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Abstract. Single node hardware design is shifting to a heterogeneous
nature and many of today’s largest HPC systems are clusters that com-
bine heterogeneous compute device architectures. The need for new pro-
gramming abstractions in the advancements to the Exascale era has been
widely recognized and variants of the Partitioned Global Address Space
(PGAS) programming model are discussed as a promising approach in
this respect. In this work, we present a graph-based approach to pro-
vide runtime support for dynamic, distributed hardware locality, specif-
ically considering heterogeneous systems and asymmetric, deep mem-
ory hierarchies. Our reference implementation dyloc leverages hwloc to
provide high-level operations on logical hardware topology based on
user-specified predicates such as filter- and group transformations and
locality-aware partitioning. To facilitate integration in existing applica-
tions, we discuss adapters to maintain compatibility with the established
hwloc API.

1 Introduction

The cost of accessing data in Exascale systems is expected to be the dominant
factor in terms of execution time and energy consumption [11]. To minimize data
movement, programming systems must therefore shift from a compute-centric
to a more data-centric focus.

The Partitioned Global Address Space (PGAS ) model is particularly suitable
for programming abstractions for data locality [3] but differentiates only between
local and remote data access in its conventional form. This two-level abstraction
lacks the expressiveness to model locality of increasingly deep and heterogeneous
machine hierarchies. To facilitate plasticity, the capability of software to adapt
to the underlying hardware architecture and available resources, programmers
must be provided with fine-grained control of data placement in the hardware
topology. The 2014 PADAL report [11] summarizes a wish list on programming
environment features to facilitate this task. This work is motivated by two wish
list items in particular:

– Flexible, memory-agnostic mappings of abstract processes to given physical
architectures
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– Concise interfaces for hardware models that adjust the level of detail to the
requested accuracy.

This work introduces an abstraction of dynamic distributed locality with spe-
cific support for deep asymmetric memory hierarchies of heterogeneous systems
which typically do not exhibit an unambiguous tree structure. In this context,
dynamic locality refers to the capability to create logical representations of phys-
ical hardware components from run-time specified, imperative and declarative
constraints. Application-specific predicates can be applied as distance- and affin-
ity metrics to define measures of locality. Our approach employs a graph-based
internal representation of hierarchical locality domains. Its interface allows to
request light-weight views which represent the complex locality graph as a well-
defined, consolidated hierarchy.

The remainder of this paper is structured as follows: After a brief review of
related work, we illustrate the need for dynamic hardware locality support using
requirements identified in the DASH library. Section 4 introduces the concept of
a graph-based locality topology and general considerations for implementation.
Addressing dynamic characteristics, Sect. 4 outlines fundamental operations on
locality hierarchies and selected semantic details. To substantiate our concep-
tual findings, we introduce our reference implementation ‘dyloc’ and explain
how it achieves interoperability with hwloc in Sect. 5. Finally, the benefit of the
presented techniques is evaluated in a use case on SuperMIC, a representative
heterogeneous Ivy Bridge/Xeon Phi system.

2 Related Work

Hierarchical locality is incorporated in numerous approaches to facilitate pro-
grammability of the memory hierarchy. Most dynamic schemes are restricted
two levels in the machine hierarchy.

In X10, memory and execution space is composed of places, and tasks execute
at specific places. Remote data can only be accessed by spawning a task at the
target place. Chapel has a similar concept of locales.

The task model implemented in Sequoia [1] does not consider hardware capac-
ity for task decomposition and communication is limited to parameter exchange
between adjacent parent and child tasks.

Hierarchical Place Trees (HPT) [12] extend the models of Sequoia and X10
and increase flexibility of task communication and instantiation. Some funda-
mental concepts of HPT like hierarchical array views have been adopted in
DASH. The HPT programming model is substantially task-parallel, however,
and based on task queues assigned to places. HPTs model only static intra-node
locality collected at startup.

All abstractions of hierarchical locality in related work model the machine
hierarchy as a tree structure, including the de-facto standard hwloc. However,
shortcomings of trees for modeling modern heterogeneous architectures are
known [8] while hierarchical graphs have been shown to be more practicable
to represent locality and hardware capacity in task models [9].
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Notably, the authors of hwloc explain that graph data structures are used in
the network topology component netloc as a tree-based model was too strict and
inconvenient [7]. We believe that this reasoning also applies to node-level hard-
ware. Regarding current trends in HPC hardware configurations, we observed
that interdependent characteristics of horizontal and vertical locality in het-
erogeneous systems cannot be sufficiently and unambiguously represented in a
single, conventional tree. This is already evident for recent architectures with
cores connected in grid- and ring bus topologies.

More important, heterogeneous hosts require communication schemes and
virtual process topologies that are specific to hardware configuration and the
algorithm scenario. This involves concepts of vertical and horizontal locality that
are not based on latency and throughput as distance measure. For example in a
typical accelerator-offloading algorithm with a final reduction phase, processes
first consider physical distance and horizontal locality. For communication in the
reduction phase, distance is measured based on PCI interface affinity to optimize
for vertical locality.

Still, formal considerations cannot disprove the practical benefit of tree data
structures as a commonly understood mental model for algorithms and applica-
tion development. We therefore came to the conclusion that two models of hard-
ware locality are required: an internal physical model representing the machine
architecture in a detailed, immutable graph and logical views resulting from
projections of the physical model to a simplified tree structure.

3 Background and Motivation

The concepts discussed in the following sections evolved from specific require-
ments of DASH, a C++ template library for distributed containers and algo-
rithms in Partitioned Global Address Space. While the concepts and methods
presented in this work do not depend on a specific programming model, ter-
minology and basic assumptions regarding domain decomposition and process
topology have been inherited from DASH. In this section, these are briefly dis-
cussed as motivating use cases for dynamic hardware locality (Fig. 1).

Fig. 1. Team hierarchy created from two balanced splits: numbers in boxes indicate
unit ranks relative to the current team, with corresponding global ranks above
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Virtual Process Topology: DASH Teams. In the DASH execution model,
individual computation entities are called units, a generic name chosen because
terms such as process or thread have a specific connotation that might be mis-
leading for some runtime system concepts. In the MPI-based implementation of
the DASH runtime, a unit corresponds to an MPI rank.

Units are organized in hierarchical teams to represent the logical structure
of algorithms and machines in a program [10]. On initialization of the DASH
runtime, all units are assigned to the predefined team instance ALL. New teams
can be only created by specifying a subset of a parent team in a split operation.
Splitting a team creates an additional level in the team hierarchy [6].

In the basic variant of the team split operation, units are evenly partitioned
in a specified number of child teams of balanced size. A balanced split does
not respect hardware locality but has low complexity and no communication
overhead. It is therefore preferable for teams in flat memory hierarchy segments.
On systems with asymmetric or deep memory hierarchies, it is highly desirable
to split a team such that locality of units within every child team is optimized.
A locality-aware split at node level could group units by affinity to the same
NUMA domain, for example.

Organizing units by locality requires means to query their affinity in the
hardware topology. Resolving NUMA domains from given process IDs can be
reliably realized using hwloc. When collaboration schemes are to be optimized for
a specific communication bus, especially with grid- and ring topologies, concepts
of affinity and distance soon depend on higher-order predicates and differ from
the textbook intuition of memory hierarchies.

This does not refer to experimental, exotic architecture designs but already
applies to systems actively used at the time of this writing. Figure 2 shows the
physical structure of a SuperMIC system at host level and its common logical
interpretation. Note that core affinity to PCI interconnect can be obtained, for
example by traversing hwloc topology data, but is typically not exploited in
applications due to the lack of a locality information system that allows to
express high-level, declarative views.

Adaptive Unit-Level Parallelism. Node-level work loads of nearly all dis-
tributed algorithms can be optimized using unit-level parallelization like mul-
tithreading or SIMD operations. The available parallelization techniques and
their suitable configuration depend on the unit’s placement in the process- and
hardware topology. As this can only be determined during execution, this again
requires runtime support for dynamic hardware locality that allows to query
available capacities of locality domains – such as cache sizes, bus capacity, and
the number of available cores – depending on the current team configuration.

Domain Decomposition: DASH Patterns. The Pattern concept in
DASH [5] allows user-specified data distributions similar to Chapel’s domain
maps [2]. As only specific combinations of algorithms and data distribution
schemes maintain data locality, hardware topology and algorithm design are
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Fig. 2. Hardware locality of a single SuperMIC compute node with host-level physical
architecture to the left and corresponding logical locality domains including two MIC
coprocessors to the right.

tightly coupled. Benefits of topology-aware selection of algorithms and patterns
for multidimensional arrays have been shown in previous work [4].

4 Locality Domain Hierarchies

An hwloc distance matrix allows to express a single valid representation of hard-
ware locality of non-hierarchical topologies. However, it is restricted to latency
and throughput as distance measures. A distance matrix can express the effects
of grouping and view operations but does not support high-level queries and has
to be recalculated for every modification of the topology view. In this section, we
present the Locality Domain Hierarchy (LDH) model which extends the hwloc
topology model by additional properties and operations to represent locality
topology as dynamic graph.

In more formal terms, we model hardware locality as directed, acyclic, multi-
indexed multigraph. In this, nodes represent Locality Domains that refer to any
physical or logical component of a distributed system with memory or compu-
tation capacities, corresponding to places in X10 or Chapel’s locales. Edges in
the graph are directed and denote one of the following relationships:

Containment indicating that the target domain is logically or physically con-
tained in the source domain

Alias source and target domains are only logically separated and refer to the
same physical domain; this is relevant when searching for a shortest path, for
example

Leader the source domain is restricted to communication with the target
domain.
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Fig. 3. Domain nodes in a locality hierarchy with domain attributes in dynamically
accumulated capacities and invariant capabilities

Figure 3 outlines components of the locality domain concept in a simplified
example. A locality hierarchy is specific to a team and only contains domains
that are populated by the team’s units. At initialization, the runtime initializes
the default team ALL as root of the team hierarchy with all units and associates
the team with the global locality graph containing all domains of the machine
topology.

Leaf nodes in the locality hierarchy are units, the lowest addressable domain
category. A single unit has affinity to a specific physical core but may utilize
multiple cores or shared memory segments exclusively. Domain capacities such
as cores and shared memory are equally shared by the domain’s units if not
specified otherwise. In the example illustrated in Fig. 3, two units assigned to a
NUMA domain of 12 cores each utilize 6 cores.

When a team is split, its locality graph is partitioned among child teams such
that a single partition is coherent and only contains domains with at least one
leaf occupied by a unit in the child team. This greatly simplifies implementation
of locality-aware algorithms as any visible locality domain is guaranteed to be
accessible by some unit in the current team configuration.

4.1 Domain Attributes and Properties

The topological characteristics of a domain’s corresponding physical component
are expressed as three correlated yet independent attributes:

category of physical or logical component represented by the domain object
such as “socket” or “L3D cache”

number of logical indirections between the locality domain and the
hierarchy root; not necessarily related to distance

the domain’s hierarchical path from the root domain, consisting of
relative subdomain offsets separated by a dot character.
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Domain tags serve as unique identifiers and allow to locate domains without
searching the hierarchy. For any set of domains, the longest common prefix of
their domain tags identifies their lowest common ancestor, for example. Apart
from these attributes, a domain is associated with two property maps:

Capabilities invariant hardware locality properties that do not depend on the
locality graph’s structure, like the number of threads per core, cache sizes, or
SIMD width.

Capacities derivative properties that might become invalid when the graph
structure is modified, like L3 cache size available per unit.

Dynamic locality support requires means to specify transformations on the
physical topology graph as views. Views realize a projection but must not actu-
ally modify the original graph data. Invariant properties are therefore stored
separately and assigned to domains by reference only. A view only contains a
shallow copy of the graph data structure and only the capacities of domains
included in the view.

4.2 Operations on Locality Domains

A specific domain node can be queried by their unique domain tag or unit.
Conceptually, locality hierarchy model is a directed, multi-relational graph so
any operation expressed in path algebra for multi-relational graphs is concep-
tually feasible and highly expressive, but overly complex. For the use cases we
identified in applications so far, it is sufficient to provide the operations with
semantics listed in Fig. 4, apart from unsurprising operations for node traver-
sal and lookup by identifier. These can be applied to any domain in a locality
hierarchy, including its root domain to include the entire topology.

fi
fi

Fig. 4. Fundamental operations in the locality domain concept on a locality domain
hierarchy d. Modifying operations return the result of their operation as locality domain
view d′.

Operations for selection and exclusion are applied to subdomains recursively.
The runtime interface can define complex high-level functions based on combina-
tions of these fundamental operations. To restrict a virtual topology to a single
NUMA affinity, for example:
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The domain group operation combines an arbitrary set of domains in a log-
ical group. This is useful in various situations, especially when specific units
are assigned to special roles, often depending on a phase in an algorithm. For
example, Intel suggests the leader role communication pattern1 for applications
running MPI processes on Xeon Phi accelerator modules where communication
between MPI ranks on host and accelerator is restricted in the reduction phase
to a single, dedicated process on either side.

As groups are virtual, their level is identical to the original LCA of the
grouped domains and their communication cost is 0. Like any other modifica-
tion of a locality graph’s structure, adding domain groups does not affect mea-
sures distance or communication cost as a logical rearrangement has, of course,
no effect on physical connectivity. Figure 5 illustrates the steps of the domain
grouping algorithm.

Fig. 5. Simplified illustration of the domain grouping algorithm. Domains 100 and 110
in NUMA scope are separated into a group. To preserve the original topology structure,
the group includes their parent domains up to the lowest common ancestor with domain
121 as alias of domain 11.

4.3 Specifying Distance and Affinity Metrics

Any bidirectional connection between a domain and its adjacent subdomains in
the locality hierarchy model represents a physical bus exhibiting characteristic
communication overhead such as a cache crossbar or a network interconnect.
1 https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor

-system-software-developers-guide.pdf.

https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
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Therefore, a cost function cost(d) can be specified for any domain d to specify
communication cost of the medium connecting its immediate subdomains. This
allows to define a measure of locality for a pair of domains (da, db) as the cumu-
lative cost of the shortest path connection, restricted to domains below their
lowest common ancestor (LCA). A domain has minimal distance 0 to itself.

Heterogeneous hosts require communication schemes and virtual process
topologies that are specific to hardware configuration and the algorithm sce-
nario. In a typical accelerator offload algorithm with a final reduction phase,
processes first consider physical distance and horizontal locality. For commu-
nication in the reduction phase, distance is measured based on PCI interface
affinity to optimize for vertical locality.

5 The dyloc Library

Initial concepts of the dyloc library have been implemented for locality discovery
in the DASH runtime. In this, hardware locality information from hwloc, PAPI,
libnuma, and LIKWID has been combined into a unified data structure that
allowed to query locality information by process ID or affinity.

Fig. 6. Using dyloc as intermediate process in locality discovery.

This query interface proved to be useful for static load balancing on heteroge-
neous systems like SuperMIC and was recently made available as the standalone
library dyloc2. Figure 7 outlines the structure of its dependencies and interfaces,
with APIs provided for C and C++.

Fig. 7. Dependencies and interfaces of the dyloc/dylocxx library

2 https://github.com/dash-project/dyloc.

https://github.com/dash-project/dyloc
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The boost graph library3 offers an ideal abstraction for high-level operations
on locality domain graphs. These are exposed in the C++ developer API and
may be modified by user-specified extensions. The boost graph concepts spec-
ify separate storage of node properties and the graph structure. This satisfies
the requirements of the domain topology data structure as introduced in Sect. 4
where domain capabilities are independent from the topology structure. As a con-
sequence, consolidated views on a locality graph do not require deep copies of
domain nodes. Only their accumulative capacities have to be recalculated.

We consider compatibility to existing concepts in the hwloc API a critical
requirement and therefore ensured, to the best of our knowledge and understand-
ing, that configurations of dyloc’s graph-based locality model can be projected
to a well-defined hierarchy and exported to hwloc data structures.

A possible scenario is illustrated in Fig. 6. Topology data provided by hwloc
for separate nodes are combined into a unified dyloc locality graph that sup-
ports high-level operations. Queries and transformations on the graph return a
light-weight view that can be converted to a hwloc topology and then used in
applications instead of topology objects obtained from hwloc directly.

6 Proof of Concept: Work Balancing Min element
on SuperMIC

The SuperMIC system4 consists of 32 compute nodes with identical hardware
configuration of two NUMA domains, each containing an Ivy Bridge (8 cores)
host processor and a Xeon Phi “Knights Corner” coprocessors (Intel MIC 5110P)
as illustrated in Fig. 2. This system configuration is an example of both increased
depth of the machine hierarchy and heterogeneous node-level architecture.

To substantiate how asymmetric, heterogeneous system configurations intro-
duce a new dimension to otherwise trivial algorithms, we briefly discuss the
implementation of the min element algorithm in DASH. Its original variant is
implemented as follows: domain decomposition divides the element range into
contiguous blocks of identical size. All units then run a thread-parallel scan on
3 http://www.boost.org/doc/libs/1 64 0/libs/graph/doc/index.html.
4 https://www.lrz.de/services/compute/supermuc/supermic.

http://www.boost.org/doc/libs/1_64_0/libs/graph/doc/index.html
https://www.lrz.de/services/compute/supermuc/supermic
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their local block for a local minimum and enter a collective barrier once it has
been found. Once all units completed their local work load, local results are
reduced to the global minimum. For portable work load balancing on heteroge-
neous systems, the employed domain decomposition must dynamically adapt to
the unit’s available locality domain-capacities and -capabilities:

Capacities: total memory capacity on MIC modules is 8 GB for 60 cores, sig-
nificantly less than 64 GB for 32 cores on host level

Capabilities: MIC cores have a base clock frequency of 1.1 GHz and 4 SMT
threads, with 2.8 GHz and 2 SMT threads on host level (Fig. 8).

Fig. 8. Trace of process activities in the min element algorithm exposing the effect of
load balancing based on dynamic hardware locality

Listing 1.1 contains the abbreviated modified implementation of the
min element scenario utilizing the runtime support proposed in this work. The
full implementation is available in the DASH source distribution5.

7 Conclusion and Future Work

Even with the improvements to the min element algorithm explained in Sect. 6,
the implementation is not fully portable, yet: the load factor to adjust for the
differing elements/ms has been determined in auto tuning. In future work, we
will extend the locality hierarchy model by means to register progress in local
work loads to allow self-adaptation of algorithms depending on load imbalance
measured for specified sections.

5 https://github.com/dash-project/dash/blob/development/dash/examples/bench.
08.min-element/main.cpp.

https://github.com/dash-project/dash/blob/development/dash/examples/bench.08.min-element/main.cpp
https://github.com/dash-project/dash/blob/development/dash/examples/bench.08.min-element/main.cpp
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