning new processes/threads
on-demand), the FNC is responsible for making the resources available to respond
to the dynamic need of applications. To this end, the FNC is in charge of main-
taining a complete vision of the node status (e.g., cores and cpu time available,
memory utilisation [3]), and of processing the requests of AC by finding feasi-
ble agreements. For example, if the AC requires the exclusive utilisation of eight
additional cores, the FNC can serve such request completely, if enough physical
resources are available. Otherwise, the FNC can partially serve the request of the
AC by allocating fewer cores. As extrema ratio, the FNC may unilaterally release
some cores previously assigned to other running applications to serve completely
the request, by informing the corresponding ACs of the decision taken. This sce-
nario is depicted in Fig. 1 (right).

Inter-fog node scenario. Suppose that an application is a composition of two
communicating components. The first (called Filtering) is a small graph of oper-
ators processing items produced by a set of data providers, by discarding inputs
that are deemed to be irrelevant to the rest of the application. This component
processes data items at high speed, thus it must exploit geographical proxim-
ity [21] with the data providers in order to leverage a reduced network cost.
Instead, the Selection component runs a computationally demanding preference
query like a skyline or a top-k query [25], in order to extract the best objects
among the most recent data items received from the preceding phase.

Fog Node 1

FNC

migration request/
reply

Selection Comp.

AC

Fog Node 2

FNC

resource allocation 
requests/reply

Streaming comp.

AC

Streaming comp.

AC

Filtering Comp.

AC
migrated

moving
data providers

Fig. 2. Example of migration between fog nodes.

The infrastructure should be able to support the migration of streaming
components from a fog node to another one properly chosen. This can be the
result of an internal decision of the application itself, or externally triggered
by the resource management control of the fog platform. As in the example



20 A. Brogi et al.

of Fig. 2, the data providers feeding our Filtering component, which is initially
deployed on FN1, are mobile devices that may enter in the proximity of FN2 at
a certain time instant. The corresponding AC that continuously monitors the
component’s QoS may experience too high network latency and/or insufficient
network bandwidth. Therefore, the AC may opportunistically decide to ask the
FNC of FN1 to start the migration to FN2. As a second case, the decision can be
triggered by the infrastructure itself, for example if the FNC is unable to meet
the resource utilisation requests of the applications running in the first fog node,
and some of them must be migrated to make further local resources available. In
both cases, the underlying infrastructure should provide mechanisms for seamless
migration with minimal intrusion and downtime in the processing flow.

3 Background: Docker

Container-based virtualisation is a lightweight virtualisation technology which
provides near-native performances [24]. Container-based virtualisation exploits
the kernel of the host OS for running multiple isolated user-space instances
(called containers). Since containers share the same kernel of the host OS,
container-based virtualisation adds minimal overhead to the guest applications.

Docker [9] is the de-facto standard technology exploiting container-based
virtualisation. It provides the ability to package any application with all its
dependencies (e.g., libraries, binaries, data files, etc.) into an isolated Docker
container. Docker also (i) permits limiting the resources assigned to a container
in term of memory and CPU (by default, a container has no resource constraints),
and (ii) it provides functionalities for checkpointing and restoring a running
container by exploiting CRIU [7,10,20].

A Docker container is created from a Docker image. From a single Docker
image one or more Docker containers can be started. Docker also permits to
look for existing images instead of building them from scratch. The images can
be stored into Docker registries (e.g., Docker Hub [13]) where other users can
retrieve and use them. Docker registries (as well as tools for automatically dis-
covering Docker images—e.g., [4]) ease the distribution of images across different
environment.

Docker containers can communicate by using Docker container network-
ing [12]. Two containers attached to the same network can communicate with
all other containers attached to the same network. Docker offers various network
drivers depending if the containers reside on a single host or across a cluster of
hosts. Standard sockets can also be used as low-level mechanisms for implement-
ing a communication channel between containers.

Docker has also built-in orchestration tools to deploy multi-container applica-
tions. For instance, Docker compose [11] permits creating and managing Docker
containers on a single host or in a cluster of hosts.



Container-Based Support for Autonomic Data Stream Processing 21

4 System Architecture

We hereby illustrate the main concepts of the high-level architecture we envision.
Such architecture is composed by four main components: Fog nodes (FNs), fog
node controllers (FNCs), autonomic applications (Apps), and autonomic applica-
tion controllers (ACs). A sample instance of our proposal is depicted in Fig. 3.

*

*

*

*
*

*

*

*

*

*

Fog Node (FN)

FN Controller (FNC)

Application (App)

App. Controller (AC)

FNC-FNC connections

FNC-AC connections

Fig. 3. An example of instance of the proposed architecture.

FNs are devices (e.g., smartphones, laptops, routers) with limited amounts of
available computational resources, which are in charge of running containerised
Apps. Therefore, FNs must be able to decide whether an App can run on a FN,
and how many computational resources to assign to such App (e.g., cores, CPU
time, memory, bandwidth). This is why FNs are equipped with FNCs that are in
charge of scheduling containerised Apps on FNs and of assigning to each App a
certain amount of resources available in the hosting FN.

Each App runs in a Docker container, or alternatively it can be split into vari-
ous interacting components, each running in a Docker container. Each AC running
within a container is also in charge of running the autonomic control loop of the
corresponding App or component, and of interacting with the FNC of the corre-
sponding FN to dynamically scale up/down the set of resources assigned to the
container, and/or to support the migration to another FN (or to the cloud).

Accordingly, FNCs will have to support both FNC-FNC and FNC-AC communi-
cations. FNC-FNC communications are inter-node, hence requiring to be network
communications. FNC-AC communications are instead intra-node, hence allowing
to reduce communication latency by exploiting a shared memory or domain sock-
ets. The latter seems more promising, as FNCs and ACs run in Docker containers,
which can communicate using shared socket files (see Sect. 3).

In the following, we detail the behaviour of the architecture during the execu-
tion of the scenarios sketched in Sect. 2, by distinguishing those only concerning
fog nodes from those also including autonomic applications1.
1 Due to space limitations, we hereafter abstract from the actual policies to be

employed for coordinating FNCs and for deciding how to schedule containerised Apps
within/across FNs depending on available resources.



22 A. Brogi et al.

Fog nodes. Our architecture is designed to account for FNs freely joining or
detaching from the system. Whenever a new FN is willing to join the system, its
FNCmust connect to one or more of the FNCs already available in the system
(e.g., those of the “geographically closest” FNs, or those that can guarantee a
desired response time). It must then communicate the computational resources
available in the new FN, and this information will be taken into account (by all
FNCs) when deciding how to schedule containerised Apps within/across FNs. At
this point, the new FN is considered to be part of the overlay of FNs, hence being
eligible for deploying containerised Apps on it.

Whenever a FN wishes to detach from the system, its FNC should communicate
to the other FNCs that such FN is going to detach. This will result in disconnecting
FNC of the detaching FN from the overlay of FNs, and in migrating all Apps running
on the detaching FN to the other FNs in the system.

It is worth noting that a FNmay detach from the system without priorly
advertising the FNCs of the other FNs (e.g., because the corresponding device
unexpectedly crashes or shuts-down), and this should also result in migrating
all Apps that were running on the crashed FN to the other FNs in the system.
To enable this, the availability of each FN will have to be monitored (e.g., with
watchdogs or heartbeat services connected to its FNC).

Autonomic applications. Data stream processing applications will be deploy-
able on the proposed architecture after being properly containerised as (possibly
multi-container) Docker applications. The images of the containers forming an
application will have to be available on a remote, publicly accessible Docker
registry (e.g., Docker Hub [13]).

The administrator of an application can issue the deployment of her appli-
cation by connecting to one of the FNCs in the system, and by indicating the
Apps to be executed. The administrator indicates the Docker images used to run
the Apps along with the deployment constraints of each App. For example, the
administrator can constraint the App to be deployed on a certain subset of FNs,
or she can specify that the App must be migrated to cloud whenever all the FNs
do not satisfy the requested resources by the App.

The FNCs will then coordinate themselves to identify a FN satisfying the
deployment constraints of an App, and they will inform the corresponding FNC
to enact the deployment of such App. The FNC will then download the image
of the App from the remote registry, it will start the App by running a Docker
container from the downloaded image, it will assign an initial set of computa-
tional resources to the App, and it will start interacting with the AC to scale the
resources assigned to the App (when necessary).

A FNC can scale up and down the set of resources assigned to an App (e.g.,
by decreasing/increasing the cores, CPU time, and bandwidth assigned to such
App) by simply changing the resources assigned to the corresponding Docker
container (see Sect. 3). This may be driven by exploiting reactive or predictive
control policies [17], and it happens: when a FNC needs to remove some of the
resources that were assigned to an App and to re-assign such resources to other
Apps, or when an AC realises that the App it is controlling requires less/more



Container-Based Support for Autonomic Data Stream Processing 23

resources (e.g., to change the parallelism degree and adapt it to the data rate
of the input stream). In the latter case, an AC sends a request to the FNC of the
hosting FN, which decides how/whether to scale the resources assigned to the
corresponding App.

It may happen that the computational resources available in a FN are no more
capable of satisfying the requirements of all Apps running on it. If this is the case,
the FNC of the overloaded FNwill interact with the other FNCs in the system to
decide which Apps can be migrated and on which FNs. To migrate them, it then
send a migration request to the AC of each App to be migrated. The ACwill then
start preparing the migration by storing the current state of the App, and it will
answer to the FNC by returning it the current state of the App. The FNC of the
FNwhere the Appmust be migrated will then initiate the procedure for deploying
such App, by exploiting the stored state of App as the initial application state.

It may also happen that no FN is capable of satisfying the requirements of a
to-be-migrated App. If this is the case, the FNCs can decide to migrate an App to
the cloud (with a migration approach very similar to that described above), or
to reduce the resources assigned to an App as much as possible (if such App does
not support fog-to-cloud migration).

Finally, an App can be undeployed from the system by simply informing the
FNC of the FNwhere such App is running. This can either be done by the AC (if it
realises that the App has ended its tasks), or by the administrator of the App.
The FNCwill then just have to remove the corresponding Docker container, hence
freeing the resources assigned to it.

5 Preliminary Results

In this section we show two preliminary results aimed at illustrating that Docker
can help deploying autonomic data stream processing applications in the Fog.
First, we illustrate how Docker can be exploited by a FNC for limiting the physical
resources (viz., CPUs) assigned to a containerised App running on a FN. Second,
checkpoint and restore features offered by Docker (version 17.03.1-CE ) are used
to freeze and restore a containerised App on a FN2.

Intra-fog node test. In this first test, we considered a FNC and an App running
in Docker containers on a FN. The goal of the experiment is to show (i) how a FNC
and the AC of an App can communicate on the same FN, and (ii) how a FNC can
exploit Docker for limiting the CPUs assigned to such App. In this perspective,
the App and the FNC employed in this test work as follows:

– The App is an autonomic application equipped with its AC that consumes the
CPUs of the FN running the cpuburn application (https://patrickmn.com/
projects/cpuburn/). The AC periodically sends a request to the FNC asking
for increasing or decreasing a random number of the CPUs assigned.

2 The source code of the experiments is available on GitHub. https://github.com/di-
unipi-socc/ffdocker.

https://patrickmn.com/projects/cpuburn/
https://patrickmn.com/projects/cpuburn/
https://github.com/di-unipi-socc/ffdocker
https://github.com/di-unipi-socc/ffdocker


24 A. Brogi et al.

– The FNC waits for incoming requests from the AC and (if available) increases
or decreases the amount of CPUs assigned to the App.

The FNC and the App reside on the same FN and they communicate using a socket
file, where the FNC is the server and the App the client.

As we anticipated above, the App and the FNC are shipped in their own Docker
containers and their images are stored in the Docker Hub registry3. The App is
packaged into the diunipisocc/app image while the FNC is packaged in the
diunipisocc/fnc image. In order to run the experiment, the FNC must be first
executed by running the diunipisocc/fnc image with the following command:

docker run -v /tmp/ffsocket.sock:/tmp/ffsocket.sock
-v /var/run/docker.sock:/var/run/docker.sock
diunipisocc/fnc

When the FNC starts, it waits for requests listening on the
/tmp/ffsocket.sock socket file. The -v option is used to mount a folder from
the host into a container. Instead, the /var/run/docker.sock is the socket used
by the FNC for interacting with Docker to update the CPUs assigned to the App
container. The App can be launched by running the diunipisocc/app image:

docker run -v /tmp/ffsocket.sock:/tmp/ffsocket.sock
diunipisocc/app

The App mounts the /tmp/ffsocket.sock file for communicating with the FNC.
Figure 4 (left) shows the result of the experiment executed on an Intel Linux

machine with 48 cores. In the experiment, the FNC is configured to assign at most
20 cores to the App among the 48 cores available. The App, every 5 s, asks to the
FNC to increase or decrease the cores assigned to it by a random number between
5 and 30. If the number of cores requested by the App are less or equal than 20,
the FNC assigns to the App the cores requested, otherwise the FNC assign to the
App at most 20 cores.

We measured the mean time required by the FNC to increase or decrease the
cores assigned to a container. The time measured for updating the cores is about
80 ms with a standard deviation of 16 ms.

Inter-fog node test. In the second experiment we tested the possibility of
exploiting Docker for implementing live migration of containers. The current
version of Docker only allows to checkpoint and restore a running container into
the same host, whereas it does not support live migration across different hosts
yet. There are other projects that implements live migration on top of CRIU [1],
but they are not yet integrated with Docker.

The experiment reproduces a simplified version of the inter-fog scenario pro-
posed in Sect. 2. The Filtering component sends an integer every 10 ms (100

3 The Docker images used to run the experiments are available in Docker Hub. https://
hub.docker.com/u/diunipisocc/.

https://hub.docker.com/u/diunipisocc/
https://hub.docker.com/u/diunipisocc/


Container-Based Support for Autonomic Data Stream Processing 25

0 10 20 30 40 50 60
0

10

20

30

Elapsed time (sec)

N
o.

of
co
re
s

Requested
Assigned

0 5 10 15
0

50

100

Elapsed time (sec)

N
o.

of
in
te
ge
rs

Fig. 4. Results obtained by running the intra-fog node experiment (left), and by run-
ning the inter-fog node experiment (right).

integers per second) to the Selection component that receives the stream of inte-
gers and prints them. Selection, Filtering and FNC run in their Docker container
and they communicate via the default Docker bridge network (see Sect. 3). In
our test we simulated the situation where the FNC checkpoints and restores the
Filtering component in the same FN, evaluating the downtime experienced by the
Selection component. This situation can happen, for example, if the FNC decides
to temporarily suspend the execution of the Filtering component because it
needs all the resources available on a Fog node to serve a higher priority request
coming from another App.

The FNC triggers the migration of a component using the following steps:

1. The FNC sends a migration request to the Filtering component, notifying that
the migration phase is willing to start.

2. The Filtering component receives the migration request, performs a clean up
phase (e.g., it may notify the data sources to interrupt the data streaming),
and sends a migration reply to the FNC.

3. The FNC receives the migration reply message and performs a checkpoint of
the Filtering component,

4. Immediately after, the FNC restores the Filtering component into the same
host and it continues to produce the stream of integers starting from the last
checkpointed value.

The checkpoint of the Filtering saves both the application internal state
(i.e., the last integer sent in the stream) and the sockets used for the commu-
nication. Figure 4 (right) shows the result of the execution of the experiment in
a single node. The Selection component receives 100 integers every second on
average. After five seconds the Filtering component is forced to perform a migra-
tion by the FNC. The downtime experienced by the Selection component is about
5 s which is still significant though compliant with the measurements described
in https://criu.org/Performance research. However, the checkpoint and restore
mechanisms of Docker are still under development and not yet officially released.
We expect to see further optimisations in the next stable releases.

https://criu.org/Performance_research


26 A. Brogi et al.

6 Related Work

[21] proposes an architecture for processing streaming applications near-to-the-
edge. The goal is to deploy latency-sensitive streaming operators near to the IoT
devices that generate raw data streams. The infrastructure considers only two
tiers, the first being traditional data centers and clouds, and the second featuring
cloudlets near to IoT devices. The application programmer defines which tier will
preferably execute the distinct operators of a streaming application. With respect
to our work, the distinction in two tiers seems restrictive, and the applications
do not provide any elastic/autonomic support or capability.

Recently, techniques to map streaming applications onto IoT environments
have received a considerable attention, because existing IoT platforms still lack
of advanced features in terms of dynamic resource management and data privacy
that are needed by the streaming context. IoT devices are often considered as
mere data providers, at most enabled to filtering the data in order to save net-
work bandwidth. [15] envisions an interesting approach that has several common
points with our research. Container-based technologies are used to encapsulate
streaming operators and to easily deploy them on a distributed environment. One
of the aspects that distinguishes our approach is that each containerised appli-
cation should have both the processing logic and the autonomic logic inside, the
latter directly connected to our infrastructure management entities. This makes
each running container an autonomous and adaptive entity, and not a static
running code as in [15].

[22] presents Foglets, a programming infrastructure for managing geo-dis-
tributed awareness applications in the Fog. Based on the mobility of the sensors
and the requirements of an application, the paper proposes both algorithms
for deploying the application components on the fog nodes and techniques for
handling the migration of these components between fog nodes. While, Foglets
migrates applications whenever the resources they require are no more available
in a Fog node, our approach tries to accomplish the application requirements by
increasing or decreasing the resources available in a fog node before starting the
migration phase.

A nice application scenario has been described in [5] for a urban video surveil-
lance system deployed on a fog infrastructure. The approach follows a divide-and-
conquer design, where raw data from IoT devices is filtered by applications run-
ning in Fog nodes and forwarded to a centralised cloud for processing. Although
an interesting example, the utilisation of the Fog infrastructure is limited and
does not exploit the full potential of the paradigm.

Other recent papers mainly focus on extensions of the run-time support of
existing and popular stream processing frameworks like Apache Storm and Flink,
in order to make the frameworks able to deploy and run streaming applications
in geographically distributed environments not limited to a single Cloud [14,16].
Differently, our approach is focused around a two-level adaptation approach,
where applications are themselves adaptive with their logic, interacting with our
infrastructure for negotiating agreements in the resource utilisation. Therefore,
our approach is not limited to a single application running exclusively on the



Container-Based Support for Autonomic Data Stream Processing 27

platform, and it is suitable to manage the execution of general applications and
services, also outside the stream processing domain.

7 Conclusions

Fog computing is becoming a powerful enabler for IoT. Despite the growing
interest, the implications and the advantages of Fog computing in streaming
scenarios must still be explored and analysed. Furthermore, the availability of
new emerging virtualisation concepts, like container-based technology, stimulates
the research of new solutions for efficiently and flexibly deploy streaming appli-
cations in geographically distributed environments. In this paper we proposed a
Docker-based architecture as an enabler for Fog deployment of autonomic appli-
cations. Besides the general overview of our idea, we presented also a concrete
discussion of how the Docker technology can be exploited. Finally, first prelim-
inary results confirmed our expectations about Docker as a viable approach for
a new highly distributed and fog-oriented framework.

Acknowledgements. This work has been partially supported by the EU H2020-ICT-
2014-1 project RePhrase (No. 644235).

References

1. Process HAULer. https://criu.org/P.Haul. Accessed 28 Apr 2017
2. Andrade, H., Gedik, B., Turaga, D.: Fundamentals of Stream Processing. Cam-

bridge University Press, Cambridge (2014). Cambridge Books
3. Bertolli, C., Mencagli, G., Vanneschi, M.: Analyzing memory requirements for

pervasive grid applications. In: 2010 18th Euromicro Conference on Parallel, Dis-
tributed and Network-Based Processing, Pisa, pp. 297–301 (2010). https://doi.org/
10.1109/PDP.2010.71

4. Brogi, A., Neri, D., Soldani, J.: DockerFinder: multi-attribute search of Docker
images. In: Proceedings of the 2017 IEEE International Conference on Cloud Engi-
neering, IC2E 2017, pp. 273–278 (2017)

5. Chen, N., Chen, Y., You, Y., Ling, H., Liang, P., Zimmermann, R.: Dynamic
urban surveillance video stream processing using fog computing. In: 2016 IEEE
International Conference on Multimedia Big Data (BigMM), pp. 105–112 (2016)

6. Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE
Internet Things J. 3(6), 854–864 (2016)

7. CRIU: Criu integration with docker. https://criu.org/Docker. Accessed 28 Apr
2017

8. Matteis, T., Mencagli, G.: Parallel patterns for window-based stateful operators on
data streams: an algorithmic skeleton approach. Int. J. Parallel Program. 45(2),
382–401 (2017). https://doi.org/10.1007/s10766-016-0413-x

9. Docker Inc.: Docker. https://www.docker.com/. Accessed 28 Apr 2017
10. Docker Inc.: Docker checkpoint command. https://docs.docker.com/engine/

reference/commandline/checkpoint/. Accessed 28 Apr 2017

https://criu.org/P.Haul
https://doi.org/10.1109/PDP.2010.71
https://doi.org/10.1109/PDP.2010.71
https://criu.org/Docker
https://doi.org/10.1007/s10766-016-0413-x
https://www.docker.com/
https://docs.docker.com/engine/reference/commandline/checkpoint/
https://docs.docker.com/engine/reference/commandline/checkpoint/


28 A. Brogi et al.

11. Docker Inc.: Docker compose. https://docs.docker.com/compose/. Accessed 28
Apr 2017

12. Docker Inc.: Docker container networking. https://docs.docker.com/engine/
userguide/networking/. Accessed 28 Apr 2017

13. Docker Inc.: Docker hub. https://hub.docker.com/. Accessed 28 Apr 2017
14. Hochreiner, C., Vögler, M., Schulte, S., Dustdar, S.: Elastic stream processing

for the internet of things. In: 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD), pp. 100–107, June 2016

15. Hochreiner, C., Vögler, M., Waibel, P., Dustdar, S.: VISP: an ecosystem for elastic
data stream processing for the internet of things. In: 2016 IEEE 20th Interna-
tional Enterprise Distributed Object Computing Conference (EDOC), pp. 1–11,
September 2016

16. Mehdipour, F., Javadi, B., Mahanti, A.: FOG-engine: towards big data ana-
lytics in the fog. In: 2016 IEEE 14th International Conference on Depend-
able, Autonomic and Secure Computing, 14th International Conference on
Pervasive Intelligence and Computing, 2nd International Conference on Big
Data Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), pp. 640–646, August 2016

17. Mencagli, G., Vanneschi, M.: QoS-control of structured parallel computations: a
predictive control approach. In: 2011 IEEE 3rd International Conference on Cloud
Computing Technology and Science, Athens, pp. 296–303 (2011). https://doi.org/
10.1109/CloudCom.2011.47

18. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures - a technology
review. In: 2015 3rd International Conference on Future Internet of Things and
Cloud, pp. 379–386, August 2015

19. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-
of-the-art review. IEEE Trans. Cloud Comput. (2017, accepted for publication).
https://doi.org/10.1109/TCC.2017.2702586

20. Pickartz, S., Eiling, N., Lankes, S., Razik, L., Monti, A.: Migrating LinuX contain-
ers using CRIU. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Perfor-
mance 2016. LNCS, vol. 9945, pp. 674–684. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46079-6 47

21. Sajjad, H.P., Danniswara, K., Al-Shishtawy, A., Vlassov, V.: SpanEdge: towards
unifying stream processing over central and near-the-edge data centers. In: 2016
IEEE/ACM Symposium on Edge Computing (SEC), pp. 168–178, October 2016

22. Saurez, E., Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B.: Incremen-
tal deployment and migration of geo-distributed situation awareness applications in
the fog. In: Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems, pp. 258–269. ACM, June 2016

23. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81
(2016)

24. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A.C., Peterson, L.L.: Container-
based operating system virtualization: a scalable, high-performance alternative to
hypervisors. In: SIGOPS Operating Systems Review (2007)

25. U, L.H., Mamoulis, N., Mouratidis, K.: Efficient evaluation of multiple preference
queries. In: 2009 IEEE 25th International Conference on Data Engineering, pp.
1251–1254, March 2009

https://docs.docker.com/compose/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://hub.docker.com/
https://doi.org/10.1109/CloudCom.2011.47
https://doi.org/10.1109/CloudCom.2011.47
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1007/978-3-319-46079-6_47
https://doi.org/10.1007/978-3-319-46079-6_47

	Container-Based Support for Autonomic Data Stream Processing Through the Fog
	1 Introduction
	2 Motivating Examples
	3 Background: Docker
	4 System Architecture
	5 Preliminary Results
	6 Related Work
	7 Conclusions
	References




